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The adiabatic hyperspherical method is used to investigate the spectrum of the helium trimer and to explore
effects on the spectrum of varying the helium masses as well as the interaction strength. When a realistic
helium dimer potential is adopted, only two isotopic combinations are observed to have three-body bound
states: 4He3 and 4He2

3He. By artificially adjusting the dimer potential, we also determine the range of
interaction strengths for which halo states can result. The existence of Efimov states for both physical and
unphysical systems is also examined.

PACS number~s!: 31.15.Ja, 36.90.1f

I. INTRODUCTION

A curious property of three-body systems is that they can
form bound states even when none exist for the separate
two-body subsystems. This situation occurs for the striking
cases of Efimov@1–3# and halo~or Borromean! @4–8# states.
Both types of states can exist in systems of identical particles
~symmetric systems! and can, in principle, exist in systems
of different particles~asymmetric systems! @2,5#. In this pa-
per we focus on the simpler case of identical particles, how-
ever, except when we explicitly state otherwise.~The reader
is encouraged to keep in mind that all of the statements have
generalizations that apply to asymmetric systems.!

Both Efimov and halo states occur only in systems which
interact via potentials which fall off faster thanr22. The
distinction between the two lies in the two-body spectrum:
Efimov states result when there is a zero~or near zero! en-
ergy two-body bound state whereas halo states result when
there areno two-body bound states. While examples of halo
states have been studied in models of nuclei@6–9#, they have
not been carefully studied in either atomic or molecular sys-
tems. Further, no clear example of Efimov states exist in any
field. These exotic states will not exist in any atom because
of the presence of long range Coulomb interactions, but
might exist in systems of neutral atoms due to the rapid
decrease of the neutral diatom interaction potential with in-
ternuclear distance.

As noted by several authors@3,10–16#, one excellent can-
didate in this category is4He since the dimer,4He2 , is
predicted to have only one weakly bound state@12,13,17–
20# (E0' 1 mK!.1 Because the dimer is so weakly bound, it
is difficult to detect and has, in fact, only recently been ob-
served experimentally by Luoet al. @21,22#. In a subsequent
and independent experiment, Scho¨llkopf and Toennies
@23,24# were able to see not only the helium dimer, but also
the trimer and tetramer. Unfortunately, no experiment has
been able to verify the existence of an Efimov state in the

helium trimer even though an Efimov state was predicted for
this system by Limet al. @14#. Lim et al. found two bound
states for the trimer, of which the first excited state was
claimed to be an Efimov state. Subsequent calculations
@12,13,15,16# gave a ground state plus zero, one, or two Efi-
mov states. Much of the controversy was due to uncertainties
in the helium dimer potential since the number of Efimov
states is very sensitive to the binding energy of the dimer.
For instance, a decrease of between 1% and 2% in the dimer
interaction strength for a typical potential available at the
time of the calculations@25# results in a second Efimov state
@12#, and a decrease of 2.08% results in an infinite number of
Efimov states.

In recent years, more accurate helium dimer potentials
@18,20,26# have become available which are consistent with
each other as well as with experimental measurements of
virial coefficients and viscosities over a wide range of tem-
peratures. Using one of these potentials@26#, we find a single
Efimov state. Decreasing the interaction strength still further
places the system in the domain of halo states since there are
no longer any two-body bound states. We find that halo
states persist until the depth of the dimer interaction potential
has been decreased by between 10% and 14%.

We begin by examining the bound states of the trimer of
4He. This system has been studied theoretically with the
hope of finding a physical example of an Efimov state@14–
16#. In our study, we also examine the systems4He2

3He,
4He 3He2 , and

3He3 to provide contrast for4He3 and to
show the effects on the three-body spectrum of varying the
masses in the system. In addition, we artificially vary the
interaction strength for4He3 in order to show that Efimov’s
result @1–3,7,10,11# holds for a realistic neutral atom inter-
action potential. We further determine the range of interac-
tion strengths which result in halo states.

II. METHOD

We solve the Schro¨dinger equation for three interacting
helium atoms using the adiabatic hyperspherical method
@27,28#. We consider only the most favorable conditions for
Efimov states, namelyL50 and a spatial wave function sym-
metric under interchange of identical particles@2#. The con-
dition of zero total angular momentum insures that for the
lowest states the long-range centrifugal potentials do not
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dominate the short-range interparticle interactions; the sym-
metry condition is merely a reflection of the fact that we seek
loosely bound states which might not be bound for antisym-
metric states due to the higher kinetic energy associated with
the extra node.

We proceed by first writing the Schro¨dinger equation in
terms of Jacobi coordinates to eliminate the trivial center of
mass motion~see Refs.@27,28#!. The Jacobi coordinates we
use arer1 , the vector from particle 1 to particle 2, andr2 ,
the vector from the center of mass of the first pair to particle
3. We then transform to mass-weighted hyperspherical coor-
dinates@27#. In this coordinate system, all coordinates save
one ~the hyperradiusR) are ‘‘angular,’’ i.e., limited to a
finite range. The transformation to mass-weighted hyper-
spherical coordinates is given by

mR25m1r1
21m2r2

2 ,

tanf5Am2

m1

r2
r1
,

and

cosu5
r1•r2
r1r2

.

In these expressions,m is an arbitrary scaling factor which
we choose to be the reduced mass of the identical pair of
particles. For example, for4He3 we use the reduced mass of
4He2; and for 4He 3He2 , the reduced mass of3He2 . The
reduced masses associated with the Jacobi coordinatesr1
andr2 are

1

m1
5

1

m1
1

1

m2

and

1

m2
5

1

m11m2
1

1

m3
.

In general, three Euler angles are also needed to describe the
orientation of the plane of the particles. However, since we
only consider zero total orbital angular momentum, the Euler
angle dependence drops out. The Schro¨dinger equation then
involves only the three internal coordinatesR, f, andu ~in
atomic units! @27–29#,
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]R2 1
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4

2mR2 1V~R,f,u!Dc5Ec. ~1!

Here, L2 is the ‘‘grand angular momentum’’ operator
@27,29#
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Note also that the wave functionc(R,f,u) is rescaled from
the ‘‘true wave function’’ by a factorR5/2sinfcosf in order
to eliminate first derivatives from the kinetic energy opera-
tor. The rescaled wave function must be square integrable for
a bound state, and it must obey the boundary conditions

c~0,f,u!50,

c~R,0,u!5cSR, p2 ,u D50,

and
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In the adiabatic approach, we treatR initially as a fixed
parameter and solve the remaining eigenvalue equation as

S L22 1
4

2mR2 1VDFn~R;f,u!5Un~R!Fn~R;f,u!. ~2!

From the definitions of the coordinates, we see thatR gives
the overall scale of the three-body system;f, the radial cor-
relation; andu, the angular correlation. Further,R is com-
pletely symmetric under particle permutations. It follows that
the solutionsFn(R;f,u) — the channel functions — con-
tain all of the identical particle symmetries as well as all of
the correlations in the system. Because of this, the channel
functions display much of the physical content of the total
wave function, and we will often use them to obtain a quali-
tative understanding of the dynamics.

We solve Eq.~2! using the finite element method@28#,
thus determining adiabatic potential curvesUn(R) and a set
of orthonormal channel functionsFn(R;f,u) that depend
parametrically onR. As in Ref.@28#, we expand the channel
functions in each element on a product basis of fifth order
Hermite interpolating polynomials inf and u @30#. We
choose the elements to be rectangular with a nonuniform
distribution in the (f,u) plane. In the calculation, we use
from 560 elements for smallR to 1320 elements for large
R. This leads to matrices of order 8960 and 21120, respec-
tively, of which less than about 2% of the entries are non-
zero. We are able to diagonalize these large sparse matrices
on workstations by using theLANZ package@31,32# which is
based upon the Lanczos algorithm@33#. This provides an
efficient means of obtaining the lowest eigenvalues and
eigenvectors~potential curves and channel functions! of the
adiabatic equation, Eq.~2!.

The full solution to the Schro¨dinger equation is found in
the adiabatic approximation by writing

c~R,f,u!5(
n

Fn~R!Fn~R;f,u!,

substituting in Eq.~1!, and neglecting coupling between dif-
ferent channels arising from the nonvanishing derivatives of
the channel functions with respect toR. The Schro¨dinger
equation reduces to

S 2
1

2m

d2

dR2
1Un~R!1Wnn~R! DFnn~R!5EnnFnn~R! ~3!

where
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Wnn~R!52
1

2m K Fn~R!U d2dR2UFn~R!L .
This is a one-dimensional radial Schro¨dinger equation with
an effective hyperradial potentialUn(R)1Wnn(R) that de-
termines the three-body spectrum in the adiabatic approxi-
mation. It can be shown@34# that the ground-state energy
obtained by solving Eq.~3! is an upper bound to the true
ground-state energy. This can be simply understood from the
fact this approach is equivalent to assuming a variational trial
wave function of the form

cnn
t ~R,f,u!5Fnn~R!Fn~R;f,u!.

The variational principle then guarantees that the energy thus
obtained is an upper bound to the true ground-state energy. A
further approximation may be made in Eq.~3! by which we
can also determine a lower bound to the ground-state energy
@34#. We only need to neglectWnn(R). This corresponds to
the familiar Born-Oppenheimer approximation. However,
the energy calculated variationally is often much closer to
the actual energy than is the lower bound. So, while we
quote both the upper and lower bounds, we base our conclu-
sions upon the upper bounds.

A principal advantage of the adiabatic hyperspherical
method is the reduction of a multidimensional problem to a
one-dimensional problem with a set of effective potentials
@27#. These potential curves provide a great deal of qualita-
tive as well as quantitative information about the dynamics
of the system and often give a convenient and useful classi-
fication scheme@27#. The utility and importance of a quali-
tative approach to three-body dynamics is clear and has been
emphasized by Efimov@3#. His analysis was limited to
sketching potential curves for resonant cases only. That is,
three-body systems for which one or more of the two-body
subsystems has a zero or near zero energy bound state. In
contrast, the adiabatic hyperspherical method provides a
framework within which one can usually sketch semiquanti-
tative potential curves for more general cases without resort-
ing to complicated numerical calculations. Momentum space
Fadeev approaches@12#, on the other hand, do not provide
for the calculation of potential curves. One can, however,
adopt an adiabatic approximation~as we do! and calculate
potential curves in the coordinate space Fadeev approach@9#.

To constructV(R;f,u) in Eq. ~2!, we assume that the
three helium atoms interact solely through the pairwise sum
of the helium dimer potential. That is, we neglect any inher-
ently three-body terms in the potential such as the Axilrod-
Teller dipole-dipole-dipole dispersion term@35#. It is a short
range correction~proportional toR29) and does not effect
the long range behavior of the effective hyperradial potential
that is important for the loosely bound states we study. In
fact, such corrections to pairwise additivity have been stud-
ied for the helium trimer and have been shown to contribute
less than 1% to the ground-state energy@36,37#. For the
dimer potential we use the convenient and accurate represen-
tation of Azizet al. @26# ~in their paper, this is the potential
designated LM2M2 with add-on!,

U~r !5eFAexp~2ax2bx2!

2S c6x6 1
c8
x8

1
c10
x10DF~x!1BUao~x!G

wherer is the interatomic distance,

x5
r

rmin
,

F(x) is a cutoff function given by

F~x!5H e2~D/x21!2, x,D

1, x>D

andUao(x) is an add-on term given by

Uao~x!5sinF2p~x2x0!

x12x0
2

p

2 G11.

With this potential they were able to reproduce a variety of
experimental data within the experimental error bars while
maintaining consistency withab initio potential curves
@16,18,20#. The parameters inU(r ) are as follows@26#:

e510.97 K, A51.896 353 533105, a510.702 035 39,

b51.907 406 49, c651.346 870 65, c850.413 083 98,

c1050.170 601 59, D51.4088, rmin55.6115 a.u.,

B50.0026, x051.003 535 949, x151.454 790 369.

The ground state of the helium dimer calculated using this
potential is indeed loosely bound as evidenced by a binding
energy of 1.310 mK and by the large spatial extent of the
wave function~see Fig. 1!. The mean value ofr is approxi-
mately 100 a.u. prompting the claim that the helium dimer is
the largest diatomic molecule@23#. Given the size of the
molecule, retardation effects might be expected to have a
noticeable effect. One calculation has, in fact, indicated as

FIG. 1. The helium dimer interaction potential~solid line! and
ground-state wave function~dotted line!.
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much as a 12% decrease in the binding energy of the dimer
@38#. Nevertheless, we neglect retardation corrections in our
calculation and delay speculation on their possible effects on
the three-body spectrum to Sec. III.

III. RESULTS AND DISCUSSION

A. Bound states versus interaction strength

It is useful at this point to describe qualitatively the three-
body spectrum in relation to the two-body spectrum as a
function of the two-body interaction strength. This will make
clear the relation between Efimov states, halo states, and
‘‘normal’’ states as well as the progression from one type to
the next as the interaction strength changes. So, let us con-
sider a system which interacts through the attractive, short
range, two-body potentiallU(r ) with l a constant which
fixes the interaction strength. We will takel51 to be the
physical value. The three-body interaction in our approxima-
tion is then

V~R,f,u!5l@U~r 12!1U~r 23!1U~r 31!#

and is plotted forl51 for various values ofR in Fig. 2. In
this and all subsequent surface plots, we show half of the
(f,u) plane as all of the systems we consider are symmetric
aboutu5p/2. From the definition of the coordinates, for a
given hyperradius the interparticle coordinatesr i j cover the
range 0 toR. Also, r 1250 along the linef5p/2, r 2350 at
the point (f5p/6,u50!, and r 3150 at the point (f5p/6,
u5p) from symmetry. So, in Fig. 2~a!, we see that the large
repulsive part of the dimer potential dominates in a large
fraction of the (f,u) plane aroundr i j50, but asR increases
@Figs. 2~a! and 2~b!# this region shrinks aroundr i j50 since
the interparticle distances cover larger ranges.

We show in Fig. 3 the binding energies for4He3 as a
function of l. For l,lEfimov, E50 corresponds to three
free atoms while forl.lEfimov, E50 corresponds to one
atom free relative to two bound atoms. This figure illustrates
the following discussion.

Starting at the free particle limit,l50, there are neither
two-body nor three-body bound states. Increasingl, we find
that three-body bound states begin appearing at some value
of l, lhalo ~the dotted line in Fig. 3!. It is because these
three-body bound states exist when there are no two-body
bound states that they are called halo states. They remain and
their number increases untill reaches a valuelEfimov ~the
dashed line in Fig. 3! for which there is a zero energy two-
bodys-wave bound state. Asl increases towardlEfimov, the
number of three-body bound states increases rapidly becom-
ing infinite at l5lEfimov and then decreases rapidly asl

increases beyondlEfimov. In the region l'lEfimov, the
three-body states typically have very large spatial extent.

The ground-state energy for the three-body system de-
creases asl increases through the halo region to the Efimov
limit regardless of the number of bound states. Asl in-
creases beyondlEfimov, the three-body ground-state energy
continues to decrease even as the number of three-body
bound states diminishes. This is a somewhat remarkable
property of Efimov states and is worth repeating: starting
from lEfimov, the number of three-body bound states de-
creases as the interaction strength,l, increases. This is, in
fact, the defining quality of Efimov states. The states which
disappear are Efimov states while any states which remain
are normal states. This is shown clearly in Fig. 3. The first
excited state passes into the continuum atl'1.2 while the
ground state remains bound. The explanation for the reduc-
tion in the number of bound states is that forl.lEfimov there
is one two-body bound state whose energy decreases faster
than the energy of the excited three-body states as a function
of l. In the language of potential curves, this process can be
understood as the two-body threshold~the asymptotic value
of the three-body potential! moving down in energy faster
than the three-body energy levels in the potential as a func-
tion of l. Thus, any high lying Efimov states pass sequen-
tially into the three-body continuum asl gets larger.

If we continue to increasel until the energy of the first
excited state of the dimer is zero, we will again find an
infinite number of Efimov states lying below this threshold.
However, they will no longer be true three-body bound

FIG. 2. Three-body potential
surfaces forR values of ~a! 12
a.u.,~b! 50 a.u., and~c! 100 a.u.

FIG. 3. The trimer binding energies as a function of the inter-
action strength,l, for the physical valuel51. Shown are
l5lhalo50.89 ~dotted line!, l5lEfimov50.9741~dashed line!, the
ground state~circles!, and the first excited state~squares!.
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states, but rather three-body resonances. In addition, there
will be some finite number of normal three-body bound
states lying at lower energies. For example, we found that for
l56.823 the ground state of the dimer is relatively securely
bound (E05226 K! and the first excited state has zero en-
ergy. For this value ofl, the trimer has five normal bound
states which asymptotically go to the dimer in the ground
state plus a free helium atom. The next group of states is an
infinite number of Efimov resonances which asymptotically
go to three free atoms. They are resonances rather than true
bound states since they belong to a potential curve from
which they can decay into the continuum of a lower curve
via nonadiabatic coupling. A further increase inl causes the
binding energy of the first excited two-body state to increase
and eventually brings the energy of the second excited state
to zero which again results in an infinite set of Efimov reso-
nances. The process continues and repeats itself each time
there is a zero energy bound state.

B. Efimov states in the helium trimer

As mentioned above, Efimov states are characterized by
the peculiar fact that their number increases as the two-body
potential strength approaches the value which gives a zero
energy two-body bound state. In this limit, they become di-
pole states and thus very diffuse — the expectation value of
r increases exponentially with vibrational quantum number
@39–41#. In the adiabatic hyperspherical approach, the Efi-
mov case manifests itself in the channel functionsFn as an
almost equal probability for being in the region between nu-
clei and the region near nuclei~see Sec. B 3 and Fig. 10
below! for all R. By contrast, the channel functions for nor-
mal states show a collapse of the probability density into the
two-body potential wells asR increases. From the three-body
potential surfaces in Fig. 2, we see that the two-body poten-
tial well becomes increasingly localized inf and u as R
increases which forces any bound diatomic molecular state
to do the same. Physically, this corresponds to one atom
being far from the remaining two which are bound in a di-
atomic molecular state.

1. The 4He trimer

For 4He3 we first performed the calculation with the he-
lium dimer potential@25# available to Cornelius and Glo¨ckle
@12# in order to compare with their results. They also solved
the three-body Schro¨dinger equation, but from the very dif-
ferent approach of using a Fadeev decomposition of the
wave function in momentum space. They further expanded
the Fadeev components written in Jacobi coordinates in par-
tial waves includings andd waves. Using a mass of 7296.3
a.u. for 4He, we calculate a dimer binding energy of 0.8352
mK which is in agreement with their result~see also@19#!.
For the trimer, we find~lower bounds in parentheses! E05

20.09811 K (20.2770 K! andE1521.517 mK (22.693
mK! where they obtainedE0520.11 K andE1521.6 mK.
Thus, our results for the three-body system are also in good
agreement. By noting the disappearance of the three-body
excited state as the interaction strength was increased, they
were able to identify the first excited state as being an Efi-
mov state. However, by simultaneously adjusting the poten-
tial depth and equilibrium distance within the quoted error
bars of the potential, they found that it was possible to bind
an additional Efimov state.

We repeated the calculations using an improved dimer
potential @26# which gives a binding energy for4He2 of
1.310 mK — a 57% increase. Though deeper, the improved
interaction potential does not yield any more three-body
bound states, but the energies of the trimer are shifted to
E0520.1061 K (20.2937 K! and E1522.118 mK
(23.518 mK! which translates into a 6% to 8% change for
the ground state and a 30% to 40% change for the first ex-
cited state. The greater sensitivity of the first excited state to
the change in the potential might be interpreted as evidence
for its being an Efimov state. This is somewhat misleading,
though, since the two potentials differ by more than a simple
factor. Thus, the results from the two potentials cannot be
directly compared to determine the existence of an Efimov
state. We do find, however, that increasing the interaction
strength of the improved potential by a factor of about 1.2
~see Fig. 3! causes the first excited state to become unbound,
and thus it is a genuine Efimov state within the adiabatic
approximation. We show the results for the physical interac-
tion strength,l51, in Fig. 4. We plot the effective hyperra-
dial potential curve as well as the wavefunctions for the

FIG. 5. The channel functions
for 4He3 plotted as
sinuuFn(R;f,u)u2 for ~a! R512
a.u., ~b! R550 a.u., and ~c!
R5500 a.u. The vertical axis is a
square-root scale.

FIG. 4. The 4He3 effective hyperradial potential curve~solid
line!, ground-state wave function~dotted line!, and first excited
state wave function~dashed line!. Notice that the hyperradius has a
logarithmic scale.
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ground and first excited states. Notice that the hyperradial
axis has a logarithmic scale showing the extremely large spa-
tial extent of the first excited state, an Efimov state.

We plot the channel functions for various values ofR in
Fig. 5. The surfaces in this and subsequent figures are the
absolute square of the channel functions including the vol-
ume element. Notice that the probability distribution for
Figs. 5~a! (R512 a.u.! and 5~b! (R550 a.u.! is quite similar
to that expected for Efimov states in that the channel func-
tion has large probability for being in the region between the
nuclei as well in the region near the nuclei. At larger hyper-
radii, as seen in Fig. 5~c! atR5500 a.u., the channel function
is concentrated near the two-body potential wells and is es-
sentially the dimer ground state wave function. As we will
see in Fig. 10, for the true Efimov state, the channel function
at largeR is not localized in the two-body potential wells
even asymptotically.

We have seen that the trimer binding energies are quite
sensitive to the binding energy of the dimer. For this reason,
the 12% decrease in the dimer binding energy calculated by
Luo et al. @38# due to retardation effects would probably
have a 10% effect on the energy of the first excited state of
the trimer. It is doubtful, however, that this is sufficient to
change the number of bound states of the trimer or the char-
acter of the first excited state. Roughly speaking, a decrease
of nearly 60%~from the new dimer potential to the old! was
not enough to add another Efimov state. So, while the effects
of retardation move the dimer binding energy in the right
direction for adding Efimov states, we expect that it is insuf-
ficient to change our conclusions for4He3 .

2. Other helium isotope trimers

To study the variation of the three-body spectrum with the
masses of the particles, we performed the calculations for the
4He2

3He, 4He 3He2 , and
3He3 systems. We considered

only the nodeless solutions of Eq.~2!. For the asymmetric
systems, this is consistent with symmetrization requirements.
However, for the trimer of3He, a fermion, this is an un-
physical state since it is not possible to form the totally an-
tisymmetric spin state for three spin-1/2 particles that would
be required to satisfy the Pauli principle with a totally sym-
metric spatial wave function. We ignore this problem and
include 3He3 for completeness realizing that this case is
purely of theoretical interest. Using a mass of 5497.9 a.u. for
3He, we find that there are no bound states for either of the
dimers 4He3He or 3He2 .

The effective hyperradial potentialsU0(R)1W00(R) for
all three-body systems considered are shown in Fig. 6. We
see that the two systems with lighter particles exhibit a bar-
rier while the other two do not. This is consistent with pre-
vious calculations@42# which examined the dependence of
three-body potentials on the strength of the two-body inter-

actions for short range model potentials. Given that the
three-body potentials for4He 3He2 and

3He3 have only a
shallow and narrow attractive well compared to4He3 and
that the heavier4He3 has only two bound states, it is not
surprising that only4He2

3He has three-body bound states.
Its single bound state has an energy ofE0520.01022 K
(20.08652 K!.

We show in Fig. 7 the3He3 channel functions for various
R values. These should be compared to the lowest hyper-
spherical harmonic in Fig. 8 which is the solution to Eq.~1!
in the absence of interactions~see Ref.@27#!. For R values
beyond the barrier maximum, the similarity of the channel
functions for 3He3 and the lowest hyperspherical harmonic
suggests that the three helium atoms behave largely as free
particles. The channel functions for4He 3He2 are very simi-
lar to those for3He3 just as those for4He2

3He are similar
to 4He3 .

3. Thel5lEfimov case

To complete our study of Efimov states for the helium
trimer, we reduced the interaction strength from its physical
value until the dimer bound-state energy was zero. As ex-
plained above, this should lead to an infinite number of
states, and indeed it does because for this specific case, the
effective potential is proportional toR22 and attractive. The
interaction strength needs only to be reduced by 2.59% to
reach this case. The calculated effective potential agrees well
with the anticipated result and is also shown in Fig. 9. We
plot R2U0(R) versusR

21 in Fig. 9 to more clearly show the
asymptotic behavior. A potential with leading terms propor-

FIG. 7. The channel functions
for 3He3 plotted as
sinuuFn(R;f,u)u2 for ~a! R512
a.u., ~b! R550 a.u., and ~c!
R5500 a.u. The vertical axis is a
square-root scale.

FIG. 6. The adiabatic hyperspherical potential curves for the
physical systems4He3 ~solid line!, 4He2

3He ~dotted line!, and
4He 3He2 ~dashed line! as well as the nonphysical systems3He3
~long dashed line! andl5lEfimov ~thick solid line!.
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tional toR22 andR23 asymptotically will appear as straight
lines with this rescaling and change of variable. By fitting a
line to the calculated points, we can extract the coefficient of
theR22 term to compare with the analytical result of Macek
@10,11# ~see also Federov and Jensen@9# and Efimov@1#!

U0~R!5
15

8mR2 2
41t2

2mR2 , R→`, ~4!

wheret51.0062. This result is independent of the details of
the interparticle potential so long as it is short ranged with a
zero energy bound state. A linear fit to our calculated three-
body potential curve over the range 300 a.u.,R,700 a.u.
givest51.0042 and is shown in the figure. If we additionally
allow R24 term, then a quadratic fit is necessary. Such a fit
to our calculated curve over the range 100 a.u.,R,700 a.u.
gives t51.0059 and is shown in the figure. It is somewhat
closer to the analytical result since it includes more points at
smallerR which we can obtain with greater accuracy. The
solutions to the hyperradial equation for this case will have
energies which accumulate atE50 asEv'E0e

2av where
v is the vibrational quantum number anda52p/t. This fol-
lows solely from the fact that the potential is asymptotically
R22 @39–41#.

For comparison, we have included in Fig. 9 the rescaled
potential for 4He3 . It is clear that the tail of this potential
differs appreciably from the Efimov solution, Eq.~4!. It fol-
lows that the Efimov character of the excited state of4He3
cannot be explained in terms of the potential being locally
R22 as in Eq. ~4!. Presumably, though, asl approaches
lEfimov more and more closely, such a region would appear
and grow. Finally, in Fig. 10 we show the channel functions
for l5lEfimov. The probability density is spread throughout
the (f,u) plane with some localization near the two-body
potential wells asR increases. The essentially uniform dis-
tribution of probability — in contrast to the well localized
probability for 4He3 ~see Fig. 5! — persists for allR’s and is
a characteristic of Efimov states. In fact, it is precisely this
behavior that leads to the long-range attraction peculiar to
the Efimov effect.

C. Halo states in the helium trimer

Recall that halo states of three particles occur for values
of the interaction strength,l, for which no two-body bound
states exist. The upper limit onl is clearly l Efimov; the
lower limit, lhalo, must be determined by systematically re-
ducingl until no three-body bound state exists. For the he-
lium trimer, we artificially reducel from lEfimov50.9741 to
lhalo50.89 @lhalo50.85 neglectingW00(R)#. Calculations
@4,5# based upon some model short range two-body poten-
tials have found an almost universal behavior for the ratio
lhalo/lEfimov. For example,lhalo/lEfimov50.804 for the
Yukawa potential,lhalo/lEfimov50.801 for an exponential
potential, andlhalo/l Efimov50.794 for a Gaussian potential.
However, the ratio we find for the helium trimer,
lhalo/l Efimov50.91, is significantly higher. This result is in
agreement with the speculations of Goyet al. @5# concerning
Morse interactions. They attribute the higher ratio to a large
repulsive core in the two-body interaction which pushes the
potential minimum to larger distances. The helium dimer po-
tential ~see Fig. 1! clearly shows such behavior with a mini-
mum at aboutrmin55.6 a.u. It is possible, though, that the
difference might arise from the longer ranger26 behavior of
the dimer potential rather than the exponentially decaying
model potentials they had used. The channel functions for
the halo states look very much like the3He3 channel func-
tions in Fig. 7 as the effective potentials show simi-

FIG. 8. The lowest hyperspherical harmonic plotted as
sinuuu@0#(f,u)u2. The vertical axis is a square-root scale.

FIG. 9. A comparison of hyperspherical potential curves for
l5lEfimov. Shown are the analytical result~solid line!, the calcu-
lated points for the helium dimer interaction withl5lEfimov

~circles!, the linear fit to the calculated points in the range 300 a.u.
,R,700 a.u.~dashed line!, and the quadratic fit to the calculated
points in the range 100 a.u.,R,700 a.u.~dotted line!. Also shown
for reference is the4He3 potential curvel51 ~squares!. The verti-
cal axis is in a.u., the horizontal axis in a.u.2 K.

FIG. 10. The channel functions
for l5lEfimov plotted as
sinuuFn(R;f,u)u2 for ~a! R512
a.u., ~b! R550 a.u., and ~c!
R5500 a.u. The vertical axis is a
square-root scale.
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lar features. Also, compared to Efimov states they do not
have particularly large spatial extent.

IV. SUMMARY

We have applied the adiabatic hyperspherical method to
the helium trimer and obtained results which are in excellent
agreement with Fadeev approaches. Using one of the most
accurate helium interaction potentials available, we find evi-
dence for only one Efimov state in4He3 . None of the iso-
topic combinations have Efimov states. In fact, only one,
4He2

3He, has a bound state. Going beyond physical sys-

tems, we find that a reduction of the interaction strength to
97.4% of its physical value leads to an infinite number of
Efimov states. In addition, the trimer has halo states for in-
teraction strengths down to 89% of its physical value.
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