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Adiabatic hyperspherical study of the helium trimer
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The adiabatic hyperspherical method is used to investigate the spectrum of the helium trimer and to explore
effects on the spectrum of varying the helium masses as well as the interaction strength. When a realistic
helium dimer potential is adopted, only two isotopic combinations are observed to have three-body bound
states: *“He,; and “He, *He. By artificially adjusting the dimer potential, we also determine the range of
interaction strengths for which halo states can result. The existence of Efimov states for both physical and
unphysical systems is also examined.

PACS numbsgs): 31.15.Ja, 36.96:f

I. INTRODUCTION helium trimer even though an Efimov state was predicted for
this system by Limet al. [14]. Lim et al. found two bound

A curious property of three-body systems is that they carstates for the trimer, of which the first excited state was
form bound states even when none exist for the separa®laimed to be an Efimov state. Subsequent calculations
two-body subsystems. This situation occurs for the strikind12,13,15,16gave a ground state plus zero, one, or two Efi-
cases of Efimoy1-3] and halo(or Borromean[4—8] states. mov states. Much of the controversy was due to uncertainties
Both types of states can exist in systems of identical particle#! the helium dimer potential since the number of Efimov
(symmetric systemisand can, in principle, exist in systems states is very sensitive to the binding energy of the dimer.
of different particlesasymmetric systemg2,5]. In this pa-  For instance, a decrease of between 1% and 2% in the dimer
per we focus on the simpler case of identical particles, howinteraction strength for a typical potential available at the
ever, except when we explicitly state otherwiéEhe reader time of the calculation§25] results in a second Efimov state
is encouraged to keep in mind that all of the statements havid2], and a decrease of 2.08% results in an infinite number of
generalizations that apply to asymmetric syste¢ms. Efimov states.

Both Efimov and halo states occur only in systems which In recent years, more accurate helium dimer potentials
interactvia potentials which fall off faster tham 2. The [18,20,26 have become available which are consistent with
distinction between the two lies in the two-body spectrum:€ach other as well as with experimental measurements of
Efimov states result when there is a zéoo near zerp en- virial coefficients and viscosities over a wide range of tem-
ergy two-body bound state whereas halo states result wheeratures. Using one of these potentj@6], we find a single
there areno two-body bound states. While examples of halo Efimov state. Decreasing the interaction strength still further
states have been studied in models of ni@eid], they have places the system in the domain of halo states since there are
not been carefully studied in either atomic or molecular sysho longer any two-body bound states. We find that halo
tems. Further, no clear example of Efimov states exist in angtates persist until the depth of the dimer interaction potential
field. These exotic states will not exist in any atom becaus#as been decreased by between 10% and 14%.
of the presence of long range Coulomb interactions, but We begin by examining the bound states of the trimer of
might exist in systems of neutral atoms due to the rapid'He. This system has been studied theoretically with the
decrease of the neutral diatom interaction potential with in-hope of finding a physical example of an Efimov stzté—
ternuclear distance. 16]. In our study, we also examine the systefitée, *He,

As noted by several authof8,10—16, one excellent can- “*He®He,, and *He; to provide contrast for*He; and to
didate in this category i$He since the dimer’He,, is  show the effects on the three-body spectrum of varying the
predicted to have only one weakly bound stft@,13,17— masses in the system. In addition, we artificially vary the
20] (Eo~ 1 mK).! Because the dimer is so weakly bound, it interaction strength fofHe; in order to show that Efimov’s
is difficult to detect and has, in fact, only recently been ob-result[1-3,7,10,1] holds for a realistic neutral atom inter-
served experimentally by Luet al.[21,22. In a subsequent action potential. We further determine the range of interac-
and independent experiment, Stkopf and Toennies tion strengths which result in halo states.

[23,24] were able to see not only the helium dimer, but also
the trimer and tetramer. Unfortunately, no experiment has Il. METHOD
been able to verify the existence of an Efimov state in the '
We solve the Schiinger equation for three interacting
helium atoms using the adiabatic hyperspherical method
*Present address: Institute of Physics, National Chiao-Tung Unif27,28. We consider only the most favorable conditions for
versity, Hsinchu, Taiwan. Efimov states, namelly=0 and a spatial wave function sym-
LIn references on this topic, the binding energy is often reported irmetric under interchange of identical partic[€3. The con-
terms of degrees Kelvin. The conversion is 1 K dition of zero total angular momentum insures that for the
3.16682% 107 a.u. lowest states the long-range centrifugal potentials do not
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dominate the short-range interparticle interactions; the sym- (0,,0)=0,
metry condition is merely a reflection of the fact that we seek
loosely bound states which might not be bound for antisym- -
metric states due to the higher kinetic energy associated with W(R,0,0)= l/f( R, —,0) =0,
the extra node. 2

We proceed by first writing the Schdimger equation in
terms of Jacobi coordinates to eliminate the trivial center ond
mass motiorn(see Refs[27,28). The Jacobi coordinates we
use arep,, the vector from particle 1 to particle 2, apd, Iy
the vector from the center of mass of the first pair to particle 96
3. We then transform to mass-weighted hyperspherical coor-
dinates[27]. In this coordinate system, all coordinates save In the adiabatic approach, we tretinitially as a fixed

one (the hyperradiu?) are “angular,” i.e., limited t0 @ arameter and solve the remaining eigenvaiue equation as
finite range. The transformation to mass-weighted hyper-

_w

50 =0.

O=m

=0

spherical coordinates is given by 5 1
— 2
wR?= w1 p2+ uop?, (WJFV ®,(R¢,0)=U,(RP, (R ¢,0). (2
tang = H2p2 From the definitions of the coordinates, we see Ratives
H1p1’ the overall scale of the three-body systef;the radial cor-
relation; andé, the angular correlation. FurtheR is com-
and pletely symmetric under particle permutations. It follows that
pLp the solutions® ,(R; ¢,0) — the channel functions — con-
cog=1F2 tain all of the identical particle symmetries as well as all of
pP1p2 the correlations in the system. Because of this, the channel

functions display much of the physical content of the total
wave function, and we will often use them to obtain a quali-
Yhtive understanding of the dynamics.

We solve Eq.(2) using the finite element methd@8],
thus determining adiabatic potential curugs(R) and a set
of orthonormal channel function® ,(R; ®,0) that depend

In these expressiong, is an arbitrary scaling factor which
we choose to be the reduced mass of the identical pair
particles. For example, fotHe; we use the reduced mass of
“He,; and for “He ®He,, the reduced mass oHe,. The

reduced masses associated with the Jacobi coordipates

andp, are parametrically orR. As in Ref.[28], we expand the channel
1 1 1 functions in each element on a product basis of fifth order
— =+ — Hermite interpolating polynomials inp and 6 [30]. We
M1 M My choose the elements to be rectangular with a nonuniform
and distribution in the @, 6) plane. In the calculation, we use

from 560 elements for smaR to 1320 elements for large
1 1 1 R. This leads to matrices of order 8960 and 21120, respec-
tively, of which less than about 2% of the entries are non-
zero. We are able to diagonalize these large sparse matrices
In general, three Euler angles are also needed to describe tha workstations by using theanz packagd 31,32 which is
orientation of the plane of the particles. However, since webased upon the Lanczos algorithi83]. This provides an
only consider zero total orbital angular momentum, the Euleefficient means of obtaining the lowest eigenvalues and
angle dependence drops out. The Sdimger equation then eigenvectorgpotential curves and channel functiprof the
involves only the three internal coordinates ¢, and  (in adiabatic equation, Ed2).
atomic unitg [27-29, The full solution to the Schdinger equation is found in

the adiabatic approximation by writing

—= +—.
Mo Mptmy  mg

1 ¢ A*-; )
— =+ +V(R,¢,0) | y=E. @
2u 0R? T 2uR ¢(R,¢,0)=§V: FAR®,(R;,6),

Here, A% is the “grand angular momentum” operator

[27.29 substituting in Eq(1), and neglecting coupling between dif-
P 1 9 9 ferent channels arising from the nonvanishing derivatives of
AP=——— é_(sina—), the channel functions with respect R The Schrdinger
d¢*  sing cospsing J6 90 equation reduces to

Note also that the wave functio(R, ¢, 6) is rescaled from
the “true wave function” by a factoR>?sin¢ coss in order

to eliminate first derivatives from the kinetic energy opera-
tor. The rescaled wave function must be square integrable for

a bound state, and it must obey the boundary conditions where

2

d
-3 W+UV(R)+WW(R) F,n(R=E,,F,.(R) (3
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d2

W, (R)=— —{ @ (R)| | b (R) el N '
12% 2/*’“ v d RZ v .
100 | a ]
This is a one-dimensional radial Schinger equation with so b / |
an effective hyperradial potentid) (R)+W,,(R) that de- _ ' /
termines the three-body spectrum in the adiabatic approxi- =) |/
mation. It can be showh34] that the ground-state energy g 0.0
obtained by solving Eq(3) is an upper bound to the true
ground-state energy. This can be simply understood from the =50 1
fact this approach is equivalent to assuming a variational trial I
wave function of the form -10.0 .
; -15.0 A frsacasl PRI
Pon(R,,0)=F ,n(R)D,(R; ¢,0). 10 100 1000

r(a.un)

The variational principle then guarantees that the energy thus 'C- 1- The helium dimer interaction potentigbolid line) and

obtained is an upper bound to the true ground-state energy. 3round-state wave functiofiotted line.

further approximation may be made in E) by which we

can also determine a lower bound to the ground-state energy U =e

[34]. We only need to negledV,,(R). This corresponds to

the familiar Born-Oppenheimer approximation. However,

the energy calculated variationally is often much closer to _(E %Jr Cio

the actual energy than is the lower bound. So, while we x0T x® T x10

guote both the upper and lower bounds, we base our conclu- ) ) L

sions upon the upper bounds. wherer is the interatomic distance,
A principal advantage of the adiabatic hyperspherical

method is the reduction of a multidimensional problem to a X=

one-dimensional problem with a set of effective potentials Fmin

[27]. These potential curves provide a great deal of qualitai:

tive as well as quantitative information about the dynamics

of the system and often give a convenient and useful classi-

fication schemg27]. The utility and importance of a quali- F(x)=[

tative approach to three-body dynamics is clear and has been

emphasized by Efimoy3]. His analysis was limited to

sketching potential curves for resonant cases only. That i

three-body systems for which one or more of the two-body

subsystems has a zero or near zero energy bound state. In uao(x)zsir{

contrast, the adiabatic hyperspherical method provides a

fra_mework vx_nthm which one can usually sketch .Sem'quant"With this potential they were able to reproduce a variety of

tative potential curves for more general cases without resort- : Y . .

) . : . experimental data within the experimental error bars while

ing to complicated numerical calculations. Momentum Spac?naintaining consistency wittab initio potential curves

Fadeev approachd42], on the other hand, do not provide

for the calculation of potential curves. One can, however,[16’18’2q' The parameters i)(r) are as follows26]

adopt an adiabatic approximatigas we d¢ and calculate . — 1097 K A=1.896 353 5% 10°. a=10.702 035 39
potential curves in the coordinate space Fadeev appf@ch ' ' '

To constructV(R; ¢,6) in Eq. (2), we assume that the g—1.907 406 49, cs=1.346 87065, c5=0.413 083 98,
three helium atoms interact solely through the pairwise sum
of the helium dimer potentlal. That is, we neglect any |r_1her- C10=0.170 60159, D=1.4088, r,,,=5.6115 a.u.,
ently three-body terms in the potential such as the Axilrod-
Teller dipole-dipole-dipole dispersion teff@5]. It is a short B=0.0026, x,=1.003535949, x,=1.454 790 369.
range correctior(proportional toR™°) and does not effect
the long range behavior of the effective hyperradial potential The ground state of the helium dimer calculated using this
that is important for the loosely bound states we study. Irpotential is indeed loosely bound as evidenced by a binding
fact, such corrections to pairwise additivity have been studenergy of 1.310 mK and by the large spatial extent of the
ied for the helium trimer and have been shown to contributevave function(see Fig. 1 The mean value of is approxi-
less than 1% to the ground-state enef@®,37]. For the mately 100 a.u. prompting the claim that the helium dimer is
dimer potential we use the convenient and accurate represetie largest diatomic moleculg23]. Given the size of the
tation of Aziz et al.[26] (in their paper, this is the potential molecule, retardation effects might be expected to have a
designated LM2M2 with add-gn noticeable effect. One calculation has, in fact, indicated as

Aexp(— ax— Bx?)

F(x) +BU44(X)

r

(x) is a cutoff function given by

e~ (Px-1%  x<D
1, x=D

sa}nduao(x) is an add-on term given by

2(X—X
2mX=X)) _ml
X1—Xo 2
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FIG. 2. Three-body potential
surfaces forR values of (a) 12
a.u.,(b) 50 a.u., andc) 100 a.u.

VR $.0) 1K)

much as a 12% decrease in the binding energy of the diméncreases beyond gime,. In the region A ~\gfmov, the

[38]. Nevertheless, we neglect retardation corrections in Outhree-body states typically have very large spatial extent.
calculation and delay speculation on their possible effects on The ground-state energy for the three-body system de-
the three-body spectrum to Sec. Ill. creases ak increases through the halo region to the Efimov
limit regardless of the number of bound states. YAdn-
creases beyondlggmoy, the three-body ground-state energy
continues to decrease even as the number of three-body
A. Bound states versus interaction strength bound states diminishes. This is a somewhat remarkable
property of Efimov states and is worth repeating: starting

from Agfmov, the number of three-body bound states de-

body. spectrum in relathn to the two-body Sp?C”!Jm S &reases as the interaction strength,increases. This is, in
function of the two-body interaction strength. This will makef ct, the defining quality of Efimov states. The states which

SLeoar:ntz;? Srgfg'sogsbﬁ;’\l’eaesnthiﬂr?gvr:;ﬁgﬁ'frr:)?llqooifttes’eatlg Isappear are Efimov states while any states which remain
. : Prog YP€ 19 e normal states. This is shown clearly in Fig. 3. The first
the next as the interaction strength changes. So, let us con-

. S ) (%xcited state passes into the continuum\atl.2 while the
sider a system which interacts through the attractive, shor round state remains bound. The explanation for the reduc-
range, two-body potential U(r) with A a constant which g : P

. ) . . tion in the number of bound states is that fo¥ \ gm0y there
fixes the interaction strength. We will take=1 to be the ;o0 two-body bound state whose energy decreases faster

p_hys_|cal value. The three-body interaction in our approxXimasyan the energy of the excited three-body states as a function
tion is then . X

of \. In the language of potential curves, this process can be

V(R,,0)=N[U(r19) + U(r59) +U(r3p)] understood as the two-body threshélbde asymptotic value

of the three-body potentiaimoving down in energy faster

than the three-body energy levels in the potential as a func-
and is plotted fol =1 for various values oR in Fig. 2. In  tjon of A. Thus, any high lying Efimov states pass sequen-
this and all subsequent surface plots, we show half of theally into the three-body continuum asgets larger.
(#,6) plane as all of the systems we consider are symmetric |f we continue to increasa until the energy of the first
aboutd=m/2. From the definition of the coordinates, for a excited state of the dimer is zero, we will again find an
given hyperradius the interparticle coordinatgscover the infinite number of Efimov states lying below this threshold.
range 0 toR. Also, r,,=0 along the linep=m/2,r,3=0 at  However, they will no longer be true three-body bound
the point (@=/6,0=0), andr3;=0 at the point ¢p=/6,
0=1r) from symmetry. So, in Fig. @), we see that the large
repulsive part of the dimer potential dominates in a large
fraction of the @, 0) plane around;; =0, but asR increases
[Figs. 2a) and 2b)] this region shrinks around; =0 since
the interparticle distances cover larger ranges. -107 |

We show in Fig. 3 the binding energies f6He; as a

function of . For A <\gfimov» E=0 corresponds to three

Ill. RESULTS AND DISCUSSION

It is useful at this point to describe qualitatively the three-

—4

-10 T —

free atoms while forA>\ggmov: E=0 corresponds to one ) —10° }
atom free relative to two bound atoms. This figure illustrates Ly
the following discussion.

Starting at the free particle limib =0, there are neither ot b

two-body nor three-body bound states. Increasingve find

that three-body bound states begin appearing at some value
of N\, Nhapo (the dotted line in Fig. B It is because these
three-body bound states exist when there are no two-body
bound states that they are called halo states. They remain and
their number increases until reaches a valu@ gm0y (the
dashed line in Fig. Bfor which there is a zero energy two-  FiG. 3. The trimer binding energies as a function of the inter-
bodys-wave bound state. As increases towardlgimoy, the  action strength,\, for the physical valuex=1. Shown are
number of three-body bound states increases rapidly becom—=x,_,,=0.89 (dotted lind, A =\ gfmo,=0.9741 (dashed ling the
ing infinite at A =\gsimey @Nnd then decreases rapidly &8s  ground statecircles, and the first excited statsquares

0.8
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states, but rather three-body resonances. In addition, there

will be some finite number of normal three-body bound A

states lying at lower energies. For example, we found that for

A =6.823 the ground state of the dimer is relatively securely

bound Ey,=—26 K) and the first excited state has zero en-

ergy. For this value ok, the trimer has five normal bound <

states which asymptotically go to the dimer in the ground )

state plus a free helium atom. The next group of states is an 38

infinite number of Efimov resonances which asymptotically x

go to three free atoms. They are resonances rather than true =2

bound states since they belong to a potential curve from =

which they can decay into the continuum of a lower curve

via nonadiabatic coupling. A further increaseNrcauses the

binding energy of the first excited two-body state to increase TS

and eventually brings the energy of the second excited state ’ 10 100 1000

to zero which again results in an infinite set of Efimov reso- R (a.u)

nances. The process continues and repeats itself each time

there is a zero energy bound state. FIG. 4. The *He; effective hyperradial potential curveolid
line), ground-state wave functiofdotted ling, and first excited

B. Efimov states in the helium trimer state wave functioridashed ling Notice that the hyperradius has a

logarithmic scale.

As mentioned above, Efimov states are characterized by
the peculiar fact that their number increases as the two-body 5 09811 k 0.2770 K and E;=—1.517 mK (-2.693

potential strength approaches the value which gives a ZeTOK) where they obtainefi,=—0.11 K andE;=—1.6 mK.

energy two-body bound state. In this limit, they become di-ry g “our resuits for the three-body system are also in good
pole states and thus very diffuse — the expectation value o, greement. By noting the disappearance of the three-body

r increases exponentially with vibrational quantum numbera, citeq state as the interaction strength was increased, they

[39-41. In the adiabatic hyperspherical approach, the Efiyyere aple to identify the first excited state as being an Efi-

mov case manifests itself in the channel functidnsas an oy state. However, by simultaneously adjusting the poten-
almost equal probability for being in the region between Nu+jg| depth and equilibrium distance within the quoted error

clei and the region near nuclesee Sec. B3 and Fig. 10 pars of the potential, they found that it was possible to bind
below for all R. By contrast, the channel functions for nor- 5, aqditional Efimov state.

mal states show a collapse of the probability density into the /g repeated the calculations using an improved dimer
two-body potential wells aR increases. From the three-body potential [26] which gives a binding energy fofHe, of
p_otential surfaces i_n Fig. 2 we see t_hat the two-body poten; 310 nk — a 57% increase. Though deeper, the improved
tial well becomes increasingly localized ¥ and # aSR  jnteraction potential does not yield any more three-body
increases which forces any bound diatomic molecular statgong states, but the energies of the trimer are shifted to
to do the same. Physically, this corresponds to one alorg —_0.1061 K (-0.2937 K and E;=-2.118 mK
being far from the remaining two which are bound in a di-(_3_518 mK) which translates into a 6% to 8% change for

atomic molecular state. the ground state and a 30% to 40% change for the first ex-
cited state. The greater sensitivity of the first excited state to
the change in the potential might be interpreted as evidence
For “He; we first performed the calculation with the he- for its being an Efimov state. This is somewhat misleading,
lium dimer potentia[25] available to Cornelius and Gtkle  though, since the two potentials differ by more than a simple
[12] in order to compare with their results. They also solvedfactor. Thus, the results from the two potentials cannot be
the three-body Schdinger equation, but from the very dif- directly compared to determine the existence of an Efimov
ferent approach of using a Fadeev decomposition of thetate. We do find, however, that increasing the interaction
wave function in momentum space. They further expandedtrength of the improved potential by a factor of about 1.2
the Fadeev components written in Jacobi coordinates in pafsee Fig. 3 causes the first excited state to become unbound,
tial waves includings andd waves. Using a mass of 7296.3 and thus it is a genuine Efimov state within the adiabatic
a.u. for *He, we calculate a dimer binding energy of 0.8352approximation. We show the results for the physical interac-
mK which is in agreement with their resuléee alsd19]). tion strengthA =1, in Fig. 4. We plot the effective hyperra-
For the trimer, we findlower bounds in parenthegel,= dial potential curve as well as the wavefunctions for the

1. The “He trimer

FIG. 5. The channel functions
for “He, plotted as
sind® (R¢,6)> for (@ R=12
a.u.,, () R=50 a.u., and(c)
R=500 a.u. The vertical axis is a
square-root scale.
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ground and first excited states. Notice that the hyperradial 05
axis has a logarithmic scale showing the extremely large spa-
tial extent of the first excited state, an Efimov state.

We plot the channel functions for various valuesRoin
Fig. 5. The surfaces in this and subsequent figures are the
absolute square of the channel functions including the vol-
ume element. Notice that the probability distribution for
Figs. 5a) (R=12 a.u) and 8b) (R=50 a.u) is quite similar
to that expected for Efimov states in that the channel func-
tion has large probability for being in the region between the
nuclei as well in the region near the nuclei. At larger hyper- _10 |
radii, as seen in Fig.(6) atR=500 a.u., the channel function
is concentrated near the two-body potential wells and is es- ¥ — A=A
sentially the dimer ground state wave function. As we will L
see in Fig. 10, for the true Efimov state, the channel function _1'50,0 20.0 40.0 60.0
at largeR is not localized in the two-body potential wells R (au.)
even asymptotically.

We have seen that the trimer binding energies are quite FIG. 6. The adiabatic hyperspherical potential curves for the
sensitive to the binding energy of the dimer. For this reasonphysical systems'He; (solid line), *He,°He (dotted ling, and
the 12% decrease in the dimer binding energy calculated byHe *He, (dashed lingas well as the nonphysical systerfides
Luo et al. [38] due to retardation effects would probably (Iong dashed lineand X =\ggmoy (thick solid line.
have a 10% effect on the energy of the first excited state of
the trimer. It is doubtful, however, that this is sufficient to actions for short range model potentials. Given that the
change the number of bound states of the trimer or the chathree-body potentials fofHe *He, and *He; have only a
acter of the first excited state. Roughly speaking, a decreasshallow and narrow attractive well compared 4ble; and
of nearly 60%(from the new dimer potential to the glivas  that the heavier*He; has only two bound states, it is not
not enough to add another Efimov state. So, while the effectsurprising that only*He, *He has three-body bound states.
of retardation move the dimer binding energy in the rightlts single bound state has an energyEf=—0.01022 K
direction for adding Efimov states, we expect that it is insuf-(—0.08652 K.

0.0

U R#+W,(R) (K)

‘Efimov

ficient to change our conclusions f6He;. We show in Fig. 7 théHe, channel functions for various
R values. These should be compared to the lowest hyper-
2. Other helium isotope trimers spherical harmonic in Fig. 8 which is the solution to Et).

To study the variation of the three-body spectrum with the the absence of interactiorisee Ref{27]). For R values

: ) beyond the barrier maximum, the similarity of the channel
masses of the particles, we performed the calculations for thﬁmctions for 3He. and the lowest hvoerspherical harmonic
“He,%He, “He3®He,, and *He; systems. We considered 8 YPErsp

only the nodeless solutions of E@). For the asymmetric suggests that the three helium atoms behave largely as free

o , . o . articles. The channel functions féHe 3He, are very simi-
systems, this is consistent with symmetrization requirement A1 1o those for3He. iust as those fofHe. 3He are similar
However, for the trimer of°He, a fermion, this is an un- 3) 2

4
physical state since it is not possible to form the totally an-© Hes.

tisymmetric spin state for three spin-1/2 particles that would
be required to satisfy the Pauli principle with a totally sym-
metric spatial wave function. We ignore this problem and To complete our study of Efimov states for the helium
include *He; for completeness realizing that this case istrimer, we reduced the interaction strength from its physical
purely of theoretical interest. Using a mass of 5497.9 a.u. fovalue until the dimer bound-state energy was zero. As ex-
3He, we find that there are no bound states for either of th@lained above, this should lead to an infinite number of
dimers “He®He or 3He,. states, and indeed it does because for this specific case, the
The effective hyperradial potentiald,(R)+Wg(R) for  effective potential is proportional tB~2 and attractive. The
all three-body systems considered are shown in Fig. 6. Wenteraction strength needs only to be reduced by 2.59% to
see that the two systems with lighter particles exhibit a barreach this case. The calculated effective potential agrees well
rier while the other two do not. This is consistent with pre-with the anticipated result and is also shown in Fig. 9. We
vious calculationg42] which examined the dependence of plot R?Uy(R) versusR™ ! in Fig. 9 to more clearly show the
three-body potentials on the strength of the two-body interasymptotic behavior. A potential with leading terms propor-

3. The N =\ gfimoy Case

FIG. 7. The channel functions
for SHe, plotted as
sind®,(R;¢,6)> for (8 R=12
a.u.,, () R=50 a.u., and(c)
R=500 a.u. The vertical axis is a
square-root scale.
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~100 |

R’ U,R)

FIG. 8. The lowest hyperspherical harmonic plotted as
sin0|u[o](¢,0)|2. The vertical axis is a square-root scale.

tional toR™2 andR ™2 asymptotically will appear as straight

lines with this rescaling and change of variable. By fitting a -150
line to the calculated points, we can extract the coefficient of 0.00
theR™2 term to compare with the analytical result of Macek

[10,11] (see also Federov and Jeng®&hand Efimov[1])

FIG. 9. A comparison of hyperspherical potential curves for
15 4+t2 N=M\efimov- Shown are the analytical resukolid line), the calcu-
UO(R):W_W’ R—oo, (4)  lated points for the helium dimer interaction WitR=X\ ggmoy
M K (circles, the linear fit to the calculated points in the range 300 a.u.

_ . - . <R<700 a.u.(dashed ling and the quadratic fit to the calculated
wheret=1.0062. This result is independent of the details of oints in the range 100 aiR<700 a.u.(dotted ling. Also shown

the interparticle potential so I_ong asitis short ranged with or reference is théHe, potential curves —1 (squares The verti-
zero energy bound state. A linear fit to our calculated three- o : o
. cal axis is in a.u., the horizontal axis in &.K.
body potential curve over the range 300 &R<700 a.u.
givest=1.0042 and is shown in the figure. If we additionally
allow R™# term, then a quadratic fit is necessary. Such a fit
to our calculated curve over the range 100<aR<700 a.u. Recall that halo states of three particles occur for values
givest=1.0059 and is shown in the figure. It is somewhatof the interaction strengthy, for which no two-body bound
closer to the analytical result since it includes more points astates exist. The upper limit oN is clearly N gfimoy; the
smallerR which we can obtain with greater accuracy. Thelower limit, \},5,, Must be determined by systematically re-
solutions to the hyperradial equation for this case will haveducing\ until no three-body bound state exists. For the he-
energies which accumulate Bt=0 asE,~Eqje™ ** where lium trimer, we artificially reduce. from A\ gfnov=0.9741 to
v is the vibrational quantum number and=27/t. This fol-  \,;,0=0.89 [Ap20=0.85 neglectingWy(R)]. Calculations
lows solely from the fact that the potential is asymptotically[4,5] based upon some model short range two-body poten-
R™2[39-41]. tials have found an almost universal behavior for the ratio
For comparison, we have included in Fig. 9 the rescaled\ 5o/ \gfimoy- FOr example, N a0/ N gfimoy=0.804 for the
potential for *He;. It is clear that the tail of this potential Yukawa potential\,a0/Agfimov=0.801 for an exponential
differs appreciably from the Efimov solution, E@). It fol- potential, ano\ a0/ N Efimov=0.794 for a Gaussian potential.
lows that the Efimov character of the excited state'de; However, the ratio we find for the helium trimer,
cannot be explained in terms of the potential being locally\ ,0/\ gimey="0.91, is significantly higher. This result is in
R™2 as in Eq.(4). Presumably, though, as approaches agreement with the speculations of Gelyal.[5] concerning
Nefimov MoOre and more closely, such a region would appeaMorse interactions. They attribute the higher ratio to a large
and grow. Finally, in Fig. 10 we show the channel functionsrepulsive core in the two-body interaction which pushes the
for A =Ngsimoy. The probability density is spread throughout potential minimum to larger distances. The helium dimer po-
the (¢,0) plane with some localization near the two-body tential (see Fig. 1 clearly shows such behavior with a mini-
potential wells asR increases. The essentially uniform dis- mum at about ,;,=5.6 a.u. It is possible, though, that the
tribution of probability — in contrast to the well localized difference might arise from the longer range® behavior of
probability for *He; (see Fig. 5— persists for alR's and is  the dimer potential rather than the exponentially decaying
a characteristic of Efimov states. In fact, it is precisely thismodel potentials they had used. The channel functions for
behavior that leads to the long-range attraction peculiar tethe halo states look very much like théle; channel func-
the Efimov effect. tions in Fig. 7 as the effective potentials show simi-

C. Halo states in the helium trimer

FIG. 10. The channel functions
for  N=Ngimov  plotted as
sind® (R;¢,6)> for (8 R=12
a.u., () R=50 a.u., and(c)
R=500 a.u. The vertical axis is a
square-root scale.
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lar features. Also, compared to Efimov states they do notems, we find that a reduction of the interaction strength to

have particularly large spatial extent. 97.4% of its physical value leads to an infinite number of
Efimov states. In addition, the trimer has halo states for in-
IV. SUMMARY teraction strengths down to 89% of its physical value.

We have applied the adiabatic hyperspherical method to
the helium trimer and obtained results wh'ich are in excellent ACKNOWLEDGMENTS
agreement with Fadeev approaches. Using one of the most
accurate helium interaction potentials available, we find evi- This work was supported in part by the Department of
dence for only one Efimov state itHe;. None of the iso- Energy, Office of Basic Energy Sciences. C.D.L. was also
topic combinations have Efimov states. In fact, only onepartially supported by JILA and by the National Science
“He,%He, has a bound state. Going beyond physical sys€ouncil of Taiwan.
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