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The effect of quantum-mechanical symmetry on the geometric structures and internal motions of the in-
trashell states of three-valence-electron atoms is investigated with a model where the core and all the radial
degrees of freedom of the valence electrons are frozen. A number of correlative densities have been defined and
calculations have been carried out for the eight N=2 intrashell states of boron as examples. For each state, the
most probable shape, the preference of orientation, and the favorable modes of internal motion have been

found.
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I. INTRODUCTION

The nature of electron-correlation in two-electron atoms
has been widely investigated ([1-4], and literature cited
therein) in the past decade and is now well understood [5].
However, investigation of correlation in three-electron atoms
is only at a primitive stage [6—9]. Because of the additional
three degrees of freedom, compared to the two-electron at-
oms, the nature of correlation in three-electron systems is
expected to be much richer and much more complicated. In
fact, collective internal modes arising from the correlated
motion of three electrons have already been partially ana-
lyzed [7]. (This reference is denoted as WL hereafter.) This
paper examines the geometric structures of P and D states.
Study for S states has been carried out previously [10,11].
Emphasis is placed on the discovery of the geometric struc-
ture and internal motion by analyzing the wave functions of
several intrashell states. Such a qualitative study is desirable
in order to obtain a global picture and a possible new clas-
sification of the complicated spectra of three-electron sys-
tems.

In two-electron atoms, it was found that classification
schemes [4,12,13] that are suitable for intrashell states are
also approximately suitable for intershell states. This implies
that an understanding of internal modes of intrashell states is
important for understanding the whole spectrum. For this
reason, we shall concentrate on intrashell states in this paper.
In particular, the intrashell states of boron where the three
valence electrons stay in the N=2 shell are the object of this
study.

Two approximations are adopted. (i) The degrees of free-
dom of the core electrons are frozen. Since we consider only
cases where the core is completely filled, this approximation
is reasonable. (ii) The radial degrees of freedom of the va-
lence electrons are frozen. This is called an r-frozen model,
which has already been used before (WL), and in two-
electron atoms [14]. In intrashell states the radial part of the
wave function is totally symmetric with respect to permuta-
tions of electrons; this symmetry is strictly reserved in the
r-frozen model. Thus our model does not spoil the quantum-
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mechanical (QM) symmetry. In fact, as we shall see, the
basic structures of the lower states (of a given 25*!L™) are
essentially determined by the QM symmetry, but not by the
details of dynamics; in particular, these structures are ex-
pected to hold also for other three-valence-electron systems
(e.g., the triply excited intrashell states of Li, the N=3 in-
trashell states of Al ... ,etc.).

II. DESCRIPTION OF THE THEORETICAL MODEL

By freezing the radial degree of freedom of the three elec-
trons, the Hamiltonian of the model atom reads

B2 2. 1
H= 7> et —— (1)

= 2mr0[=1 i>j ’ri_;j’ >

where [ ; 1s the angular-momentum operator of each electron

(e;) with respect to the nucleus and ;l- is its position vector
from the center, 7;=rq7;. The ry is taken to be 0.776 A to
simulate the N=2 shell of boron [15]. The calculated eigen-
values below depend on the choice of r,; however, the order
of the eigenvalues stays the same and the nature of the eigen-
states is not changed.

The eigenvalues of the model Hamiltonian (1) are ob-
tained by diagonalization in a basis set consisting of func-
tions

&= 21D 121133} Lauxsn,)- @

where .7 is the antisymmetrizer, and the basis function is
written as the product of the total orbital angular function
coupled to L and M and the total spin function x7§ M coupled

to S and M. The coupling scheme is such that the first two
electrons couple to an intermediate /,, which then couples
with the third electron to L, and the spins of the first two
electrons couple to an intermediate s, which then couples
with the third spin to S. It is noted that the <i>,-’s do not form
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TABLE 1. Eigenenergies of N=2 intrashell states of boron from an r-frozen model. The energy
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is in eV, the energy of the ground state, 2pe. is scaled as zero.

State 2p° *pe 2 ’pe

2Se 4so 2D0 2P1)(2)

E

i 0 7.26 12.71 19.70

19.71 24.35 24.44 30.59

an orthonormal set; among them only mutually linearly in-
dependent basis functions can be reserved in the model
space.

Let each of the /;’s be constrained by 0<<[;</,,; then
the dimension of the model space is determined by /.. In
what follows /,,=3 is given. From the point of view of the
independent-electron model, [,, is simply equal to 1 in the
N=2 shell. The /,,, has been given a larger value since the
electron-electron repulsion may increase the orbital angular
momentum of each electron. For the N=2 intrashell states, a
contribution from /; greater than 3 is not expected to change
the qualitative features of the relevant states.

After diagonalization, eigenstates ¥, of different
25+11™ symmetries are obtained. Among them, it is found
that there are only eight states that have coefficients domi-
nated by basis functions where all the components have
[;=<1. These eight states are identified as the eight N=2
intrashell states of boron, and the wave function of each state
will be analyzed below.

The eigenenergies of the eight states and their
labels are listed in Table 1. These states are the lowest states
for each 25" 1L ™ symmetry, except for the last one where (2)
was used to indicate that it is the second state of that sym-
metry. Although the r-frozen model cannot give accurate en-
ergy levels, the relative order of the calculated positions of
all the eight states coincides with the experimental levels for
C* [16], except that the order for 2P¢ and 2S¢ is reversed.
We compare the calculations with the data for C*, since the
positions of all the eight states are known and the r-frozen
model is expected to work better for positive ions where the
intershell correlation is smaller. We mention that the posi-
tions of all these eight intrashell states for boron and for
He™ have not been determined unequivocally yet [17]. This
calculation also disagrees with WL, where the two states
25¢ and 2P¢ were found to be at much higher energies.

25+1L'n'

Definition of one-body and two-body density functions

For §=1/2 states, the spin-up and spin-down electrons
play different roles in structure; thus a polarity-dependent
procedure of analysis is used. Each eigenstate is expanded as

V=2 CO=2 fouu(123)E, ()£, (2)€,.03),
i K
3)
where £, (i) is the spin state of e; with polarity u;= *1/2,
and ¥, implies a summation over p;, t;, and u; under the

constraint w; + u, + w3 =M. Owing to the antisymmetriza-
tion, we have

Fursgu (2D =(=V0F ), (B15253) (4

where pp,ps is a permutation of 123 and (—1)” is the
permutation parity. Equation (4) implies that different
f 1y iy, COMpONENts would provide equivalent information;
thus the analysis of only one component is sufficient. In what
follows, M g=1/2 and M =L are assumed. With this choice
we have two spin-up electrons and one spin-down, and L is
essentially lying along the Z axis; thus the anisotropy, which
will be discussed later, is in fact relative to the direction
of L. Mostly, the f1171 is selected for analysis; with this
choice the spins of e?zénd e, are up, while e3 is down.
Let the normalization condition be written as

1= % f AP dFad P3| f ol (5)

Then one can define the polarity-dependent one-body densi-
ties p; and p; as

pT(;l)ZE 6,141;_J d;Zd;3lf,u|p,2,u3|2’ (6)
"

p30=3 6,1 [ disdilfp el O
"

where p;(7;) [p,(7,)] is the probability density of having an
up [down] electron at 7;; in fact, it depends only on 6, but
not on ¢;. The sum of p; and p; is just the usual total
one-body density, fulfilling

To define two-body densities, let f,, , ,, be decomposed as

f,”,wfg CHIL(DLD L3 s 9

where g denotes a partial wave channel (/;/,/3 and /), and
M denotes wyu,m3. Let us introduce a body frame E’, so

that the third body axis k'||F; X 75, and the first body axis

i'|(F,+75)/2. Let &’ B’ y' denote the Euler angles specify-
ing the orientation of the E’ frame; then Eq. (9) can be
rewritten as

fﬂ]/‘z/‘3=§ Df{M(_‘y,’—-ﬂ,9_al)G;l.K’ (9,)

where

Gmg CHILGFDLFD () g, (10)
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where the three vectors with respect to the E’ frame are
F1=(m/2,— 015/2); 75=(7/2,6,,/2), where 6}, is the angle
between 7| and r,; and f§=(0§ ,3). It is clear that G ¢ is
a function of 6, and 7;. The condition of normalization
reads

2

1:% fd% sin( 0,)d 0,,d7)} ; D%, G .kl . (11)

where d.7%2=sinB'da’dB’dy’' denotes an infinitesimal rota-
tion.

From Egq. (11), one can define the orientation-averaged
spin-parallel weighted two-body density as

2
, (12)

5TT(012)=Sin(91z)f d.7 dr; ;{: DIIEMG,U.QK

where u, denotes u;=1/2, u,=1/2, and pu3=—1/2. Simi-
larly, the spin-antiparallel two-body density is defined as

2

p~“(012)=sin(012)j a7 dfé( E D?(MG/I-bK
K

+

2
), (13)

EK: DlIéMG[J,CK

where wu, denotes w;=1/2, u,=—1/2, and u3=1/2; u, de-
notes w;=—1/2, u,=1/2, and u;=1/2. Evidently, the sum
of the above two densities is the usual two-body densities

p2=pr1+ Py, (14)

fulfilling

1=j do,p;. (15)

Furthermore, from Eq. (11) a polarity-dependent orientation-
distribution function can be defined as

3

p#[#2#3=f sin(ﬂlz)dﬁud}:é N (16)

ori

; DéMG/Lk

which is a function of 8’ and vy’ (but does not depend on
a'). This function gives the distribution of the orientation of
the E' frame, where the X'-Y' plane is defined by the two
electrons having polarity w; and w,.

In what follows, the above defined functions will be in-
spected. Owing to particle-particle correlation, the distribu-
tion of a wave function in the multidimensional coordinate
space is far from uniform but distributed around some most
probable shapes; in this sense the geometric structure can be
defined. Besides, in L# 0 states, the orientation of a geomet-
ric structure relative to L is relevant. Furthermore, each state
has its most preferable modes of internal motion. The most
probable shape, the most preferable orientation, and the most
preferable mode of motion characterize the geometrical and
dynamical features of quantum states. Before presenting the
details, let us first inspect the effect of symmetry.
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III. SYMMETRY CONSIDERATION

A. The existence of inherent nodal surfaces

It is natural that in the head state (the lowest state of a
given 25T1L™ symmetry), the valence electrons would pur-
sue a geometric structure with the best symmetry for reduc-
ing the total potential energy. For the present three-electron
systems, the better choice is a coplanar (all three valence
electrons together with the core staying in a plane) isosceles
triangle (IST) configuration [including the equilateral tri-
angle (ET)]. Thus the head state would pursue this configu-
ration, and the wave function would be expected to be
smoothly distributed (without nodes) around it; this optimal
configuration can be defined as the most probable shape. On
the other hand, quantum-mechanical symmetry can impose
inherent nodal surfaces (INS’s) in the multidimensional co-
ordinate space, depending on the **!L™ symmetry [18—
20]. The distribution of the wave functions of the head states
would avoid the INS’s since the nodal surfaces would induce
a specific mode of motion resulting in an increase of kinetic
energy. Hence, the most probable shape of the head states
would possess not only a superior geometric symmetry, but
would also do its best to avoid the INS’s. In what follows,
we shall neglect the discussion of L=0 states, as they have
been discussed elsewhere [10,11].

B. Quantum symmetry imposed on the lying coplanar IST

Let the plane of the three electrons be denoted by o and
assume an IST configuration. When o is lying in the X-Y
plane, it is called a lying coplanar IST; when o contains the
Z axis, it is called an upstanding coplanar IST. When L#0, a
coplanar IST would have a smaller rotational kinetic energy
than an upstanding IST, since the moment of inertia of the
former relative to the Z axis is roughly twice that of the
latter. However, in any coplanar structure, a space inversion
is equivalent to a rotation in the o plane by 180°. Hence, if
o lies in the X-Y plane, the coplanar configuration is an INS
for all the m(— 1)f=—1 states. Thus, among the six L#0
intrashell states shown in Table I, only 2P°, 2P°(2), and
2pe states can have the lying coplanar IST as their most
probable shapes.

C. Quantum symmetry imposed
on the upstanding coplanar IST

Next we inspect the stability of changing the orientation
of the lying coplanar IST. Assume that the up electrons e,
and e, are located symmetrically on the two sides of the X
axis, as shown in Fig. 1(a), and r,, is the base of the IST. A
rotation about the X axis would turn the lying IST to an
upstanding IST, as shown in Fig. 1(b). However, in Fig. 1(b),
a space inversion together with a rotation about the Z axis by
180° is equivalent to an interchange of r 1 and ;2. Since both
e, and e, are spin-up, the latter operation definitely provides
a (—1) factor in the wave function. Accordingly, this up-
standing IST has a node for all 7(— 1)Y= +1 states. For this
reason, the 2P, 2P°(2), and 2D¢ states would avoid having

;12 parallel to the Z axis.

D. Inclination of the IST

Another possible variation of the IST is its inclination, as
shown in Fig. 1(c). When the angle of inclination is equal to
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FIG. 1. Coplanar IST configu-
ration of the valence electrons.
The two electrons located at the
base vertexes are spin-up, while

1 angle of the one at the top is spin-down. In

©

90°, the lying IST is again changed to an upstanding IST
with pQ [shown in Fig. 1(d)] overlapping with the Z axis. In
this case a rotation about the Z axis by 180° is equivalent to

an interchange of r 1 and ;2; thus an INS appears in L=even
states. For this reason, the 2D¢ state would tend not to have
a strong inclination.

From the above analysis, we predict that both 2P° and
2pe states prefer the lying coplanar IST. The IST may in-

cline from the X-Y plane with the base r 12 preferably normal
to L. The tendency of inclination is stronger in the P state,
but weaker in the D state. Thus, in the 2D¢ state, the three
electrons are better kept close to the X-Y plane, while in the
2po state the down-electron has a better chance of being
close to the poles due to inclination.

The 2P°(2) state may also tend toward the lying coplanar
structure. However, an energetic excited state is in general
less constrained by the symmetry, and thereby less well pre-
dicted.

On the other hand, since the 7(— 1)Y= —1 states are pro-
hibited from possessing the lying coplanar structure, it is
natural that they would pursue an upstanding coplanar IST.

With this choice, ;12 may be either parallel to the Z axis
[shown in Fig. 1(b)] or normal to it [Fig. 1(d)]. The former
orientation is acceptable for all 7(— 1)E=—1 states; the lat-
ter is acceptable only in those with L=odd. Starting from
Fig. 1(b), if the IST rotates about the Y axis, as shown in Fig.
1(e), it is called a rolling. Among all the 7(—1)l=—1
states, the L=even states would prefer not to have a strong
rolling.

From this analysis, we predict that all the *P¢, 2P¢, and
2p° states tend toward the upstanding coplanar IST. The
plane of this IST may roll about its normal; however, in the

2pe state ;12 is better kept parallel to L. The above predic-
tions arise simply from symmetry; they will be checked
against results from the actual calculations.

IV. ONE-BODY DENSITIES

Among the functions defined in Sec. II, we first examine
the polarity-dependent one-body densities, Egs. (6) and (7).
These densities are shown as a function of @, in the upper
frames of Fig. 2 for the 7(— 1)X=+1 intrashell states and
in the lower frames for the 7(— 1)Y= —1 states (the two
L=0 states are not given here since they are isotropic). Fig-
ure 2 shows the differences between the 7(— 1):=+1 and
— 1 states and between p; and p, in S=1/2 states. A “typi-
cal” w(—1)r=+1 state is 2D° [Fig. 2(c)] where all the
electrons tend to lie in the X-Y plane, as predicted and as
displayed in Fig. 1(a). For the two 2P° states, as shown in

2 rolling (a) and (c), the two electrons at the
@ 2 (o) base are overlapped. The Z axis is
parallel to L.

Figs. 2(a) and 2(b), the up electrons also prefer to lie on the
X-Y plane, but the down electron may be close to the pole as
the result of inclination [Fig. 1(c)]. (Recall that the inclina-
tion is larger for the 2P° states, see Sec. III D.) A typical
m(—1)t=—1 state is the 2D state [Fig. 2(g)] where the
two up electrons tend to be close to the poles, while the
down electron remains in the X-Y plane [Fig. 1(b)] as pre-
dicted based on the symmetry in Sec. III. In Fig. 2(f) the
down electron may be close to the pole because of the rolling
[Fig. 1(e)].

For §=3/2 [Fig. 2(e)] the up and down electrons play
exactly the same role; thus p;=2p, .

We have also investigated one 2F° state. This is not an
intrashell state, but rather an intershell state. Note that its
distribution, or symmetry, is similar to that of the 2P and
2D* states.

V. ORIENTATION-DISTRIBUTION FUNCTIONS

We next consider the orientation distribution function. Es-
111

pecially we examine pzji as functions of B’ and ', where
e, and e, have their spins up and stay in the X'-Y' plane and
the positive side of the X' axis. Our goal is to show the
difference in the 77(— 1)Y=+ 1 states (shown on the left side
of Fig. 3) from the w(— 1)Y= —1 states (shown on the right
side of Fig. 3).

There are four noticeable regions in the (B’,y') plane:
the first region has B'~0, y'=any, where r1» lies in the
fixed X-Y plane as in Fig. 1(a); the second region has
B'=any, y'~0° or 180°, where 7|, may leave from the

[ 7
7/
/
.Y (©f )’F°
1 T 30° 60° 90°
-
’
P ,/
’
’I
- (O o’r .- @D
0° 30° 60° 30° 60° 30° 60°
0,

FIG. 2. Polarity-dependent one-body densities p; and p; as
functions of ;. M=L and M =1/2 are assumed. p;/2 is given by
the full line; p, by the dashed line. The ordinate in each figure is in
arbitrary units.
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FIG. 3. Orientation-distribution functions p222. The full line

gives 92% of the maximum, the dashed lines give 72%, the dashed-
dotted line gives 52%, while the dotted lines give 20%.

X-Y plane, but remains normal to the Z axis [the variation of
B’ is associated with inclination as shown in Fig. 1(c)]; the
third region has 8'~90°, vy’ ~90°, where ;12 is parallel to
the Z axis, as in Fig. 1(b); the fourth region has B'=90,
y' =any, where the variation of vy’ is associated with rolling
as in Fig. 1(e).

In the 2D° state, if the coplanar IST is lying as predicted,
r 12 should lie in the X-Y plane; thus the first region should be
preferred, which is clearly the case shown in Fig. 3(c). In the
2pe state, if the coplanar IST is allowed to incline, then not
only the first region but also the second region would be
preferred; this is clearly shown in Fig. 3(a), where the arrows
show the tendency of inclination. For the 2P°(2) state,
which has higher excitation energy, the distribution is more
even along y". Nevertheless, in all the three 7(—1)l=+1
states, the preference for the first region is common.

For the m(—1) = —1 states, a typical example is the
2D° state. Here the third region is strongly preferred, as

shown in Fig. 3(f); thus 7, is mostly parallel to the Z axis.
For the *P¢ and 2P¢ states, besides the third region, the
fourth region is also non-negligible; this implies the ten-
dency of rolling [shown by the arrows in Figs. 3(d) and 3(e)].
Nevertheless, in all the three 77(— 1)Y= —1 states, the pref-
erence for the third region is common.

VI. TWO-BODY DENSITIES

In order to understand the angles between a pair of elec-
trons, we examine the polarity-dependent two-body densities
prr (dashed lines) and p;; (dotted lines) in Fig. 4 for the
m(—1)l=+1 states (upper frames) and =(—1)f=—1
states (lower frames). The angles where each distribution
arrives at the maximum values are denoted as 6;; and 6;,
respectively, and their values are listed in Table II. Together
with the distribution functions, we can arrive at the following
conclusions:

(i) In all the S=1/2 states, pyy is different from p;, ; thus
angular correlation between each pair of electrons depends
on the spins.
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(b) 2p(2)

p
L7 ;',""\\
\ - O
L M A
0° 600 120° 60° 120°
7 012 012

FIG. 4. Two-body densities as functions of 6, (the angular
separation of e; and e,). The dashed line is for p;;, the dotted line
is for p4,/2, and the full line is for p,=p;;+ p;, . The ordinate in
each figure is in arbitrary units.

(ii) Figures 4(a), 4(c), and 4(f) are similar in many re-
spects. They all have only one peak in p;, , implying that the
down electron remains nearly equidistant from the two up
electrons, resulting in an IST configuration. They all have
é” larger than BT 1 5 thus the IST is flattened with the two up
electrons at the base. Thus, instead of an equilateral triangle,
the IST arises because of the inequality of up-up and up-
down angular correlations. If the wave function is sharply
distributed around a coplanar structure, 5” +2X éT | should
be close to 360°. However, in the 2P°, 2D, and 2P¢ states,
the above sums are equal to 324°, 328°, and 276°, respec-
tively; thus the distribution around the coplanar structure is
not sharp.

(iii) Figures 4(b) and 4(d) both have two peaks in p;;
instead of an IST, this implies an irregular shape. The occur-
rence of this shape is due to a swing motion of the down
electron, as will be shown later. In the 2P°(2) state, the
5” is only 90°; thus the two up electrons are close to each
other, resulting in a stronger Coulomb repulsion. In fact,
among the eight intrashell states, this state is the highest.

(iv) Figures 4(e) and 4(g) show that “P° and *S° states
are similar where py; is identical to p;; . The correlation in
§'=23/2 states is polarity independent. Since there is only one
peak, the most probable shape is expected to be an equilat-
eral triangle. The value 3 X é” is a measure of how far the
o plane is shifted from the center. It is 330° in *P°, but
282° in *$°.

(v) Figure 4(h) for the 2D° state is distinctly different in
that éTl> éTT' Thus instead of a flattened IST, it implies a
prolonged IST. This state has been shown to tend toward the
geometry shown in Fig. 1(b). The prolongation has the effect
of increasing the moment of inertia to reduce the rotational
kinetic energy.

VII. MODES OF INTERNAL MOTION

In order to study the internal motion let us define another
body frame E”, so that k” is normal to o, and the coordi-
nates of e;, e,, and e; in the E” frame read (6,— 7),
(6,7), and (0, %), respectively. [This definition is slightly
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TABLE II. The optimal angular separation (in degrees) where p;; and p; are peaked. For the

latter, the 2P°(2) and 2S¢ states have two peaks.

State 2P0 2P0(2) 2De 252 4Pe 2Pe 4S0 2Do

éﬁ 120 90 118 110 110 102 94 94

éTi 102 78 105 63 110 87 94 117
138 142

different from that in (WL).] When 6=90°, the o plane
contains the center; otherwise, the distance from o to the
center is d =rycosé. In this frame, the internal motion can be
classified into three basic modes (WL and Refs. [10,11]).
One is associated with the variation of @; in this mode all the
electrons move in phase and the o plane keeps its orientation
but oscillates back and forth around the center, as intuitively
shown in Fig. 5(a). It was called a d oscillation (d-OSC)
mode, and the corresponding classical motion proved to be
an exact periodic solution of Lagrange’s equations [11].

The other two basic modes occur inside the o plane; they
can be called planar modes. One is associated with the varia-
tion of @3, as intuitively shown in Fig. 5(b), where an elec-
tron swings back and forth with respect to the center of the
other two. It is called a swing (SWI) mode [10]. The other
one is associated with the variation of 7, as intuitively
shown in Fig. 5(c), where a pair of electrons oscillate relative
to each other, while the third remains stationary. It is called
an 7-OSC mode [10].

It was shown in Ref. [10] that the 2S¢ state is dominated
by the SWI mode; from the similarity of Figs. 4(b) and 4(d),
it is expected that the 2P°(2) state would have a strong SWI
motion as well. It was shown in Ref. [11] that the *S° state is
dominated by the d-OSC mode; since the o planes in both
the *S° and 2P° states are shifted remarkably from the cen-
ter [shown by Figs. 4(f) and 4(g)], the 2P¢ state is expected
to also have strong d-OSC motion.

VIII. WAVE FUNCTIONS DISPLAYED IN THE E”"-FRAME

We examine the modes of internal motion by displaying
f 11 in the E” frame. This function depends on 8, 7, ¢5 and

the three Euler angles a”,B",y”, where a” will be given as
zero. We again separate the states into 7w(—1)Y=+1 and
—1 groups.

A. w(—=1)E = +1 states

These states have been shown to prefer the lying coplanar
structures; thus the optimal case of B”=0, ¥”"=0, and

(b) ©

FIG. 5. Intuitive picture of the three basic modes of internal
motion. (a) shows the d-OSC mode, (b) shows the SWI mode, and
(c) shows the 7-OSC mode. © and ® label the up and down elec-
trons, respectively.

68=90° is chosen. With this choice, the three electrons are

located in the fixed X-Y plane, and ;12 is parallel to the Y
axis. The real and the imaginary parts of f1:7 as functions of
222

7 and ¢} are plotted in Fig. 6.

1. The *P° state (ground state)

The maximal magnitude of the real part is one order
smaller than that of the imaginary part; thus only the latter is
shown in Fig. 6(a). There is a peak at a flattened IST with
base angle equal to 55°, and the wave function is smoothly
distributed without any node. Incidentally, this state is domi-
nated by the (ssp) angular momentum component with a
weight of 90.6%. If we keep only the (ssp) component, then
Fig. 6(a) is changed to Fig. 6(b), and the spatial correlation
disappears. Thus, the independent-electron model fails in de-
scribing correctly the spatial correlation even in the ground
state.

2. The %P°(2) state

The maximal magnitude of the real part is close to that of
the imaginary part. The real part is shown in Fig. 6(c), where
the appearance of a peak and an antipeak implies a large-
amplitude coplanar SWI oscillation. The imaginary part
shown in Fig. 6(d) also has a nodal line, implying a large-
amplitude 7-OSC oscillation. These two energetic planar
modes result in the loss of well-defined geometric structure
for this state, as shown earlier.
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FIG. 6. The real or imaginary part of f % gas a function of » and
@5, a"=0, B"=0, ¥"=0, and §=90° are assumed. It is only plot-
ted in the region of 7<¢3<360°— 5. The full line gives *92% of
the maximal magnitude; the dashed line gives *48%. The dotted
line is a nodal line.
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FIG. 7. The real or imaginary part of f % 1 g as a function of 6 and
7. a"=0, B"=90°, ¥"=90°, and ¢;=180° are assumed. The full
line gives =92% of the maximal magnitude, the dashed line gives
+48%, and the dashed-dotted line gives =20%. The dotted line is
a nodal line.

3. The *D° state

The maximal magnitude of the real part is one-half
smaller than that of the imaginary part. The former contains
a nodal line of the SWI mode, but because it is small, this
SWI mode is not important. The imaginary part is shown in
Fig. 6(e). There is a peak at a flattened IST with base angle
equal to 57.5°. Thus, as predicted, the most probable shape
is also a coplanar flattened IST just like the 2P state. This
similarity suggests that the 2P° and 2D¢ states belong to the
same rotational band.

4. 2S¢ state

The state has been examined previously; [10] it has good
coplanar structure with a strong SWI mode.

B. w(—1)Y=—1 states

Since these states prefer upstanding structures, the opti-
mal case of 8”=90° and y”"=90° is chosen and ¢} is given
at a number of values. It was found that ¢5=180° is the
optimal case; thus only the results of this case are reported
below. The real and the imaginary parts of f 1 g as functions

of 8 and 7 are plotted in Fig. 7, where e; and e, are located
symmetrically on the two sides of the fixed X-Y plane (above
or below), e; is located in the X-Y plane so that the o plane
is parallel to the Y-Z plane; and the variation of @ is associ-
ated with a shift of the o plane remaining parallel to the Y-Z
plane.

1. The *P¢ state

The maximal magnitude of the real part is one order
smaller than the imaginary part; the latter is peaked at
6=90°, »=60°, as shown in Fig. 7(a), which is associated
with a coplanar upstanding ET. The appearance of the ET in
S§=23/2 states is natural because the up and down electrons
are equal in the correlation.

2. The *P° state

The maximal magnitude of the real part is close to that of
the imaginary part. The real part is shown in Fig. 7(b), where
the appearance of a peak and an antipeak implies a large-
amplitude d-OSC. The imaginary part shown in Fig. 7(c)
also has a nodal line; however, the antipeak is shallow and
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the gradient at the nodal line is small in magnitude; thus the
associated 7 mode is less important. Hence, this state is
dominated by the d-OSC mode; during this oscillation the
o planar remains upstanding.

3. The *S° state

This state has been examined before [11]; it has a good
ET structure with a strong d-OSC motion.

4. The 2D’ state

The maximal magnitude of the real part is five times
larger than that of the imaginary part; thus the former is
dominant, which is peaked at =90°, 7»=48° and shown in
Fig. 7(d). This state is similar to the *P¢ state and the two
states can be ascribed to the same rotational band.

IX. SUMMARY OF THE MAIN FEATURES

The main features are summarized in Table III. There are
inherent relations among the features. For example, a strong
d-OSC mode implies a noncoplanar structure; a strong SWI
mode implies an irregular shape; a coexistence of different
modes results in ambiguity in geometric structure; and the
two S=3/2 head states have an ET shape.

X. FINAL REMARKS

The morphology (including the most probable shape, the
most preferred orientation, and the preferred modes of inter-
nal motion) is a basic characteristic of bound quantum states,
which has been investigated systematically via the observa-
tion of a number of correlation densities. In low-lying states,
the morphology is decisively determined by the symmetry;
in particular, by the structure of the INS in the multidimen-
sional coordinate space, but not by the details of dynamics.
This fact implies that similarity among different systems is
widely established in nature [18]. In higher states, nodal sur-
faces of pure dynamical origin may appear [as in the
2p°(2) state]. The coupling of different basic modes is
popular; accordingly, the morphology becomes complicated.
Nonetheless, the existence of INS is always a basic factor in
determining the structures. A systematic study of the mor-
phology is essential in understanding the whole spectrum,
and can provide a sound base for the classification of states.

Classifications of three-electron states have been at-
tempted previously by Watanabe and Lin [7]. By expanding

wLM(123)=§ Dhy(—v.—B.—a)yp(1'2'3"), (17

where the body frame is similar to the E” frame (with a
minor difference), it was suggested that Q can be defined as
an approximate good quantum number. However, for the
states examined there are strong mixings of the QO compo-
nents, even in certain head states (e.g., in the 2P° state).
Perhaps Q can be close to a better quantum number only in
specific states. In this work, we do get a glimpse of states
that display similar internal structure, and we have identified
two pairs of states, where each pair may be viewed to form a
rotational band (the >P? and 2D° states and the *P¢ and
2D° states, respectively).
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TABLE III. Summary of the main features of intrashell three-electron states (N=2). The upper

part is for w(—1)E=+1, the lower for —1.

<

CP means coplanar structure, ~CP means a “a

diffused distribution around a coplanar structure,” NCP means noncoplanar structure. The orienta-
tion is relative to L. In S = 1/2 states, the IST has the two spin-parallel electrons at the base. In the
last column, a blank implies a small oscillation around the most probable shape without node; an
unimportant mode is written within parentheses; e.g., the SWI mode in 2D*®.

Preferred orientation Preferred modes(s)

State Most probable shape Coplanarity

zpe Flattened IST ~CP
Base angle=55°

2p%2) Not well defined CpP

’pe Flattened IST CP
Base angle=57.5°

2ge Irregular triangle CP

4pe ET ~CP

2pe Not well defined NCP

450 ET NCP

’pe Prolonged IST ~CP

Base angle=66°

Lying or inclined

Lying SWI and 7-OSC
Lying (SWI)
Isotropic SWI

Upstanding with rolling

Upstanding with rolling d-OSC (and 7-OSC)
Isotropic d-0SC

Upstanding with 7,|[L  (%-OSC)

In WL, the preferred modes of internal motion were not
examined in great detail. The present work analyzes all the
different modes as well as the preferential orientation and
shapes. While it is not advisable to propose a complete clas-
sification scheme following the present limited analysis, this
work is an effort in that direction. The morphology uncov-
ered by this work provides a deeper understanding of the
spectrum. It seems that the orientation (of the three-electron
plane with respect to L) and the modes of motion (measured

by the number of nodes in the basic modes) are important
factors in classifying the states.

ACKNOWLEDGMENTS

This work is supported in part by the National Foundation
of Natural Science of P.R. China and by the U.S. Department
of Energy, Office of Basic Energy Research, Division of
Chemical Sciences. C.G.B. thanks the Alexander von Hum-
boldt Foundation for support.

[1] U. Fano, Rep. Prog. Phys. 46, 97 (1983).

[2] R. Berry, G. S. Ezra, and G. Natanson, New Horizons of Quan-
tum Chemistry, edited by P. O. Lowdin and B. Pullman
(Reidel, Dordrecht, 1983), p. 77.

[3] A. R. P. Rau, Atomic Physics, edited by R. S. Van Dyck and E.
N. Fortson (World Scientific, Singapore, 1984), Vol. 9.

[4] C. D. Lin, Adv. At. Mol. Phys. 22, 77 (1986).

[5] C. D. Lin, in Review of Fundamental Processes and Applica-
tions of Atoms and lons, edited by C. D. Lin (World Scientific,
Singapore, 1993).

[6] K. H. Al-Bayati and K. E. Banyard, J. Phys. B 20, 465 (1987).

[7] S. Watanabe and C. D. Lin, Phys. Rev. A 36, 511 (1987).

[8] Y. Komninos, M. Chrysos, and C. A. Nicolaides, Phys. Rev. A
38, 3182 (1988).

[9] K. T. Chung, Phys. Rev. A 44, 5421 (1992); 45, 7766 (1992);
46, 6914 (1991).

[10] C. G. Bao, Z. Phys. D 22, 557 (1992).

[11] C. G. Bao, J. Phys. B 25, 3725 (1992).

[12] D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).

[13] J. M. Feagin and J. S. Briggs, Phys. Rev. Lett. 57, 984 (1986).

[14] G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1974 (1983).

[15] M. Karplus and R. N. Porter, Atoms and Molecules (Benjamin,
New York, 1970).

[16] C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.)
Circ. No. 467 (U.S. GPO, Washington, D.C., 1949),
Vol. L.

[17] C. A. Nicolaides, N. A. Piangos, and Y. Komninos, Phys. Rev.
A 48, 3578 (1993).

[18] C. G. Bao, Few-Body Syst. 13, 41 (1992).

[19] C. G. Bao and W. Y. Ruan, Few-Body Syst. 15, 25 (1993).

[20] C. G. Bao, J. Phys. B 26, 4671 (1993).



