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Hyperspherical approach to three-electron atomic systems
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The hyperspherical coordinates approach to three-electron atomic systems is further refined by taking into
account the symmetry of the electrons analytically. Spins are treated explicitly for both doublet and quartet
cases to reduce the three-electron Sdimger equation to a set of coupled two-dimensional partial differential
equations in a compact, symmetric form ready for numerical calculations. It is shown that the resulting
equations can be accurately solved udhgplines. By adopting the adiabatic approximation, the hyperspheri-
cal potential curves for singly, doubly, and triply excited states for 3R& symmetry of Li are obtained.
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[. INTRODUCTION spherical potential curves is reduced to the solution of a set
of partial differential equations in two hyperangles. In this
The systematic investigation of the nature of electron corformulation the solutions have proper exchange symmetry
relation in atomic systems started about three decades adpwilt in and the states have well-defined total spin and total
with the observation of doubly excited states in helium atomsrbital angular momentum quantum numbers, as well as par-
[1]. Since then, it has become one of the major themes iity. In an earlier paper, the practical methods of solving these
atomic physicg[2]. Triply excited states of atoms are ex- partial differential equations in terms of a set Bfsplines
pected to reveal even richer and stronger correlations and theere illustrated[13] within a special angular momentum
study of these systems has gained increasing attention in tie@nfigurations® and it was shown that accurate hyperspheri-
past few years. With the developments in laser and synchrgsal potential curves were obtained even at a large hyperra-
tron radiation spectroscopy, more systematic studies of triplglius.
excited states are beginning to emef8g While some indi- Following this initial success, the method was generalized
vidual triply excited states have been observed, a classificde treat real atomic systems. Calculations that included all
tion scheme for these states is yet to be forfdd Such a  the important angular momentum components for iR
scheme will emerge only after the nature of electron corresymmetry were carried out to study three-electron systems
lation in three-electron systems is understood. such as Li and B~ [14]. The calculated adiabatic potential
The understanding of electron correlation requires imple<curves were used to interpret the recent observation of triply
mentation of new theoretical methods different from theexcited states of L{3] and to illustrate that there are no
independent-electron model. Among oth¢s, the hyper- resonances in B~ as claimed in the earlier experimefis]
spherical coordinate approap8] has been shown to be suc- and theory[16], but in agreement with recent experiment
cessful in the analysis of electron correlations for differenf17] and theory[18]. In the process of developing these cal-
doubly excited states and in the classification of these statamulations, the formulation of BL was refined and the result-
[7]. The recent implementation of the hyperspherical closeng equations are more amenable to numerical calculations.
coupling method illustrates that this approach is capable oThis paper presents the analytical developments leading to
performing accurate calculations over a broad energy regiothis improvement.
for any physical parameters for two-electron systems, such In Sec. Il, we derive a set of partial differential equations
as photoionization cross sections and resonance positiostightly different from those of BL. These equations are
and widthg[8]. equivalent to the original set in the BL paper. However, they
The early attempts at employing the hyperspherical apare more compact and explicitly symmetric; therefore they
proach to three-electron atomic systems using basis expaase easier for numerical calculation. The role of spins is
sion were made by two group®,10] and the results were treated analytically in Sec. Ill. The quartet states and doublet
reviewed in Ref[11]. These authors illustrated qualitatively states are separately analyzed. With the symmetry analyzed
that the adiabatic hyperspherical potential curves could b&n Sec. IV, we obtain the hyperangle dependence for the
sorted into three groups, supporting singly, doubly, and triplycouplings between different equations. These developments
excited states, respectively. However, their numerical resultmake it possible to reduce greatly the burden of numerical
were not accurate enough for a quantitative investigation. Tealculations. In Sec. V, the numerical implementation of the
achieve high accuracy, a method different from basis set exayperspherical approach is briefly discussed and the channel
pansion has to be developed. This was achieved recently in@otential curves for the prototype three-electron atomic sys-
formulation by Bao and Lii12] (this reference is shortened tem, Li, are analyzed. A summary is given in Sec. VI. The
as BL hereafterwhere the solution of the adiabatic hyper- derivation employs numerous results from symmetry group
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analysis. To simplify the presentation of the method most of
the analytical details are presented in the Appendixes. Y= F(RD,(RQ) (7)
Y73

Il. SYMMETRIC FORM OF DIFFERENTIAL EQUATIONS where () is the set of all anglesa(;, a», and the spherical
FOR HYPERSPHERICAL CHANNEL FUNCTIONS anglesr;) and spins® ,(R;(}) is the eigenfunction of Eq.
A. Hyperspherica| approach (3) at constant hypel’radlus, l.e.,
The hyperspherical coordinates for a three-electron (TAHV)® ,(R:Q)=U (R)® ,(R:Q) ®)
atomic system are obtained by replacing the radial distances s K’ a K

r1, Iz, andrg, of the three electrons by a hyperradR@nd  wjith 4 being a channel index.
two hyperanglesy; and «a,, defined by

r 1= Rsina;cosx,, B. Reduction of the hyperspherical channel equation
) ] Since the prefactor in Eq2) andF ,(R) are totally sym-
r,=Rsina;sina;, (D) metric under the permutation of any pair of electrons, the
channel functiong® ,(R;{2) should be totally antisymmetric.
r3=Rcosny, Following BL and Appendix A, this is guaranteed by the

. . expansion
where O<R<® and 0< a;,a,< 7/2. In this coordinate sys- P

tem, the nine spatial degrees of freedom of the three elec-

trons in the laboratory frame are represented by a hyperra-  ® =2, (PX{®)(Qp)+ 2 (PoXP)(Qur)

dius R representing the size of the atomic system, and eight : :

angles. Besides the two angles and «,, the other six 1

angles are the spherical angfeof each electron. However, +—=> [(PaX{(QsVr) + (PX{(Qedr)] (9)

the spatial and spin parts of the wave functions cannot be V2T

separated in generdlinless for quartet stateand thus the

construction of the properly symmetrized wave functions isvhere P; are the elements of the algebra of tg group
much more complicated than for two-electron systems. acting on the radial distances among the three electrons and

The total wave function? is more conveniently rewritten Qi are the similar elements but acting on the spherical angles
as and spins. Each functioi- is the product of coupled spheri-

cal harmonics and spin functions given explicitly by
¥ = i/ (R*sir? a;COS; Sinar,COSx ) 2

11 1
where the prefactor is given by the Jacobian determinant. Yr=[ll2(lo)l3:L)5 5(S0)5:9)=[9)[s0), (10
The volume element fore; and «, dimensions is

d(cosm)da,. The Schrdinger equation satisfied by is with given total angular momenturh and total spinS.

In Eg. (9, the summation is over those
Yy=Ey (3) I'=(4,05,13,19,5)=(y,s0) with a well-defined parity
given by = (—)'1*'2%!s, The quantum numbets, S, their
azimuthal components, and the parity are exact conserved
quantities. Note that th®; ) are the projections afr onto
1 ( #?  cosyy; 4 1 g2 ) @ a subspace satisfying a specified permutation symmetry. In
T | —t—— —+t == 4 general, the dimension of this subspace is smaller than the
2R*\ gy sinay day  sifay daj dimension of the whole space spanned by the functions
and Yr . Therefore not all the projected functio@s)r are inde-
pendent. It is necessary to select the linearly independent
1( 2 2 i2

ones in the sum of Eq9).
2R?\ sirfa,cofa, * sirfa;sirfa, * cosa,

(92

" 24R?

+ TtV

whereTg andV are given by

V=

+Ve, The last sum of Eq(9) needs special attention. Here one
function ) is to be projected onto two different subspaces,
(5) Qs andQg. This requires that the independent projections of
both Qs and Qg)r be generated by the same set)§f;
thus they can be mapped one on one from one subspace to
another. Similarly X{®) is to be projected ont®; and P,
1 1 1 subspaces; therefore the projection®gfandP, should also
+ r_+ r_+ . (6)  be related. As analyzed in Lemmas A2 and A3, these re-
12728 78 quirements are satisfied. Becaus€) appears in both terms

whereZ is the charge of the nucleus anglis the separation Of this sum, a normalization factor of\2 [which is missing
between the two electrons. In this paper, atomic units aré the original expansion of BL's Eq33)] is needed such
used unless explicitly stated otherwise. that all X{! are treated on the same footing.

We expand the wave functiog in terms of adiabatical 'Equation(9) indicates that the independent equations for
channel functionsb,, , X{") can be obtained by usin®;Q,)r, P,Q:)r, and

respectively. In Eq(5), ri is the orbital angular momentum
of electroni andV, is the Coulomb potential,

1 1 1

Ve=—-2
rn ro rs




3936 XIAZHOU YANG, C. G. BAO, AND C. D. LIN 53

(LN2)[P3Qs)r+ P,Qs)r] to project out Eq.(8). Notice  are independent when acted ony. Appendix B gives the

that not all the elements of the coupling matrix, relations among these matrix elements. After these equalities
N are s_ubstitute_d the final differential equations can be simpli-
Vir=(Qi Y IVIQir), (11 fied into matrix form:
|
PL(TDP+VZ2)p, P,V3P, V2P, V2P, X@
P,Vi?P, P,(TD P +ViYp, V2P, V%P, X(®)
V2P,V V2PVSP,  Py(TD®+V™)Py+PveP, /) | X
D@p, X (@)
—U IS = X0 (12)
DOP,/ \ X©

where X0=(x{) are vectors andVi'i= (Vir,/ir) and Here we have decompos€y into the sum of the products of
two factors[Eq. (A5)], one acting ony and another on
|v). According to Eq.(C13, only one term involving the
totally spin symmetric operator does not vanish, which thus
leads to the right hand side of the above equation. Therefore,

D®=(D{),) are matrices themselves. The overlap matrix
D??F is given by

D(Fi?F:(Qin,|Qin). (13)  for the quartet casey is dropped from the differential equa-
tons and Vi, are simply replaced by V'
By comparing to the original differential equatiof®4) of  =(Q;,y'|V|Q;y). The structure of the equations remains the

BL obtained by the projections 0Q,)r, Q1)r, and  same. In this case, the properties of the system are indepen-
QsVr, Eq.(12) shows explicitly what basis should be used dent of the spin polarization.
to calculate the elements d. For exampleP,V?P; indi- For S=1/2, spin functions are essentially involved. We

cates that the elements éfin this block should be evaluated analyze firs{ Q,);} which is the union of Q,(| v)x1)} and
through the inner products with left functions from {Q,(|y)xo)}, i.e.,

{P1}®{Q,} subspace and right functions froffP3}®{Qs}
subspace. The superfluous terms in the original equations of _ U 15
BL are eliminated due to Lemma B1 and the equations here Q2 =H{QaA xRl Xl @9

are more compact. Unlike the original differential equations .
of BL, the partial differential equations in the matrix form where{f,} denotes the space spanned by the functigns

Eq. (12) are explicitly symmetric. This is clear by rewriting E?cflr:unctic:leiﬂ Vg,l) C‘Zth/’,e o?tained|b3>/ exzandim@;z

the last equation of Lemma Bl asP{vio.p,f N0 e products olg; andie; acting onjy) andyx., re-
ly[Eqg. (A . As sh Eq.(C1 I

=P3V?E},P4. Since the major numerical task is to calculateSpeCtlve Y[Eq. (ASD)]. As shown by Eq(C1b), only two

4 . “"“terms, containingQ3y; andQ}x,, are nonzero. Thus,
the matrix in the left hand side of Eq12), the symmetric Rax1 andQaxs
formulation reduces greatly the amount of calculation and

. o . 1
ensures the use of a real diagonalization algorithm. Qa7 x1) = §(X0Q6|7>+X1Q5| ), (16)

Ill. CONSTRUCTION OF BASIS FUNCTIONS Yr

. . where we have dropped the superscript @f on the
To reduce the matrix equatiofi2) further, we need t0 yight hand side without confusion. Similarly we have

treat the angular parts involving spherical harmonics ancb _1 _ i

. . L 2(17)x0) = 2(x0Q3l ¥) = x1Q4l ¥)) . Following Lemma A6,
spin functions explicitly. For the doublet casg<1/2), there Qsly) and _2Q4|7> can in turn be expanded in terms of
are two spin functions constructed by coupling the first WO, | 4) and Qs|y) with the same expansion coefficients.

spins_into either a triplet ;=|33(1)3;3)) or a singlet Therefore

(x0=133(0)3;3)) state, while a quartet cas&+£3/2) has
only one spin function x=|33(1)3;3)). The properties of 1
these spin functions under the permutations are treated ex- Qu(17)x0) = _2 ¢ (X0Qsl ¥ )+ x1Q5] 7))
plicitly in Appendix C. 2

For S=3/2, x can be factorized:

:E C'y‘y’QZ(l’y’>Xl)' (17)
QiVr=Qi(Inx)=xQil»). (14 y'
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This shows thatQu(|y)xo) is linearly dependent on U{Qs(|y)xo)} is spanned byxoQi|y), x1Q2ly), and

Qa(| M x1)- Hence {QaIMx)IU{Qa(I 7 x0)}  x0Qely)—x1Qs|y). Following the results in Eq(C20),
={Q.(|¥)x1)} and these three orthogonal functions are invariant ur@eindi-
vidually; therefore,
1
Q11 - quewxlqsw»]Ew}, Qe ={xQul M} + Qe M)
(183 1
+ R —
\/E(XOQ6|7> X1Q5|7’>)
where we have normalized the function to 1. Notice that we — (VCDY (€2 4 (ACB) 18¢
cannot decomposgQ,)r} further into two orthogonal sub- {y; ; {ny j {yﬁ/ b (189
spaces{xoQs| )} and {x;1Qs|y)}, since these two sub-
spaces are not invariant under the operatioQgfindividu-  j.e., the subspacfQs);-} is now split into three orthogonal
ally, as indicated by E(C2a). _ ones, each itself being invariant unde®s. Since
In a parallel fashion, we can derive Qs=QsQs, subspacéQg)r} can be obtained by operating
Qg on the above equation. Equati¢@2d gives the evalua-
1 tion of the operation. The result is
{Qur}= E(XOQ5|7>_X1Q6|7>) E{y(yb)}-
(18b) {Qer}={—x1Qul M} +{x0Q2l M}

1
The analysis of the subspad®:s);} is slightly more * E(X°Q5|y>+X1Q6|y>)

complicated. Expandin@s into the products of two factors L ) 5
and using Eq(C1b), we have ={QelTHH{Qe )V Qe P}, (180

From the results of Eq$183—(18d), the main task for con-
structing the basis functions then is to find all the indepen-

dent Qq|y), Q,|y), and Qs|y) (Qg|y) are obtained by

1
Q5(| 3’>X1) :X1Q2| 7>_ E(XOQ6| 7>_X1Q5| ’Y)),

1 QsQs|7))-
Qs(| Y x0) = x0Q1] 1) + = (x0Qsl ¥) + x2Qul 7)) From the definition of coupled spherical harmonics, we
2 have
1
:XoQM*z; o sallala(lo)lg;L)=(=1)'+"'2 Il y(Ig)lssL)  (20)
X (xoQs| ')~ x1Qs| ")) (199  Wheres,=(12) is the second element of ti&g group. The

symmetric and antisymmetric subspaces under the permuta-

tion of electrons 1 and 2denoted a$f *} and{f "}, respec-
where in the last line above we have used Lemma A6. Thdively, in Appendix A can now be analytically constructed
above equation indicates tha{Qs)Vr}={Qs(|v)x1)}  as|y™)x3(1=s,)|l1lo(1g)l5;L), which leads to

1
ly*)= E[“l'z('o)'sﬂ-)i(_1)|1H27|°||2|1('0)'3?'—)] for 1,>14, (21)

[1l1(Ig)l3;L), lo=even for+, lo=o0dd for —.

As analyzed by Eq(A9a), {Q.}+{Qs}={|y")}. Thus the Al). Similarly, from Eqg.(A9b), {Q,}+{Qs}={|y )} and
diagonalization ofQ, in subspacd|y™)} decomposes this the diagonalization o, decomposes this space in{Q,}
space into{Q,} and{Qs} as follows: the former consists of and{Qs}.

those eigenfunctions with eigenvalues 1 and the latter con- Substitution of Eq(18) into Eq. (9) results in the channel
sists of those eigenfunctions with eigenvalugs® Lemma functions forS=1/2,
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=2 (P X)W+ 2 (PX)Y)
Y Y

1
+ — E E P x(ci) Ci)_,’_ P x(ci)
V2¢i=cy.co.c3 ¥ LCPs Y )y(y (P L4 )

X(Qe)M)] (22)

where the sum o€; is over the three orthogonal subspaces
{y(;i)} of {Qs)Vr}. The corresponding differential equations

become
Hi Hip Hiz Hy Hig\ [ X®
Har Hae Has Hay Has| [ X®
His; Hz Hsz Has Hgs X(ev)
Ha1 Ha2 Haz Has Hgs X(e2)
Hs; Hsy Hsz Hsy Hss x(¢s)
DOP,
DOP,
=U DLp,
D2p
DOP,
X(@
X(b)
x| x(ev (233
X(Cz)
X(Cg)
where  the  overlap matrix is  defined by

D=(D4))=(Qiv' Q7).

The matrix elements in each blo¢k; are given by the
inner products of the basis functiond; ¥, P,)A”, and
(1/\/5)[P3y(y°‘)+ P4(Q6y(y°‘))], with respect to the
operator T+ V. For example, 11,
=P1(y(ﬁ)|TS+V|y<ya))P1. Substituting Eq.(189 into this
equation,  Hip),,=P1((Qe¥'|Ts+V|Qs¥)+(Qs7'|Ts
+V|Qs7y))P1/2 where we have used the fact thBf+V
is independent of spins. Notice that is independent of
spherical angles and)(ye,) =D(ys,) (Lemma A7; we have
(H1), 0= Pl[TsD(ys,)va(V%,wa vf?y)/z]Pl. Following this

Y
procedure the explicit expressionslef; are

VP84 185

Hy= Pl(TsD<5)+ Py,

]}65_ VSG

Hip=P, 2

Py, Hiz= P11)61P3,

His= Pl\E— Ps,

186_ 155
Hya= P1V52P3: 2
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1A %
Hyo=P,| T,D®) + —— P2, (23b)
Hos=P,VPP5,  Hyu=—P,)V5%P,,
564185

Has= P2 2——5—Ps,

Hag=P3(TDW+VPy,  Hag=P3)V'2Py,
Has=P3y2)1%P5,
Has= —P3y2V%P3,

185_ 156
2

Has=P3(TD'P+ V)P,

1A
2

Hss= P3| TD®) + Ps+ P P4,

Hji = H'E y
whereV"‘:(Vy’,'y) and results in Lemma B2 were used to
eliminate the superfluous terms. Notice thg are still op-
erators rather than numbers and further inner products in the
dimensions ofx; anda, are yet to be performecll-.lfrj is the
conjugate operator dfi;; . By choosing the representation as
usual such that the coordinates are diagonalifed, are

numbers, Viy,,iy become the ordinary functions of the two
hyperangles.

IV. HYPERANGLE DEPENDENCE
OF THE COUPLING ELEMENTS

In order to carry out humerical calculation, it is conve-
nient to obtain the simplest form of the explicit dependence

of Viy’,iy on the two hyperangles. This in turn needs the analy-

sis of the symmetries d?'y,,'y. The closure relation EGA7)
ensures that any arbitrary function @f and a, can be ex-
panded ag=P,f+P,f+ P5;f+Psf, i.e., the Hilbert space
of the functions of the two hyperangles can be decomposed
into four subspaces each with a definite permutation symme-
try. The functions withP,f=f (and thereforeP;f=0,
i=2,3,5) form the subspace of totally symmetric functions
under the permutations of any pairsgf The functions in
the subspace dP,f=f are totally antisymmetric under the
exchange of ;. The symmetries of the functions in the other
two subspaces, formed by the functions B§f=f and
Psf=f, respectively, are mixed.

We first rewriteV in terms of functions with certain sym-
metries. Define the auxiliary functions

41

|
i =512, Vim0 Yim(F)) (24

whereY,,, are the spherical harmonics, and two other sets of

functions

1
tl: A y
S”l alcog Ay
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o 1 @5 Phi=s;h;, Pig"=6;0", j=1,235, i=135.
2 Sinzalsinzaz’ (30)
1 Notice that no invariant functions d?, can be formed by
tz3= 2o t; or byg(').
Cco aq )
We can now expres¥ in terms ofh; andg;
and 272,712 72,12 2
1 [T+15+135 I1+15—-2I35
() (sinajcosay, cosry). V=ogz| 2R ————h;+ 6 hs
18" (sina;cosx,,cosny) 1
[2_ 2 (ORI RV
L | + Zhet 2R [ B 1200
() (sina;sinay,cosry)L 2 sTeR& 3 91
237 o : T+1> (26)
(sina;Sina,,cosxq)-
Y1 yd) oy Y Y(')
. . . | + 13 23 12 g(|)+ g(|) (31)
0 (sina;Cos,, Sina; Sina,) - 6 3 2
(sina;Cosy,, Sina;Sinay) 1 o .
in which each term shows the explicit symmetry.
where< (>) represents the smalldarge) of the two terms Appendix D displays than)'y’,'y (or their simple linear
in the parenthese¥. is then given by combination$ possess certain permutation symmetries and,
1 therefore, can be divided into four groups. The first group is
V= 7[2RW+ 2t + 2t + 2ta+ 2R, (Y!gl) in the P,f=f subspace. From Eq$30) and (31), we con-
2R v EE clude that the coefficients &f;, hs, g$’, andg!’ should be
zero. Therefore, for this group,
Yot vilath) 273 e
(|3)y’7:(|2)7’y:(|1)7’y’
where
. . YO =Y = ovip' (32)
=— + — -
(sinar;Cosxy, COSy) > (SiNa;Sinary, COSry) > where ( )' I and (Y('))' '7 are the elements df’ and Y{)
1 1 between|QI ") and|QI y} respectively. Hence we have
+ — - - —Z| =
(sina,Cosxy, SinaSina,) < z Sina;CoOS, 1
1 1 V; = ZRz[zRD'y,ywﬂli)';,yhl
+ — — + ) (27b
Slnalslnaz COSal

0 TR
and we have useM(O)—l Notice thatw is independent of +2RE (v 3)7 /91 } (i)=(11).(22),

spherical angles; and is totally symmetric for the three

electrons, i.e.P;w=w. (333

. From three independent functiohs another set of three Ny [2)55 266

independent functions can be constructed, yy PV, 1 5 (15, + 1),
2 RPN

hl:tl+t2+t3,

WY
hy=t,+t,— 2t3, (29 +2RE Y13 Y 72 137y'y (|
>0

, (33D

h =t _tz.
oot where we have useﬁ)i,f Di,y (Lemma A7%. This group

Similarly, three new independent functions are constructe@nters in the diagonal blocks; (i=1,2,3,4,5) of Eq(23b).

as The second group is in the subspaceRaf =f. In this
D e s group, Egs.(30) and (31) indicate that the coefficients of
01 =913 9231032, h,, hs, g, andg{’ should be zero, i.e.,
(l)_ ()4 (l) 2qg'h 29 U o i1
913 912, (29) (19, =D, (9),=-20D),
() M _ )
95 =013 g 23" (Ygg i’ —(Y(') i’i y (Y(I) i Z(Y(I) i’i (34)

These functions are constructed to exhibit certain symme-
tries, which leads to
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. 1 - i 1 o
»g;:§§4<@y;Jb+2Rg%<vggg99}
(i'i)=(25),(52),(16),(61), (35a

6 5
Vi’v_v?y’y

1 (DR,
2 T 2R?

2 3

(YT, - (YT
Yy Yy L)
+2R§0 5 gy .

(35b

The third group is in thePsf=f subspace and the coeffi-
cients ofhy, hs, g(l'), andg(g') should be zero, i.e.,

(D) ==, (3 =0,
(Y, ==Y, . (Y., =0 (36)
Thus
Vi =l (127 hg 2R (Y gl
vy 2R2 ( 1)’}/’7 5 | ( 13 ,y',ygS ’

(i"'1)=(15),(51),(26),(62),(65),(56). (37

The last group is in the subspace B§f=f and all the co-
efficients ofh; andg{" ought to be zero. Therefore we have

() =13 =(3!) =0,

(38)
(Y8, = (Y8, =(Y1)! =0,
and
2 21
Vi =V =0, (399
5 6
Ve -V =o. (39D

This is the result of the fact that frotandg(]’ no invariant
functions of P, can be constructed.

V=< > o+ X )|7'><7’|V|7><7|EV0+V1,
{(i={v {1y
(40)

where | y)=|l1l5(lo)I3;L) and {y'} =(#) {y} indicates
that (,15,13) and (,l,,13) are(not) in the same angular
momentum configuration. In future applications it is antici-
pated that instead of the pure adiabatic expansio Bgthe
wave function will be expanded as

¢=EB F.aR®, 5(RQ) (41)
M

where=(l1,l,,l13) and®, 5(R;(}) satisfies Eq(8) in the
subspace of fixed angular momentum configurafionThis

is the procedure adopted in the hyperspherical close coupling
method.

At present we are interested in obtaining adiabatic poten-
tial curves in two steps. We use angular momentum configu-
ration to imply basis functions or states that have a well-
defined (4,l,,l3), irrespective of the order in which each
I; appears since they are properly symmetrized. Thus in step
1, Ts+V, can be diagonalized independently within each
configuration to produce intermediate channel potential
curves Uﬁ(R) and intermediate channel functions
<I>2(R;Q). The numerical details of such a diagonalization
are given in Ref[13]. In the second stage of the diagonal-
ization procedure, a selected set(bi(R;Q) are then cho-
sen from the different individual configurations as basis
functions to solve the whole eigenproblem of Ef). The
resulting final channel potential curves and wave functions
are expected to be close to the actual adiabatic potential
curves if all the important intermediate channel functions are
used as basis functions in the second diagonalization.

This two-step approach offers advantages both in numeri-
cal calculations and in physical interpretation of the spectra
of a three-electron system. The complicated final potential
curves can be understood by a set of simpler intermediate
potential curves of individual angular momentum configura-
tions, and only “important” intermediate channels are
needed in the calculation of the final channel potential curves
and wave functions; thus the amount of calculation can be
greatly reduced. We have used this method to obtain accu-

With these results, all the angular momentum algebra igate channel gotentials for the atomic systems L%, Hand
expressed in terms of elementary analytical expressions artde~ with the “P° symmetry. The recent observation of tri-

the dependence on the two hyperangigsand a, is ob-
tained, and the resulting equations Eg3a can be solved
numerically.

V. NUMERICAL IMPLEMENTATION
AND CHANNEL POTENTIAL CURVES

A straight adiabatic expansion as indicated in Eg).
would require the solution of Eq239 for all the important

ply excited states of L{3] is analyzed by the calculated
potential curves. Furthermore, the adiabatic potential curves
for the H>~ system are used to “prove” that there are no
resonances of any kind. These results are reported elsewhere
[14]. In the remainder of this paper we show potential curves
from the first-step diagonalization and then the final adia-
batic curves for the Li atoms to illustrate the procedure and
the interpretation that the first-step calculation can offer.
Figure Xa) displays the intermediate potential curves of

¥'s. The order of the resulting coupled second-order partiathe angular momentum configuratié®02), i.e., s?p, for the

differential equations irw; and a, will be quite large and

2po states of the lithium atomZ= 3), with those that con-

the resulting potential curves will have numerous avoidedverge to the doubly excited states in the laRgdimit ex-
crossings. In the present application, we will adopt a two-panded in Fig. (). From the traditional independent-
step numerical implementation which is based on the deconparticle configuration interaction viewpoint, the potential

position ofV into two terms,

curves include all configurations of the typgsn,sngp
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(ny,n,=1, n;=2) which can couple tP° states. In the a; anda, coordinates, in addition to the nodal lines set up
limit of R—o0, one electron is far away from the “core,” by the symmetry imposed by the quantum numbers
hence the potential curves,(R) must tend to one of the 25*1L".

eigenenergies of the residual two-electror’ Lsystem. This An important question to answer is whethé,() are
asymptotic behavior can serve as the criterion for checkingtill approximately conserved after the coupling between an-
the numerical convergence and the accuracy. Good agregular momentum configurationg,; has been included. We
ment was found between the asymptotic potential curvesised the lowest 50 intermediate channels from the configu-
within this angular momentum configuration and the previ-rations(001), (012), (111), and(113), respectively, to form
ous calculations of the eigenenergies of L[i19]. the basis for the diagonalization d%+V. Other, ignored,

As discussed in Ref{13] for the configurations®, the  configurations do not contribute channels to t8¢?) shell
most striking feature of Fig. 1 is that potential curves can bewhich we are interested in. The final channel potential curves
easily identified into three groups. Each group is recognizedre plotted in Fig. 2. Apparently, the shell structure is still
by its asymptotic state corresponding to the state of theecognizable. The number of final channels in a given shell
Li ™ ion. The first group consists only of the lowest potential (N, n) is the sum of the numbers of the intermediate channels
curve which goes to thes?'S® limit of Li *. This potential  in the same shell. For example, t&2) shell has nine chan-
curve supports singly excited states of Li of the typenels, three from the configuratioi®0l), three from(111),
1s’np states. The second group of potential curves approactwo from (012) and one from(113). They are strongly mixed
the 1sng*3s®) or 1snp(*®P°) singly excited states of by the coupling between angular momentum configurations
Li *; they support doubly excited states of Li. The third V,. However, the channels from different shells are seldom
group of potential curves approach doubly excited states ahixed byV;.

Li ¥ asymptotically and they support triply excited states of In Fig. 2(b) we display also the values ¢2,2) potential
Li. Note the numerous crossings between the second and tleeirves obtained &= 18 by using only the nine intermediate
third group of potential curves. channels in thé€2,2) shell in the second-step diagonalization.

Within a fixed (4,l,,l3), each potential curve can be The results are almost identical with the results of the full
labeled by the two-electron states in the asymptotic limit.calculation, in which many other shells are included. This
Thus each channel can be labeled\d$nI?ST1L™ (N<n). indicates that {l,n) can still be used as “good” quantum
However, this labeling has little physical significance atnumbers to label the final channel potential curves and wave
smaller values oR. On the other hand, the group of curves functions. On the other hand, from the study of doubly ex-
(four curves, for example, in the second grpwithin each  cited states, this labeling in terms oN(n) will fail for
(N,n) stays relatively close for all values Bf As shown in  higher values olN andn as the energy separation between
Ref.[13] for the s® configuration, the I§,n) quantum num- different “shells” becomes smaller. Anyway, the main point
bers can serve as bookkeeping for the nodal structure in this that the two-step diagonalization procedure allows us to
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obtain accurate adiabatic potential curves for the semiquan- APPENDIX A: S; ALGEBRA

titative analysis of all the spectra of a three-electron system.

The power of such a method for analyzing the spectra Ofg I2|tzzrip&i?fﬁngﬁergfﬁgt %n?hgeglesgir:%fp rc?upre;]tlese;)_f
triply excited states of Li was illustrated in R¢fL4]. 3 &g y yp

spherical approach.
The S; group has six permutations as its elements,

VI. SUMMARY
s, =1, =(12), s3=(13), s4,=(23), s5=(123,
We have further developed the analytical formulation in ! %=(12 =13 4= (23 5= (123

the hyperspherical approach to three-electron systems. The
partial differential equations for solving the hyperspherical Se=(132), (A1)
channels are reduced to a compact, symmetric form. Spins

are treated analytically and the hyperangle dependence of thein the multiplications given in Table I. The algebra ele-
couplings between different equations are obtained. The N ants are defined by

merical solutions of these equations for the Li atom were
obtained to illustrate the employment of this approach. Cal-
culations for all possible different symmetries are under way
and interesting features of three-electron correlation are ex-
pected to emerge soon.

TABLE I. Multiplication table for theS; group elements;s; .

i 1 2 3 4 5 6
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TABLE II. Multiplication table for the produc§S; of the ele- +Pe(Q1—Q3/2). (A5f)
ments of theS; algebra. The blank indicates that the product van-
ishes. Table Il and Eq(A2) indicate
j S$S5=¢6;S(i,j=1,2,3,3 (AB)
i 1 2 3 4 5 6 and
1 S S|+S,+S3+S=1, (A7)
2 S,
3 S; Ss respectively. Therefor§,, S,, S;, andS; form a complete
4 S, -Sg set of projection operators and project functions onto four
5 S, S orthogonal subspaces satisfying specified permutation sym-
6 -S, Ss metries. Hence we have the following lemma.
Lemma AlThe eigenvalues 08;, S,, S;, andS; are
either O or 1.
6 We call an eigenfunction oP; (i=1,2,3,5) with eigen-
Sk=2 c:‘si , k=1,...,6, (A2)  value equal to Xi.e., P;f=f) “invariant” of P;.
=1 Let{f,} be a Hilbert space spanned by functidys Sup-

K . . . . N pose the space is “closed,” i.e., &8f,(k=1,...,6) are
V\:Chereci arehglven'lnTBIL.I WI'Ith this definition, the products within this space. The space can be decomposed into two,
0 %?J are shown ™ 1adle I deiined o= B ST+ {3(1= 8 T} ={1*} +{1 7}, where the

€ cgrresp(T)n Ing conjugate operators are define f} subspace is symmetric whi{é "} is antisymmetric un-
(Scfalf2)=(f1|Sf2) which leads to der the exchange of the electrons 1 and 2. From Table | we
6 get
t_ ke—1
= ;1 Cisi (A3) S$15:=5:5,=S1, $35,=5,5;=S;, (A8a)
wheref, andf, are arbitrary functions ansf * is the inverse $9=55=-S, S5=%S=-S;, (A8D
of s;. Using Table | to ges; *, we have
i 9 9es; S$45;=S,, $54=—S;, S65=—S,  $2:56=Ss-
Sl=s(k=1,2:35, (A80)
+ Therefore, if we denotdS,} as the subspace spanned by
S;=—Ss, (A4) S f, andd{k} as its dimension, then
St=—Su. Siff FC{f™h Sidf =0, {f"}={S;}+{Ss},
(A9a)

To evaluateS, ff,, itis convenient to decompo& into
the sum of the products of tws; algebras, P;) and Q)), S 1C{fT} SdfT=0, {f}={S}+{Ss},
acting onf, andf,, respectively. The decomposition can be (A9b)

obtained explicitly(see BL): N _ _ _ . .
SATTIC{f T} Si{f7}=0, S{f }c{f"}, Ss{f"}=0,
1 (A9C)
$,=P1Q1+P,Q,+ E( P3Q3+P4Q4+PsQs+PsQg),

(A5a) i.e., S, and S; (S, and S5) project a function in{f*}

({f~}) onto another function in the same subspace and
1 {f*} ({f7}) is divided into two orthogonal subspaces
=P,Q,+P,Q;+ = (P3Qs+ P,Qs+ PsQs+ PgQ,), spanned by the projections 8f andS; (S, and Ss), while
2= P1Qz+ P2y A S, (Sg) maps a function i{f*} ({f~}) onto another func-
(ASD) " tion in {f7} ({f7}). In this paper, we do not distinguish
“mapping” and “projection” and all Sf,, are called the

+Ps(Q,+ Qs/2) — PgQg/2, (A5c) Lemma A2If a set of functions generate independent
projections ofS;f,\, they generate independent projections
S$4=P1Q4+P2Qs— P3Qu/2+P4(Q1~Qs/2)~PsQes/2  0f Syf also.
Proof. Supposef generate independe®f, , but not
+Ps(Q2~Qs/2), (ASd) all S,f, are independent. Hence we can find a set of nonzero
_ _ constants,, such thats,c,S,f,, =0. But from Table Il we
S5=P1Qs+P2Q3+ P3(Q2+ Qs/2) — P4Qe/2 haveSgS,= —S;. ThusS; times the previous equation leads
+P5(Q1+Q4/2) — PgQ,/2, (Ae)  to =.c,Ssf, =0, which conflicts with the initial assumption

that all S;f, are independent. Therefore, &}f, are also
Se=P Qg+ P2Qs— P3Qg/2+ P4(Q,—Qs5/2) — P5Q./2 independent.
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Lemma A3If a set of functionsf,, generate independent P{ andP{, with P{ acting onvﬁ’F andP{ on P3, respec-
projections ofSsf, , they generate independent projectionstively. Only two terms containin@3 andP}, are not zero due
of Sgf,, also. to the multiplication rules ofP; (see Table I, thus
The proof is similar with the use 08,S¢=—Ss. The P V2 Py=[(PsVi )Ps+(P4V25 ) P4/2 where we have
?mmediate conclusion of Lemmas A2 and A3 is the follow- dropped the superscripts &' and used the results of the
Ing. multiplicationsP;P5. Notice that{Eq. (B.4) of BL]
Lemma A4d{3}=d{4} andd{5}=d{6}.
Furthermore, we have Lemma A5. PV Y =000 V1 [V]|O: V). B1
Lemma A5{S4}={S5} and{85}={83} ( ivr F) Qj<QI r | |Q| I‘> ( )
Proof. Since {S;}1{S;} (due to S}$;=S;$,=0) and  whereQ; acts on bottQ; V- andQ; ). Hence
{S1}L{Ss} (due to SISs=S[S,=0), Eq. (A9c) leads to

[S,2{S.} and{Ss} D{S5}, which indicated{4}<d{5} and P.VEPa=[(Qa( Qx| VIQs)r)) Ps
d{6}=<d{3}. On the other hand, Lemma A4 should be satis-
fied. Therefored{4}=d{5}=d{6}=d{3} and Lemma A5 is (Qu{Q2Yr [VIQs)r)) Pall2.

concluded. With the help of this lemma a®iS,;=0 and Decomposing agaifds andQ, into the sum of the products
S65,=0, we get of two factors acting o1Q,)r andQs)r-, respectively, and
using Table Il to select nonvanishing terms, we obtain
Si{Ss}=1{Ss}, Su{S129=0, (A10a) 9 g

1
Sof{Ssi={Ss},  SfS124=0.  (AL0D) PVErPa=5 (Vi Pat Vi Py). (82)

Hence Ssf and S,fh can be expanded bsf, and gy yaraiiel reasoning,
Ssf, , respectively. These two expansions are related as fol-

lows. . ~ . p.v5 p 1 v3 p.+v® p B3

Lemma A6 If Sifi=S.cnSsfn, then S,f* 1V rPa=5 (VripPat Vi pPy). (B3)
=—2ZnCmnSst, - ) )

Proof. The second equation can be obtained by the mulThe comparison of Eq$B2) and(B3) leads to the first equa-
tiplication of S, with the first one. tion of the lemma. In fact, for this particular case, uskg

The projectionsS,f! and S;f; (similarly, Ssf, and to multiply Eq. (B2) from the left gives the result directly
Ssf ) are further related by the following lemma. while the method demonstrated above is more general. Simi-

Iinemma A7 (SyF TS FHY=(Syf F|Ssf ) and larly, we can prove the following lemma.

A e e m nieem Lemma B2

(Sof o [Sefm) = (Ssf [Sstm)- sg

The proof is straightforward by noticing th&=—S5,, pP.ve p.—p.v® p PV p.=p.v3! p

3VrrF3=FsVrira, 3VrrF3=FsVrira,

—54S=S5="S5555=SIS5, and — S5y =S=5,5,=S1S;. _

Notice that the lemmas and equations in this appendix are P3V§5,FP3= _ P3V§§FP4, P3V‘;’2,FP3= _ P3V?2,FP4,

the general properties & algebra and hence are valid not
only for S;, but also forP; and Q; as well. The necessary P.V® p.— _p.yS p P.Vv® P — _p.yS p
and sufficient condition fofb to be totally antisymmetric is trrts Yoortse Il sfrrt b

iven b 66 55 66 55
9 y PV Pi=P VS Py, PV Py=PV> Py,
o= All . . o
S2 (ALD Notice that the above proofs are independent of any specific
which leads to Eq(9) (see BL for details features ofY-. Therefore they are the general properties of
the coupling matrix. For example, they are also valid for
APPENDIX B: RELATIONS BETWEEN THE ELEMENTS Vy,ly.

OF THE COUPLING MATRIX

. il APPENDIX C: EXPLICIT TREATMENT OF SPINS
Among the elements of the coupling matkix., ., not all

of them are independent when acted onfyy The lemmas The projections of spin functions are given by
in this appendix display some of the relations between them.
ittt Qux= S, (C1a
p1V§§Fp3: p1V§§Fp4, szﬁrpsz P2V11*6rFP4v Qi25&1=0, Qsx1=x1, Q12340=0, Qsxo=xo.
62 52 61 51 Qax1=X0,QeX0= ~ X1- (C1b
PIVES P1=P3VPa Py, PRV Py=P3V>i Py,
These equations are the results of the evaluations of the op-
PIVYS P,=PsV Py, PIVS Py=P3V P,. erations ofQ, on the spin functions and the analytic formula

of the evaluations in terms ofjGymbols are given in Egs.
We prove the first one as an example. Equati®ba) allows  (22)—(25) of BL. From Eq.(Cl) we see thaty is totally
us to decomposP; as a sum of six products of two factors, symmetric whiley; (xo) is (ant)symmetric about the ex-
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change of the electrons 1 and 2 but is not so when the exf the specific features dfy), the results are also valid for

changes involve the electron 3.

other choices of basis. For example, they are also valid for

The following equations are useful in the analysis of the\/' i

invariant subspaces @; operators in the Hilbert space of

{In)}:

Q2x0Q6=Q2x1Q5=(x0Qs+ x1Q5)/2,  (C23
Q1x0Q5= ~Q1x1Q6= (x0Qs~ x1Q6)/2,  (C2)
Qsx0Q1=x0Q1, Qsx1Q2=x1Q2,
Qsx0Q6= — Qsx1Q5=(x0Qs— x1Q5)/2,  (C20
Qex0Q1=—x1Q1, Qex1Q2=x0Q2,
Qox0Qs= —~Qex1Q5=(x0Qs+x1Qe)/2.  (C20)

These equations are derived by decompo§nato the sum
of the products of two factors acting o andQ;, respec-
tively [Eq. (A5)], and Eq.(C1b is used to eliminate the
vanishing terms. From EqC2a, we know that although
X0Qs|y) and x1Qs|y) are not invariant ofQ, individually,
XoQsl¥)+x1Qs|y) is indeed invariant ofQ,. Similarly,
x0Qs|¥)—x1Qel¥) is invariant of Q; and xoQil7),
x1Q2/7), andxoQe|¥)— x1Qs| ) are invariant 0lQs. Us-
ing Eq.(C2d), we can map the invariant subspace@finto
the subspace dfQg)r}.

APPENDIX D: SYMMETRIES OF THE ELEMENTS
OF THE COUPLING MATRIX

Y
In this appendix, we analyze the permutation symmetrie?z(V6 V56 ) VGS 1}4’6
With these properties, their dependence on the hy- OtherV' WhICh are not Ilsted in the above lemm@sg.,

ofV'

r'r
SlnceP1+ P,+P5;+Ps=1[Eq. (A7)], we expect to find
four groups. The first group is formed by, , Vi’ , and

VSS +V°°_which are totally symmetric under the permuta-
tlon of raor al distances of electrons, i.e., we have the follow-

ing lemma.

Lemma D1 Pvil P1V272,7=fo7, and
PV +1f8 ) —ys ke

Proof: Equat|on (Bl) leads  to 1V'

=Q(Q;¥'|VIQ;y). Qqisin turn decomposed into the sum
of products of two factors acting o, y’ andQ;y respec-
tively [Eq. (Aba)]. Lemma D1 is then derived by the multi-
plications of Table II.

The second group and the third group are invariant of
P5; and Pg, respectively. Their symmetries are mixed.

Lemma D2 P3V2 Vz‘r,’ , P3Vr’2 VSZ, ;
P =V P, S i R0 B
V)

Lemma D3 PV}SY Vl“r’gg PSV'51 Vj}%,
oV Vil PR Pt =15 andPgl
Yy

The members of the last groupvl VZ} ,
V65 V5§ , are totally antisymmetric under the permuta-
tlons of radlal distances of electrons, i.e., we have the fol-
lowing.
2 1 .21
D4 PV PVe =V

Lemma and

perangles can be derived. Since the analysis is mdependevft4 ) have no use in the formulation.
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