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Abstract. A hyperspherical close-coupling method is used to calculate the elastic, positronium
formation and excitation cross sections for positron collisions with atomic hydrogen at energies
below the H{n = 4} threshold for L = 0 and 1 partial waves. A new two-dimensional coordinate
transformation is used such that the Schrodinger equation at large hyper-radii can be solved
accurately. The coupled hyper-radial equations are integrated to a large hyper-radius at which
the solution is matched to the dipole states in the outer region. From the extracted X-matrix,
the elastic, positronium formation and atomic hydrogen excitation cross sections are computed.
Resonance positions. total widths, and partial cross sections are also examined and compared
with those from other calculations.

1. Intreduction

The scattering of positrons with atomic hydrogen has long been an interesting theoretical
subject. It is one of the simplest Coulomb three-bedy systems, but the existence of
rearrangement channels makes it a major challenge for theoretical description. Over the
years, different methods have been suggested. For a more comprehensive review of methods
used thus far and available experimental results, the readers are referred to recent papers
(Humberston and Armour 1987, Zhou and Lin 1994, Mitroy and Ratnavelu 1995) and
references therein. Briefly, the most commonly used approach is based on the close-
coupling method using orbitals of atomic hydrogen and positronium as basis functions. In
some calculations, pseudostates are also included to account for the short- and long-range
correlations. But the inclusion of two-centre basis functions may cause pseudoresonances
(Basu er al 1989, Higgins and Burke 1991, Sarkar et a2/ 1993, Zhou and Lin 1995b), and
the result depends sensitively on the number of basis functions employed as documented
. by Kernoghan et @l (1994). Aside from the close-coupling approach, a variational method
has been used and accurate results have been obtained. But the method is limited to the
elastic scattering and the Ore gap region (the energy gap between Ps(z = 1) and Hin = 2)
levels) only.

An alternative approach is the hyperspherical method. The method was first formulated
by Smith (1960) for treating quantum atom—diatom reactive scatterings and is now widely
used by quantum chemists (see Launay 1993). In atomic physics, the hyperspherical
approach was first used within the adiabatic approximation and in the classification of doubly
excited states of atoms (Macek 1968, Lin 1984, 1686). More recently, the development
of the hyperspherical close-coupling approach (HSCC) makes it possible to obtain accurate
results for resonance energies, widths and photoionization cross sections for atomic systems
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{Tang et al 1992, Zhou et al 1993, Tang and Shimamura 1995). A recent review of the
hyperspherical approach up to the middle of 1994 is given in Lin {1995).

The HsCC method has also been extended to study general Coulomb three-body systems,
and, in particular, the collision between positrons and atomic hydrogen. Careful calculations
using the hyperspherical approach have been limited to the Ore gap region only so far, as
reported by Igarashi and Toshima (1994), and by Zhou and Lin (1994). An earlier caiculation
by Archer et al (1990) covers a larger energy region, but it was limited to J = 0 states
only and the numerical accuracy achieved in that calculation is also more limited.

In this paper, we describe the improvement in the numerical procedure used beyond
what was described in our earlier paper (Zhou and Lin 1994). The modification is needed
in order to be able to calculate excitation and positronium formation cross sections to higher
excited states for positron-hydrogen scattering in the higher energy region, as well as the
resonances in this system. To achieve this goal, we need to calculate accurate hyperspherical
potential curves up to a large hyper-radius. Furthermore, since the excited states of atomic
hydrogen (and the positronium) are degenerate for states of the same principal quantum
number, the asymptotic wavefunctions in the dissociation limits are dipole states (Seaton
1961, Gailitis and Damburg 1963), and proper modification of the wavefunctions in the
outer region in the HSCC method has to be made. A summary of the H5CC method and
these modifications are discussed in section 2. The results are presented and discussed in
section 3, with a summary and future improvements and applications addressed in section 4.
Atomic units are used unless explicitly noted otherwise.

2. The hyperspherical close-coupling approach

2.1. Brief review of the hyperspherical close coupling approach

The three equivalent Jacobi coordinate systems for describing the three particles are defined
as in figure 1. Following the definitions in Zhou and Lin (1994}, the reduced wavefunctions
W are shown to satisfy

82 “
(—W+HQJ—QME)W(R,¢,Q) =0 (1)

where 2 denotes collectively the four orientation angles of vectors p and p;, R is the
hyper-radius and ¢ is the hyperangle. This equation can be expressed in any one of the
three coordinate sets of figure 1. The adiabatic Hamiitonian is

AT+ 2uRC (g, 6)

Haa(R; 9,8 = 2 (2)

with

A= az-!- f + b : 3)
T\ 8¢9 cos?¢  sin’g 4

where {; and {, are the usual orbital angular momentum operators, and
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Figure 2. Body-frame axes. The three particles lie on the
) x'=z" plane with the 2’ axis along the proton-positron line
X and the electron is above the x'=y’ plane.

is the effective charge of the three particles. In equation (4), Z; is the charge of particle /.
The angles ¢, 8 are the two internal angles expressible in any set of Jacobi coordinates,
where cos@™ = Jul/p - pi/R with T = o, 8 or y (for definitions of o[, see figure 1).
The reduced mass uj is the reduced mass of the first pair of particles in the 7-set Jacobi
coordinates and p is an overall mass scaling factor, which is taken to be unity in this paper.
We seek to solve (1) using the HSCC method. First the hyper-radius is separated into
two regions at R = Ry. In the inside region R € Ry where all three particles interact with
each other, the wavefunctions are to be expressed in terms of hyperspherical coordinates. In
the outer region, the three-body system breaks into a single particle and a pair of particles
in some bound states. In this outer region, the wavefunctions are appropriately expressed
in terms of Jacobi coordinates for each arrangement. In the HSCC method, the inner region
of the hyper-radius is further divided into many small sectors. Using the so-called diabatic-
by-sector method (Tang et al 1992), the wavefunction within each sector is expanded as

W(R,$, =) > Fu(R®u(Ra; 8, $)Dfy (@1, 02, 3) 5)
Il i

where the wavefunctions are expressed in the body-frame, with the body-frame axes defined
as in figure 2. In equation (5), the normalized D-function has good-parity (Bhatia and
Temkin 1964), v is the channel index, R, is chosen at the midpoint of the sector, J is
the total angular momentum, / is the absolute value of the projection of J along the body
frame’s z' axis and running from O to J for (~1)/P = 1 states and from 1 to J for
(=1} P = —1 states, with P being the parity.
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The numerical solution of (1) is done in two steps. First, the channel functions
@, (R, 8, ¢) are solved in the o-set Jacobi coordinates at a set of points R, satisfying the
equation

To+ (D], |T1|D
[ (Rl ”’gz' 11Ding) ng] By1(Ra3 6, 8) = 2V, 1(RPyr (Res 6, 6) ®)
a

with 0 €6 < & and 0 € ¢ < =/2. The explicit form of the operators Tp and T; is given
in Zhou and Lin (1994). Basically, equation (6) is a two-dimensional partial differential
equation in angles (6, ¢). The eigenvatues in equation (6) are solved using the higher order
finite element method—the details are further discussed in section 2.3 below,

Using the diabatic-by-sector method as in (5), the hyper-radial functions satisfy a set of
one-dimensional coupled differential equations

82 1
(‘5};3’ T 2#5) Fur(RY + ZI: Varor(RYEp(R) =0 (7

where the coupling matrix elements V are defined, explncntly in Zhou and Lin (1994) and in
Lin {1995).

In the practical implementation of the HSCC mef.hod, the set of hyper-radial equations (7)
is integrated within each sector, Starting with the innermost sector, the integration is
continued until it reaches the boundary of the next sector. At this boundary, the total
wavefunctions are expanded in terms of basis functions of the next sector from which
integration within the next sector can be carried cut. This procedure is continued from small
hyper-radius to Ko where the wavefunction is matched to an outside solution expressed in
terms of independent electronic coordinates p), p;. The details of such a procedure are
given in Zhou and Lin (1994) and Lin (1995}, From the matching one can extract the
K-matrix and the partial scattering cross sections are obtained from

2

U

l—lK

where & is the momentum of the incident particle.

In comparison with our previous work, we have implemented two new numerical
procedures in order io be able to carry out the calculations reported here. They are discussed
in detail in the next two subsections.

2.2, The dipole states in the outer region

The total wavefunction in the region beyond Rp in general can be expressed as a linear
combination of products of target bound states multiplied by regular and irregular Bessel
functions, see equation (23) of Zhou and Lin (1994). For energies above the n = 2 excitation
threshold, the hydrogenic target eigenstates are degenerate for states with identical principal
quantym number # and in the dissociation limits these states are coupled by the dipole
operator {Seaton 1961, Gailitis and Damburg 1963). It is advantageous to account for this
dipole interaction in the asymptotic region analytically so that the matching can be carried
out at 2 smaller Rg. In the dipole representation (Seaton 1961, Gailitis and Damburg 1963),
the channels in the outside region are labelled by quantum numbers of the dipole states which
take the general form 3., ¢y, i.. in terms of a linear combination of hydrogenic states.
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The use of these new basis functions in the asymptotic region results in the modification
in the definition of the matching matrix elements. For example, the @1 fi Sirizam, p term
in (32) of Zhou and Lin (1994) should be replaced by 3, ti,¢0 fi Suvesm,p. (We take this
opportunity to correct an obvious misprint in (32) of this paper. The square root operater
should be applied to all the reduced masses in this equation as well as in {33).) Similar
obvious replacement should be done for the corresponding terms in (33), (36) and (37).
Here, #;, is an element of the unitary transformation matrix T between the dipole states and
the states in the (/,l;) representation and T is obtained from the diagonalization of matrix
Q with elements Q;; = L(l; + 1)8;; +2u} ]_[L, and

- - ; 3n Jit et J ZJ [j
nj; = [1/112 — A DRy +yn2 - 112611’!'1-1] 7 D e 1 ﬁi Zi
% ‘/(zz;' + 18 + D@ + e+ 1)
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€

(Percival and Seaton 1957, Bethe and Salpeter 1957) with t referring to either the 8- or
the y-set. The f and g are regular and irregular solutions of

dZu, ]: 2uE0°  ay
—_— k2__.2,___'=___j|w = 10y
T S A Ol

respectively. Here g, are eigenvalues of matrix Q (or, more explicitly, of matrices T, Q
and diagonal mafrix a = diagla), az, . ..] satisfying QT' = Tta (Seaton 1961)) and

. {31(22'1"23) ifr=5

= il
Tl Zzy@s+ 2z =y, an

The K-matrix obtained this way reflects the transition amplitude to the dipole states.
To obtain cross sections for states in the {{;/;) representation, the S-matrices in the two
representations are transformed as (Seaton 1961, Gailitis and Damburg 1963)

S(f)fz) = ilzar,‘ZT’re—n?zr/Zs{dipole) e—:il?i'r/ZT euzJT,fZ . (12)

Here S“™) is the S-matrix in the (/;/2) representation; S@P® s that in the dipole
representation; I» is a diagonal matrix with the angular momentum gquantum number of
the outer particle /; as its diagonal elements; and ¢ is a diagonal matrix with the phases
from

filpz) ~ sin(ky o0 — P /2) (13)

or
8i(p2) ~ —coslk, pz — % /2). (14)

From the S-matrix, the K-matrix is then transformed accordingly (Burke and Seaton 1971).
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2.3. New angular coordinates for the solution of the two-dimensional surface functions

The two-dimensional partial differential equations (6} are solved by the higher order finite
glement method (FEM) (Bathe and Wilson 1976, Shertzer and Levin 1991). In order to treat
the two different arrangements on an equal footing, the hypersurface equation (6) is usually
expressed and solved in the «-set Jacobi coordinates. In this coordinate frame, the surface
functions on the (#, ¢)-plane are localized near the singularities of the potential surface at
large values of hyper-radius. In this paper we are interested in resonances and excitation
and positronium formation cross sections to excited states, and thus the matching radius
Ry has to be chosen at a large value. The solution of (6) using even higher order FEM
is unable to reach the needed accuracy. Archer et al {1990) introduced modified surface
functions which removed the exponential factors from the lowest hydrogenic atomic state
and the lowest positronium state. But even with that procedure the accuracy of their lowest
energies is still only about 1%. The energies of the higher states are probably even less
accurate. We have found a new transformation which allows us to soive (6) more accurately,
The idea is to treat both dissociation arrangements on equal footing and at the same time
that the singularity in the potential surface is changed from point-like singularity to line-like
singularity. The line-like singularity in two dimensions can be easily treated using the FEM
basis which is the direct product of two one-dimensional local basis functions,

The new coordinate transformation in the 8—¢-plane is defined as (8, ¢) — (&, ¢') with
&' as the angle between p'f and p! (see figure 3) and tan ¢’ = cos ¢#/ cos ¢¥. Their ranges
are ¥ 2 68 2 0 and 7/2 = ¢" 2 0, respectively. To impose proper boundary conditions we
also rescale the channel functions &,; (8, ¢) to <I)L G

sin ¢’ cos ¢’

Pus @, 0) ~ 9,6, ¢) = sin ¢ cos ¢

®,/(0,9) (15)

with @), |¢=2 = ®/;ly=0 = 0. In the (¢, ¢')-plane the concentration of wavefunctions in
either dissociation limit are as shown in the lower frame of figure 3, i.e. they concentrate
on either one of two boundaries ¢’ = 0 and ¢' = /2. After these transformations it can
be shown that &), satisfies

_Mi Mi — ¢ : _8_ coszqsﬂsineri
cosP gy 9¢' \ sin*¢’ I¢’ cos* P cos? ¢ sing’ 59’ ag’
r JJ+ 1) =212
—d(@, ¢ + 214R,C
@) sin® ¢ cos? @ sin” & cos? ¢ t2uRe :|
X @ (Ra3 8, 9") = 2 RIU,1 (R)P) (Ra3 6, ¢) (16)
with
d’ ¢’y = [al_h + : i (5in6- )h:l
U7 89 T sinpoos?psing 90 80
_ singcos¢
"~ sing’ cos ¢’

Crn = figz+ fa2n
\/ my(my + ma + ms3)
h=

(my + ma)(ma + m3)
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The pormalization for @}, is

2 58 cost Y
f |¢L](Rﬂ; Br’ ¢f)l2 (W) sin@"dqﬁ’da' =1, an

sin® ¢’ cos* ¢

Using these two new angles, the calculated two lowest Uy, of equation (6) for J = 0-
at R, = 160.655 are —1.0000180 and —0.5002916, which are to be compared with
the values obtained from the asymptotic expansion formula —1.0000194 + O(1/R*) and
—0.5002917+0(1/R*), respectively (Cavagnero ef al 1990). H we solve (6) using the two
original angles, we are unable to achieve even 1% accuracy at such a large hyper-radius
with the same number of FEM bases (that is 4032 in the current calculation).
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Figare 3. Upper figure: definition of 8" cos¢’ = ﬁf . ,6%'. Lower frames: distributions
{schematic} of the contour lines for channel functions in each dissociation limit on the (¢, ¢")
plane. The left-hand frame is for dissociated states described by the 8-set coordinates; the
right-hand frame is for states described by the y-set coordinates.
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3. Results and discussion

3.1. The S-wave resonances and cross sections

3.1.1. Energies below the H(n = 2) threshold. The results of the hyperspherical close
coupling calculation in this energy region have been reported previously in Zhou and Lin
{1994} using 20 hyperspherical channel functions in the inner region and the matching
radius Ry was chosen at 29.93 au. Here we have repeated the calculation using 40 channel
functions and varied the matching radius to further check the accuracy and the convergence
of the HSCC method.

Table 1. S-wave elastic (o11) and positronium formation into 7 = 1 (gq2) cross sections at
different matching radii Ry (in atomi¢ units) in the Ore gap. Variational results are from Brown
and Humberston’s calenlation (1985). The cross sections are in units of waZ.

Ry =2993 Ry = 250.655 Variational

k ol o1z o1l G12 o1} o1z

071 00238 0.00394 00306 0.00397 0026 0.004]
075 00415 000427 00500 000427 0043 00044
030 00624 0.00483 00740 0.00483 Q065 0.0049
085 00862 0.00557 00966 000557 0085 0.0058

In table 1 we list the S-wave cross sections for elastic and positronium formation into the
Ps(n = 1) state at four different energies and the dependence of the results on the matching
radius Ry and compare the results with those from the variational calculation (Brown and
Humberston 1985). Two values of the matching radius were used, at Rp = 250.655 and
Ro = 29.93, respectively.

‘We first fook at the positronium formation cross sections. Obviously the results are
very insensitive to the variation of the matching radius (to within 1%) and agree very well
with the variational results of Brown and Humberston (1985). For the elastic scattering
cross sections, the dependence with respect to the matching radius is more pronounced. In
fact, if we take the variational results as the benchmark, we notice from table 1 that the
results from the HSCC matched at Ry = 29.93 appear to be better than those matched at
Rp = 250.655. This is not entirely surprising and is the consequence of using the diabatic-
by-sector method in our approach. In the diabatic-by-sector method, the potential curve
does not approach the asymptotic limit correctly. It has been shown (Macek 1968) that the
asymptotic potential curves approach the correct limit only if the diagonal non-adiabatical
coupling term W,, = {®,|d>/dR?|®,) is included as a part of the adiabatic potential. This
is the case in the standard adiabatic approach, but not in the diabatic-by-sector method,
Since the W,, term behaves like 1/R? asymptotically, this effect can be accounted for in
the diabatic-by-sector method by coupling the increasing number of hyperspherical channel
functions when R is increased. In the present calculation, we have fixed the number of
channels in the inner region to 40 even at the large matching radius Ry = 250.655. This
results in an inaccurate account of the W, term at large R. Since this W, term is always
positive, the error is that the effective potential for the elastic scattering channel is too
attractive and thus the calculated cross sections are too large. In table 1, we do note that
the elastic scattering cross sections calculated using the larger matching radius are too large.
To achieve better convergence when such a large matching radius is used, one would have
to increase the number of hyperspherical channei functions in the inside region. We note



Close-coupling calculation in positron-hydrogen scattering 4913

that the above remark has less effect on the positronium formation cross section since the
transition is dominated by the off-diagonal coupling term.

We also remark that the elastic scattering cross sections using the HSCC method but
different numerical approaches do give somewhat different results. Igarashi and Toshima
(1994) obtained results which are about 15% worse than ours. They chose a matching
radius at about 400--500 au but oniy nine channels in the inner region. Archer et gl (1990)
included 43 channels in the inner region, but the accuracy of their potential curves and
coupling terms are more limited. To achieve high precision in the HSCC method, numerical
accuracy within the prescribed approximation is very important.
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Figure 4. (@) Elastic scattering cross sections for the S-wave: full curve, present calculation;
dotted curves, from ¢¢(6, 6) of Mitroy and Ratnavelu (1995); crosses, from Igarashi and Toshima
(1994). {b) The S-wave excitation cross sections into H(2s) and H(2p) states. For the 2s state:
full curves, present calculation; dotted curves, Mitroy and Ratnavelu (1995). For the 2p state:
broken curves, present result; chain curves, Mitroy and Ratnavelu (1993).

3.1.2. S-wave elastic and H{n = 2) excitation cross sections. We next examine the S-wave
partial cross sections for energies near and above the H(n = 2) threshold. To begin with,
we mention that the inelastic threshold for H(n = 2) is at 0.75 Ryd, for Ps(r = 2) is at
0.875 Ryd, for H(n = 3) is at 0.8889 Ryd, for H{n = 4} is at 0.9375 Ryd and for Ps(n = 3)
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is at 0.9444 Ryd. In figure 4(a) the elastic scattering cross sections for energy in the 0.70-
0.95 Ryd region from the present calculation are shown together with the close coupling
results of Mitroy and Ratnaveln (1995) which included six atomic states on the H-atom
centre and six states of the positronium. Such a calculation is abbreviated as cc(6, 6).
Their results are shown as dotted curves. The overall agreement is reasonable in terms of
the absolute values and the energy dependence. Also shown in the figure are the results
from Igarashi and Toshima (1994) at two energy points. The HSCC calculations by Archer
et al (1990) are in good agreement with ours, except that their results show some small
ripples over a wide energy.

In figure 4(a) we note that there are resonances in the elastic scaftering cross sections
at energies below the H{n = 2} threshold. Further analysis of these resonances is given in
section 3.1.4. We only point out that the resonance positions as shown in figure 4(a) indicate
clearly that our predictions are different from those of the €c(6, 6) calculations. Figure 4(a)-
also shows some tiny resonance structures at energies above the H(n = 2) threshold. These
resopances occur at energies below the Ps(n = 2), H{n = 3), etc, thresholds. They are
more clearly seen by examining the inelastic scattering cross sections to H(2s) and H(2Zp)
states, as shown in figure 4(b) where the H(2s) excitation cross sections from the HSCC
are shown as full curves, and those from CC(6, 6) are shown as dotted curves. The energy
dependences in the two calcuiations are similar, but again the resonance energies (lying
below the Ps(n = 2) threshold) obtained using CC(6, 6) do not agree with those from the
HSCC calculation.

In figure 4(b) we also display the H(2p) excitation cross sections (broken curves) and
compare with the result from CC(6, 6), (chain curves). We note that the relative magnitude
and the energy dependence in the two calculations are quite similar, but the resonance
parameters obtained in CC(6, 6) appear to be inaccurate. We also note that additional
resonances occur at higher energies as the new inelastic thresholds are open.

3.1.3. S-wave Ps formation cross sections to 1s, 25 and 2p states. The positronium formation
cross section to Ps(1s) is shown in figure 5(a) over the 0.70-0.95 Ryd region. Also shown
are those from the Cc(6, 6) calculation by Mitroy and Ratnavelu (1995). The agreement
between the two calculations is quite good except for the resonance positions. The results
from Igarashi and Toshima (1994} at two energy points, shown as crosses, also agree with
ours well,

We have also calculated the partial cross sections for positronium formation to 25 and
2p states. The results are shown in figure 5(b). These cross sections are about one order of
magnitude smaller than to the Ps(1s) state and show little energy dependence in the energy
range considered. We also check (not shown) our results with the calculations of Archer et
al (1990). Although the magnitudes in the two calculations are quite close, the shape is not
the same. They observed a valley near E ~ 0.878 Ryd which does not correspond to any
resonance. Second, our cross section above the H{n = 3) threshold is smooth with respect
to the increase of collision energy whereas theirs is not. We suspect that the discrepancy is
due to the limited numerical accuracy in their calculation, and possibly also because they
did not match the asympiotic solutions to dipole stales.

3.1.4. The S-wave resonances. From figures 4 and 3, it is evident that there are numerous
resonances near each inelastic threshold. In the HSCC method, these resonances can be
‘traced’ by solving the hyper-radial equation over a fine set of mesh points over the typical
width of each resonance. This causes no numerical difficulty since the solution of coupled
differential equations is not time consuming. From the calculated total phase shift (the
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Figure 5. The S-wave positronium formation cross sections into (&) Ps(n = 1) and (b) Ps(n = 2)
states with respect to the incident energy of the positeon. In (a): full curve, present result; dotted
curve, Mitroy and Ratnavelu (1995); crosses, Igarashi and Toshima (1994). In (&) full curve,
present Ps(2s) formation cross sections; broken curves, present Ps(2p) cross sections. Note the
resonances associated with the Ps{n = 2) threshold at 0.875 Ryd, and the H(n = 3) threshold at
0.8889 Ryd and the H{z = 4) threshold at 0.9375 Ryd.

sum of the eigenphases), the resonance position and its total width are cbtained by fitting
the total phase shift to § = constant — arctan(,i—,l"/(E R— E)), The resulting resonance
parameters are listed in table 2. These parameters have also been calculated variationally
for each individual states using the complex-coordinate rotation method and the results are
also shown in table 2 for comparison.

We list only a few resonances below each threshold. Because of the asymptotic dipole
potential there is a whole series of resonances below each threshold, and for the higher
members the energy levels should follow the relation €,41/€, = e~2%/¢ (Greene 1980)
where ¢ = /a, — 0.25, with a; being the permanent dipole moment as seen in (10) and
that energy ¢ is measured from the threshold, The higher resonances are very close to the
threshold and very narrow and are not examined.

Below the H{n = 2) threshold, only two resonances are calculated, the positions and
widths are in good agreement with those from complex-coordinate rotation calculations.
In the HSCC approach, one can identify these resonances approximately as bound staies
associated with individual adiabatic potential curves. For example, in figure 6 we show
the lowest adiabatic potential curves that converge to the H{n = 2) threshold and to the
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Table 2. Positions and widths of S-wave resenances. Results of complex-coordinate rotaticn
calculations are from Ho (1992).

Present Complex rotation
E (Ryd) 1T (Ryd) E (Ryd) 3T (Ryd)

Below H(r = 2) threshold
=0257312 6.64(-5) —0.2572453 6.66(-5)
=0.250302  3.91(-6) -0.25017 < LO{=5)

Below Ps(n = 2) threshold
-0.150316 3.342(—4) —0.150279 3.35(—4)
—0.131704  1.624(—4) -0.131659 1.63(—4)
—0.126806  5.03(—5) ~0.126 774 4.8{—5)
—0.12547 1.58(=5)

Below H(r = 3} threshold
—-0.116 101 6.161{—4) =0.11606 6.2{—4)
—0.112100  1.300{—4) =0.11206 1.4{—-4)

Below H{n = 4) thresheld
—-0.077100  4.762(=5) -0.077063 4.76(—3)
—-0.067902  4.782(=3) -0.067876 4.8(-5)
~0.064 625 1.625(=5) —0.064 682 2.2{(-5)
=0.063725  4.884(-5) —0.063699 5.0(—5)
~-0.063304 2.7(—6) -0.063259 1.0(-5)
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Figure 6. The S-wave adiabatic hyperspherical potential curves that converge to the H(n = 2)
and Ps(n = 2) thresholds. Two other curves converging to each limit are not shown here since
they are repulsive and support no resonances. The lowest resonant state in each potential is
indicated by a horizontal datted line.

Ps(n = 2) threshold. The position of the lowest resonance below each threshold is indicated
by a horizontal dotted line in the figure. We mention that the resonance positions calculated
using CC(6, 6) are not in agreement with the results shown in table 2, as iltustrated in the
inset in figure 4(a). ’

Below the Ps(n = 2) threshold, four resonances are identified in the current calculation.
The first three agree well with the variational results, We also indicate that the lowest
resonance is associated with the lowest potential curve below the Ps(n = 2) threshold, as
illustrated in figure 6. A resonance at E = —0.222 Ryd was previously reported by Doolen
(1978). We did not find such a resonance, and from the potential curves shown in figure 6,
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no such resonance is expected. The resonances predicted from the CC(6, 6) calculations in
this energy region also do not agree with the resulis shown in table 2.

Below the H(n == 3} threshold two resonances were calculated. The position and width
of each state obtained by HSCC are in good agreement with those from the variational
calculation (Ho 1992). The lowest resonance is a bound state associated with the lowest
adiabatic potential curve below the H(n = 3) threshold, as shown in figure 7. This potential
curve crosses with the repulsive curve that converges to the Ps(n = 2) threshold. This
crossing is treated as diabatic in the present model.

_0'08. L L

-0.09F .

.10 .
5 H(n=3)
= 011

012k Ps(n=2)

R T | SR RV AP RN R

0 50 100 150 200 250
R{a.xu.)

Figure 7. The S-wave adiabatical hyperspherical potential curves that converge to the Ps(r = 2)
and H(r == 3) thresholds. The attractive curve converging to Ps(z = 2) is not shown since 1t
does not cross the Hi{n = 3) curve. The lowest resonant state associated with the auractive
potential is indicated by a horizontal dotted line.

Below the H(n = 4) threshold five resonances have been calculated and all agree well
with the variational results except for the highest one. Because the energy gap between
Ps(n = 3) and H(r = 4) is only about 0.0069 Ryd, the resonance series below H(n = 4)
and Ps(n = 3} actually overlap with each other. These overlapping resonances have been
studied in our previous paper {Zhou and Lin 1995a).

3.2, The P-wave cross sections

3.2.1. Partial scattering cross sections. The P-wave elastic and positronium formation into
the {n = I)-level cross sections are shown in figure 8(a). We include 34 channels in this
calculation, 25 for / = 0 and nine for / = 1. Two-dimensional matching is carried out at
Ro == 250.655. For the elastic scattering cross sections, our results are about 10% less than
the results from the CC(6, 6) calculation of Mitroy and Ratnavelu (1995). We believe that the
CC(6, 6) resuits are more accurate. To achieve higher precision in the present approach, more
channels should be included. In figure 8(g), the elastic scattering cross sections calculated
by Igarashi and Toshima (1994) are also shown. Their results are slightly less than ours.
In figure 8(a) we also show the P-wave positronium formation into the (r = 1)-level
cross section. Qur results agree with the CC{6, 6) calculations to within 1% except near the
resonance region. As shown in the inset window, the resonances predicted in the CC(6, 6)
calculation are believed to be inaccurate, as in the S-wave cases. The results from Igarashi
and Toshima {1994) at the two energy points shown are also in agreement with our results.
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Figure 8. (a) Cross sections for the P-wave elastic and positronium formation into the Ps{n = 1)
state, For the elastic scartering cross sections: full curves, present calculation; dotted curve,
from cc(6, 6) of Mitroy and Ratnavelu (1995); crosses, from fgarashi and Toshima (1994). Fer
the positronivin formation to Ps(n = 1): broken curves, present result; chain curves, from
cc(6, 6) of Mitroy and Rawnavelu (1995). Mote that the two sets of curves overlap and are
indistinguishable except in the resonance region, see the inset window, The asterisks are from
Igarashi and Toshima (1994). (&) The P-wave positronium formation cross sections to Ps(2s)
{full curves) and to Ps(2p} (broken curves) from the HSCC calculation,

In figure 8(b), we show the P-wave positronium formation cross sections to Ps(2s) and
Ps(2p) states. These cross sections are quite small, about two orders of magnitude [ess than
the cross sections for positronium formation to the Ps(n = 1) state, There are no other
extensive calculations available for comparison.

The P-wave excitation cross sections to H(2s) and H(2p) states are shown in figure 9{a).
The results are in good agreement with those from the €C(6, 6) calculations except in the

resonance energy region. Similarly, in figure 9(b) we show the excitation cross sections to
H(3s, 3p, 3d) states.

3.2.2. The P-wave resonances. Figures 8 and 9 show that the inelastic scattering cross
sections are dominated by pronounced resonances. We have analysed a number of
resonances and their positions and widths are listed in table 3 and are compared with those
from the variational calculations using the complex-coordinate rotation method (Ho 1990).
When comparison is possible, we found good agreement between the two calculations, but
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Table 3. Positions and widths of P-wave resonances. Results of complex-coordinate rotation
calculations are from Ho (1990).

Present Complex rotation
E (Ryd) 1T (Ryd) E (Ryd) 3T (Ryd)

Below H(n = 2) threshold
—0.254 132  8.152(-6) -0.254112  8.1{-%)
—0.25011 2.1(-7

Below Ps(n = 2) threshold
—0.148071 2.936(—4) —0.148 181  2.97(—4)
—0.130666  1.480{(—4) —0.13073 1.67(—4)
0127343 6.73(-5) -0.12733 73(=5)
—0.126347  2.3%(-5}
—0.125307 1.04(-5)

Below H{n == 3) threshold
~0.115626  5.71(—4)
—0.111953 1.167(—4)
—0.11170 6.61(—6)
~0.11116%  3.74(-3)

Below H(n = 4) threshold
_0.076673  5.28%(—5)
—0071211  5.698(—%)
—0.067585  4.666(—5)
—0.064 520 1.31{=5)
—0.064 360 2.81{-5)

we have extracted many more resonances. Below the H(n = 2) threshold, two resonances
from €C(6, 6) calculations have been identified, but they are again at higher energies as
shown in the inset window of figure 8{a).

The lowest resonance below the H(r = 2) threshold is associated with the lowest
potential curve that converges to the H(n = 2) threshold, as indicated in figure 10. To
reveal the relation between the S- and P-wave resonances, we check the validity of whether
the latter can be approximated by adding one unit of rotational excitation to the former. In
other words, can the P-wave potential curve be obtained by adding J(J + 1)/R%*(= 2/R%)
to the S-wave potential curve? This was carried out and the resulting potential curve is
shown in figure 10 by the broken curves. We note that it is in very good agreement with
the P-wave potential curve actually calculated. This demonstrates that the rotor structure
discussed by Chen and Lin (1990} is valid for the present system in this energy region.

Below the Ps(n = 2) threshold five resonances have been calculated. It is found that the
third resonance does not asymptotically follow the scaling relation e, /e, = exp(—2n/¢)
expected from a potential with attractive dipole behaviour, Using the known dipole mement
for the lowest potential curve below the Ps(n = 2), €,.41/¢, = 0.256 is expected. From the
actual calculated resonances, €x/e; = 0.2456 and €3/e; = 0.4136. Thus the third resonance
does not follow the scaling relation. In fact. e4/e; = 0.2381 is closer to the expected ratic.
We thus easily identify that the third resonance belongs to a different group. In figure 11
we show the two lowest potential curves that converge to the Ps(n = 2) threshold. The
upper curve supports the third resonance while the other resonances all belong to the lower
curve. We note that the upper curve, which has an attractive potential well at small R, is
repulsive at large R. Such a potential can typically support shape resonances. In the present
case, the attractive well is strong enough such that a resonance lies below the asymptotic
threshold. Energetically it is like a typical Feshbach resonance.
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Figure 9. {a} The P-wave excitation ¢ross sections into H(2s) and H{2p) states, For the 2 state;
full curves, present calculation; dotted curves, Mitroy and Ratnavefu {1995). For the 2p state:
broken curves, present result; chain curves, Mitroy and Ratnavelu (1995). (b) Excitation cross
sections to H(3s) (full curves), H{3p} (broken curves) and H(3d) (long-broken curves) states
from the present calculation.

The resonances at higher energies become increasingly difficult to analyse. In
figure 12{a) we show two of the five adiabatic potential curves that converge to the Hin = 3)
threshold. These two curves can support ‘bound’ states, but they cross the uppermost
curve that converges to the Ps(n = 2) threshold. The lowest curve that converges to
the H{(n = 3) threshold has been found to follow the rotational structure very well. A
very careful examination will show that there are actually two curves overlapping almost
completely. The curve obtained by adding 2/R? to the corresponding S-wave curve is found
to differ little from the curve actually calculated.

The spectra become increasingly more complex at even higher energies. In figure 12(5)
we show the adiabatic potential curves that converge to the H(n = 4), Ps(n = 3) and some
that converge to H{n = 5) thresholds. There are numerous crossings which would make the
analysis of each resonance rather tedious. On the other hand, the HSCC method, which uses
diabatic basis states, can be used to perform calculations even if a much larger number of
channels are included. These higher resonances are not analysed here.
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Figure 10. P-wave potential curves converging to H(n = 2): full curve, the calculated attractive
P-wave adiabatic potential curve; broken curve, obtained by adding 2/R? to the attractive $-
wave adiabatic potential converging to H{rz = 2}, The other two potential curves converging to
this limit are repulsive and are not shown. The lowest P-wave resonant state in the attractive
potential is indicated by a horizontal dotted line.
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Figure I1. P-wave potential curves converging to the Ps(n = 2) limit: full curves, the calcufated
P-wave attractive adiabatic potential curves; broken curve (on top of the lowest curve and barely

visible), obtained by adding 2/R? to the attractive S-wave adiabatic potential converging to
Ps{n = 2). The lowest resonant state in each attractive P-wave potential is indicated by a

horizontal dotted line.

4. Conclusion

We show in this paper that the hyperspherical close coupling method can be used to calculate
positron-hydrogen atom scatterings up to the higher energy region where many channels
are open. By use of a new two-dimensional coordinate transformation the hyperspherical
potentials at large hyper-radii can be calculated accurately. Despite the lack of experimental
data to check the results of this calculation, we are confident that the results are reliable since
the positions and widths of resonances below each inelastic threshold obtained using the
HSCC method are as accurate as those obtained variationally using the complex-coordinate
rotation method. For the inelastic scattering cross sections, we have shown that our results
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Figure 12. (a) The P-wave adiabatical potential curves converging to Ps(z = 2) and H{n = 3}
thresholds: full curves, the caleulated P-wave adiabatic potential curves; broken curves, obtained
by adding 2/R* to the S-wave adiabatic potential. There are two additional attractive curves
converging to Ps(z = 2) that are not shown in this figure. The lowest P-wave resonant state
in the attractive potential is indicated by a horizontal dotted Iine, (&} The high-lying P-wave
adiabatic potential curves.

are in agreement with the more extensive close coupling calculations. These results, together
with the relative stability of the calculations with respect to the number of basis functions
used and the matching radius varied, make us believe that the results presented here are
accurate. We have illustrated the power of HSCC for treating rearrangement collisions, even
in energy regions where many channels are open. This conclusion is particularly relevant to
applications of the HSCC method to other three-body systems such as in atom~diatom reactive
scattering where the interaction potential surface is less well known. Once the numerical
accuracy is achieved in the HSCC calculations, the discrepancy between experiment and
calculations probably should be attributed to other sources of errors, such as the quality of
the potential surface, or the reliability of experimental data.
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