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Hyperspherical coordinates are used to study three-electron atomic systems. Within the adiabatic
approximation, the Schrédinger equation for the three-electron systems is reduced to a set of partial
differential equations of two hyperangles at each fixed hyper-radius. We restrict ourselves in the
present paper to the configurations where the orbital angular momentum of each electron is zero.
The adiabatic potential curves and the associated wave functions are obtained. We identify potential
curves associated with singly, doubly, and triply excited states and analyze the nodal structure of
the associated wave functions with respect to the two hyperangles.

PACS number(s): 31.10.+z, 31.15.Ja, 32.30.—r, 32.10.—f

I. INTRODUCTION

Microscopic physics is traditionally studied starting
with the independent particle model where the motion of
each particle is governed predominantly by the mean field
of all the other particles. The early observation of doubly
excited states in helium by Madden and Codling [1] in the
1960s revealed the limitation of this simple picture. In
the past three decades, different new approaches [2] have
been proposed which were aimed at studying doubly ex-
cited states of two-electron atoms with a departure point
different from the independent electron model. One of
the approaches is to employ hyperspherical coordinates
[3]. Over the years, the hyperspherical approach has been
used to analyze electron-electron correlation for different
doubly excited states and, with the adoption of results
from the algebraic approach [4], to provide a complete
classification scheme for these states [5]. In recent years,
the implementation of the hyperspherical close coupling
method [6] illustrates that this approach is capable of
performing accurate calculations for any parameters for
two-electron systems such as photoionization cross sec-
tions and resonance positions and widths. The method
is particularly powerful when many channels are open
where other approaches are more difficult to implement.

An obvious question is whether the hyperspherical ap-
proach can be extended to many-electron systems. In
atoms, when only one electron is excited, the indepen-
dent electron model or the Hartree-Fock model is still
mostly adequate. When two electrons are excited in a
many-electron system, it is desirable to reduce the prob-
lem to an effective two-electron system which can then be
treated in hyperspherical coordinates as in helium atoms
[7]. On the other hand, when three or more electrons are
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excited, new approaches are needed. In this paper we
show results of applying hyperspherical coordinates to
the prototype three-electron system, Li, where the com-
plete spectra, including singly, doubly, and triply excited
states, are to be addressed at the same time.

The application of hyperspherical coordinates to n-
electron systems has been addressed formally [8]. How-
ever, few actual calculations have been carried out. In
their pioneer attempts, Clark and Greene calculated the
hyperspherical potential curves for three-electron sys-
tems within two angular momentum configurations, s3
[9] and s2p [10], respectively, by using the hyperspherical
harmonics as the basis functions. Another early calcu-
lation of the potential curves for He™ of 4P¢ symmetry
was given by Watanabe, Dourneuf, and Pelamourgues
[7] employing a basis of optimized Slater-type functions.
These preliminary results were briefly reviewed in Ref.
[11] and they showed qualitatively that the hyperspheri-
cal potential curves could be sorted into the groups sup-
porting singly, doubly, and triply excited states, respec-
tively. However, they were not accurate enough for a
quantitative investigation. Therefore, the power and the
merit of the hyperspherical approach was partially lost.

In order to achieve accurate quantitative results using
the hyperspherical approach for three-electron systems,
it is thus necessary to develop new numerical approaches.
A direct numerical method to obtain the potential curves
has been formulated recently by Bao and Lin [12] (this
reference is shortened as BL hereafter). They reduced the
problem to a set of partial differential equations in two
hyperspherical angles which have the proper exchange
symmetry for solutions with well-defined total spin and
total orbital angular momentum quantum numbers, as
well as parity.

In this paper we present first numerical results from the
solution of the differential equations given in BL, limiting
ourselves initially to the configurations where the angular
momentum of each electron is zero. A brief outline of
the method is presented in Sec. II, where the coordinate
system and the numerical method are discussed. In Sec.

2029 ©1995 The American Physical Society



2030

I1I, the adiabatic potential curves and the singly, doubly,
and triply excited states associated with these curves are
discussed. The nodal structure of the associated wave
function for each potential curve and the major features
that distinguish singly, doubly, and triply excited states
are discussed in Sec. IV. Finally, some remarks in Sec.
V conclude this paper.

Triply excited states of atoms have increasingly gained
attention in the past few years [13]. While some individ-
ual triply excited states have been observed over the years
[14], more systematic studies from synchrotron radiation
laboratories are beginning to emerge [15]. In addition to
the prediction of resonance positions and widths for in-
dividual states, a classification scheme for triply excited
states is desired. Such a scheme emerges only after the
nature of electron correlation in three-electron systems is
understood. We do not expect such a scheme to emerge
immediately, but the present approach is an effort toward
such a direction.

II. HYPERSPHERICAL TREATMENT FOR
THREE-ELECTRON SYSTEMS

In this section, we briefly outline the hyperspherical
formulation for three-electron systems. Atomic units are
used throughout this paper unless explicitly stated oth-
erwise.

The simplest hyperspherical coordinates for a three-
electron atomic system is defined by replacing the radial
distances of the three electrons, 71, 72, and r3, by a hyper-
radius R and two hyperangles, a; and as,

r1 = Rsinajcosas,
ro = Rsina;sinas, (1)

r3 = Rcosay,

where 0 < R < oo and 0 < ay,2 < 7/2. In this coor-
dinate system, R represents the size of the atomic sys-
tem. The two angles, a; and a3, measure the relative
distances of the electrons from the nucleus and are used
to describe the radial correlation. For the six spheri-
cal angles 7#; (1 = 1,2,3), it is possible to replace them
by three Euler angles which describe the rotation of the
whole atom with respect to the laboratory frame and
three other angles which describe the relative orientation
of the electrons, or in other words, the angular correla-
tion.

The total wave function ¥ of the three-electron system
is written as

U = v /(R*sin® a; cos a; sin a; cos az), (2)

where the prefactor is given by the Jacobian determinant.
The volume element of oy and o is d(cos a)das. The

Schrédinger equation for the three-electron system can

be expressed as

(_15_2+L[TB+W])¢=E¢, (3)
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where T, and W are given by

8?2 7] 1 82
Ty=—| 55+ 20_831__ ——% a3 (4)
daf  sinag 0oy sin? oy Oaj
and
i i 3 2
W=— —3 =— + 2R°V,
sin® @j cos2 @y  sin®a;sin®ay  cos?oy
(5)

respectively. In Eq. (5), V is the Coulomb potential,

Z z 111
V=—<£+—+—)+-—+—+— (6)

I
T1 T2 T3 T12 T23 T31

where Z is the charge of the nucleus and r;; is the sepa-
ration between the two electrons. In this paper, we focus
on the lithium atom for which Z = 3.

We seek to expand the wave function % in terms of
adiabatical channel functions ®,,,

b= Fu.R)2.(R;Q), (7

where Q is the set of all angles (7;, a1, and @) and
®,(R;Q) is the eigenfunction of Eq.(3) at constant
hyper-radius, i.e.,

1
E’RE(TB + W)@, (R; Q) = Uu(R)2u(R; Q) (8)

with p being a channel index. One of the major goals in
the hyperspherical approach is to identify u with a set of
approximate good quantum numbers. However, this can
be done only after the nature of the channel functions is
understood. Note that the prefactor in Eq. (2) and F,(R)
are totally symmetric under the permutation of any pair
of electrons.

Specializing the general formula of BL to the s3 sub-
space (I3 =l = l3 = 0), the channel functions are given
by

@y [(PsX)xo — (PaX)xa] if §=1/2
@y (P2 X)x if §=3/2,

3= (9

where S is the total spin of the three electrons. Notice
that for the doublet case (S = 1/2) the channel func-
tion consists of two intermediate spin terms constructed
by coupling the first two spins into either a triplet
Do = |11 5 2)] or a singlet [xo = |(33)0, % 3)]
state, while a quartet spin function (S = 3/2) has only
one term [x = [(11)1,1;2)]. In Eq.(9), P, is an ele-
ment of the algebra of the S3; group defined in BL and
X = X(R;ai,az) is the radial channel function to be
solved from the Schrodinger equation

1

555 (Te + 2RW)P,X = UP, X, (10)
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where n = 2 for S = 3/2 and n = 3 (or equivalently

n =4) for § =1/2. 2RW is the average of W over the
s3 subspace,

— 1 1 1 1
W=-z [ : ( . ) 4 ]
sina; \sinas cosas cos ay

1 1 1
+— n s
sina; \sinap’ cosas ) _
1 1
sinoy sinag’ cosay J

1 1
+( . , ) (1)
sinajcosaz cosay /

where the subscript “<” represents the smaller of the
two terms in the parentheses. Notice that the repul-
sion between electrons is smoothed out due to aver-
aging over the s subspace. In the limits of a; (a2)
— 0 or m/2, at least one electron is close to the nu-
cleus and :ﬂm electron-nucleus attraction is dominant,
therefore W has steep valleys. Around the region of
ry =1y = r3(az = m/4, cosa; = 1//3), W is very
f’lgt. As we will see in Sec.IV, the shape of the potential

W plays an essential role in determining the structure of
channel functions as R is varied.

We solve Eq.(10) by expanding X in terms of a set
of B splines [16], B} (a1) (i = 1,2,...,N1) and B?(az)
(1 =1,2,...,N;), of order K (=9) in the region (0,7/2)
on a; and g, respectively; the two-dimensional ba-
sis is constructed as Bi(ai,a2) = B}(a1)B3(az) with
k = k(,7). The size of the basis is N, = N; x N,. Bound-
ary conditions at the two ends of a; and ay are imposed
on the basis functions such that B}(0) = B}(w/2) =
B?%(0) = BZ(w/2) = 0. Note that P,By (k = 1, N,) is the
projection of By onto a subspace satisfying a specified
permutation symmetry. In general, the dimension of this
subspace is smaller than N,. Therefore, not all the pro-
jected functions P, By are independent; it is necessary to
select among them the linearly independent ones.

III. ADIABATIC CHANNEL POTENTIAL
CURVES

Numerical solution of Eq.(10) yields both channel
functions and channel potential curves. Figures 1 and 2
display the channel potential curves U, (R) calculated for
the quartet (S = 3/2) and the doublet (S = 1/2) states
of lithium (Z = 3) within the s® subspace, respectively.

To begin with, the potential curves in the two limits,
R = 0 and R — oo, are easily understood. At R = 0,
Eq. (10) is dominated by T, (“the grand angular momen-
tum operator” [9]) whose eigenvalues are (2J+1)(2J +2)
with J being integers determined by the P, symmetry.
Therefore, in this region, each potential curve behaves
as (2J + 1)(2J + 2)/2R2. In the limit of R — oo, one
electron is far away from the nucleus and the other two
electrons, hence U, (R) must tend to one of the eigenen-
ergies of the residual two-electron Li* system [10]. We
checked our numerical values of channel potentials with

the known eigenenergies for Li* and very good agreement
was found. The convergence of our numerical results for
large R is remarkable and illustrates the importance of
solving the channel functions numerically by using the
more flexible spline functions, rather than by using hy-
perspherical harmonics which are not suitable for large
R. In fact, it was in the large-R region that the calcula-
tions of Refs. [9,10] failed.

We first look at the family of potential curves shown
in Fig. 1(a) for quartet states. The potential curves at
large R are easily identified. As we have mentioned, in
this limit, one electron is far away from the other two and
thus each potential curve approaches one of the eigenen-
ergies of the two-electron Lit ion. Since the spins of
these two inner electrons are parallel for quartet states,
the two-electron states all have 35¢ symmetry. Thus the
lowest curve is labeled 1s2s, which is a shorthand for de-
scribing the 1s2s 35¢ state of Li*. In accordance with the
adiabatic approximation, the eigenenergies obtained by
solving the one-dimensional hyper-radial equation with
this lowest potential can be designated as 1s2sms %S¢
(m > 2) states. This is the Rydberg series converg-
ing to the 1s2s 35° excited state of Lit. Since the Lit
core is excited, these Rydberg states are doubly excited
states. The asymptotic limit of the second lowest po-
tential curve in Fig. 1(a) is clearly designated as 1s3s
38¢, and the states associated with this curve are the
1s3sms %S¢ (m > 3) states.
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FIG. 1. The potential curves for the quartet spin state of
a lithium atom as a function of R. The first members of the
lsns, 2sns, and 3sns families are labeled. The energy region
where the channels support triply excited states is enlarged

in (b).
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By looking at potential curves in the asymptotic re-
gion, we can identify easily the group of curves which
converge to singly excited states of Li*. States asso-
ciated with these curves are doubly excited states of
Li. From Fig. 1(a) these curves at small R show nu-
merous avoided crossings with another family of curves
which tend to approach higher energies in the large R
region. This basic structure has been observed qualita-
tively in the early calculations {7,9,10]. The latter group
of curves converges to doubly excited states of Lit. In
Fig. 1(a) the lowest curve of this group is labeled as 2s3s
38¢. The solutions of the one-dimensional hyper-radial
equation using this potential curve can be designated as
2s3sms 2S¢ (m > 3) states — they are triply excited
states. In Fig. 1(b), we expand the energy region for
triply excited states. The potential curves in the asymp-
totic region can be identified as 2s3s, 2s4s, ..., and then
3s4s, 3s5s, ..., etc. Only the “head” states of the first
two groups, 2s3s and 3s4s, are indicated in the figure.

We discuss next the potential curves for doublet (S =
1/2) states which are shown in Fig. 2. For these states,
the total spin of the two inner electrons can couple to a
singlet or a triplet, thus in the asymptotic region both
the singlet and triplet two-electron states exist. In Fig.
2, the lowest curve reaches the 1s2 limit of Li*. The
lowest eigenstate from solving the hyper-radial equation
using this potential is the ground state of Li while the
higher ones are singly excited states, normally designated
as 1s2ms 25° (m > 1). The next two higher curves in
the asymptotic limit are designated as 1s2s, the lower
one is 38¢ and the higher one is 15¢. These two curves,
and the family of curves just above them, are members
of the group of curves that support doubly excited states
of Li.

Figure 2 also shows another family of curves that con-
verge to the higher energy limit in the asymptotic region.
These curves support triply excited states. The lowest
curve approaches the 2s? 15¢ state of Li* in the asymp-
totic region. Similarly the next two curves approach the
2s3s 1:35¢ limits, with the triplet state being the lower
one.
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FIG. 2. The potential curves for the doublet spin state of
a lithium atom as a function of R. The lowest channels which
support singly, doubly, and triply excited states, respectively,
are highlighted.
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Therefore, within the s configuration, each poten-
tial curve can be designated using the quantum numbers
Nsns (n > N) that describe the two-electron states in
the asymptotic region. From Figs. 1 and 2, it is clear that
curves with identical N do not cross with each other.
Avoided crossings can be seen among the curves with
different N’s which make the potential curves appear to
be very complicated. These avoided crossings, on the
other hand, are all very sharp. Similar to the curves in
the two-electron systems, these avoided crossings will be
treated as diabatic crossings in the first order approxi-
mation, thus each potential curve is a smooth function
of R. As we will see in the next section, this diabatic
ansatz also preserves the nodal structure of the channel
function as R is varied.

IV. NODAL STRUCTURE OF CHANNEL
FUNCTIONS

In order to identify approximate quantum numbers to
describe the radial correlation (and angular correlation in
the future) of the three-electron systems, it is desirable
to display the channel wave functions. However, for the
three-electron system, this is not simple. From Eq. (9)
we note that the channel function for the doublet states
(S = 1/2) is the sum of two product terms such that
the spatial wave function cannot be separated from the
spin function directly. Thus the nodal structure has to
be analyzed for each spin component. For the quartet
states (S = 3/2), the situation is simpler since the spin
and the spatial part are separated. We will concentrate
on the analysis of the nodal structure of channel functions
for the quartet states. For the doublet states the same
analysis can be applied to each spin component.

We first have to decide the domain where the channel
function is to be displayed. In Fig. 3 we show the domain
in terms of oz and cosa;. The rectangle is divided into
six regions, separated by three thick lines. According
to our convention for the two hyperangles, the line F'IB
marks 7, = ra, the curve AID marks ro = r3, and the
curve HIC marks r; = r3. Furthermore, along the four
sides of the rectangle, line ABC is for r3=0, CDE is for

G F E
T T T T T T
r32r1 Zr2
H
§ L
8 r, 2r32r2
O
r, 2r22r3
L L
A

FIG. 3. The domain of 0 < a2 < n/2 and 0 < cosa; < 1.
The line FIB marks r; = r2, the curve AID marks r; = r3,
and the curve HIC marks r; = r3.
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r1=0, AHG is for ro=0, and GFE is for r{ = r5=0. The
relative magnitude of the distances of the three electrons
in each region is as shown.

Figure 4 displays the contour plots of the channel func-
tion of the lowest potential curve (u = 1) of Fig. 1(a) at
three values of R. For quartet states, the spin part is to-
tally symmetric, thus the spatial part is totally antisym-
metric. Therefore all the quartet state wave functions
should vanish along the three thick lines. These plots
demonstrate that we need to consider the wave function
in only one of the six regions, say ABI of Fig. 3. This is
entirely expected since the three electrons are equivalent;
the wave function in any one of the six regions character-
izes the whole wave function. Figure 4 also shows that the
nodal structure of the channel function does not change
with the value of R, except that the wave function moves
closer to the boundaries of the rectangle as R increases
since it is the region where the potential is more negative.

We pause at this point to mention that the three thick
lines in Fig. 4 set the boundaries due to the particle ex-
change symmetry. The fact that two of these lines are
curved while one is a straight line is due to the choice
of hyperspherical angles adopted in our approach. A
more “democratic” choice of the coordinate system would

FIG. 4. The contour plot of the channel function for the
lowest potential curve (1 = 1) at different values of R. It is
also labeled as the 1s2s channel. The solid lines are given by

Ty =72, 72 =73, and r; = r3.

make the boundaries simpler, but other complications
such as exchange symmetry and the asymptotic limits
become more complicated. This will be a subject of fur-
ther study in the future.

In Fig. 5 we compare the nodal structure of the chan-
nel functions associated with the 1s2s, 1s3s, and 1s4s
channels (shown only in the ABI region of Fig. 3, where
ry > 72 > r3). If one can use the independent elec-
tron picture, the three-electron wave functions are to be
designated as 1s2sms (m > 2), 1s3sms (m > 3), and
1s4sms (m > 4). In the hyperspherical approach, the
nodal structure of the outermost electron is contained
in the hyper-radial wave function, thus the nodal struc-
ture in the channel function reflects the nodal structure
of the two inner electrons. For the 1s2s, 183s, and 1s4s
sequence, the innermost electron is 1s. In the domain
shown in Fig. 5, this means that the wave function in r3
is a 1s wave function. Since r3 = Rcosa;, this means
that there is no node along the horizontal direction in
Fig. 5. In going from 1s2s, 1s3s to 1s4s, the second
electron r; acquires a new node for each higher chan-
nel and this nodal line is approximately represented by
as = const. Thus the channel functions for potential
curves that support doubly excited states of Li acquire

o

0

FIG. 5. The contour plots of the channel functions for
the first three channels of the 1sns family on the domain of
1 >712 > 713 1s2sat R=3 (p =1), 1s3s at R =4 (p = 2),
and 1s4sat R=5 (u = 3).
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more and more approximately vertical nodal lines as the
second innermost electron is more excited.

We next consider the channel functions for those states
which converge to doubly excited states of Li*. The as-
sociated states are triply excited states, which according
to the independent electron picture can be designated
as 2s3sms (m > 3), 2s4sms (m > 4), ..., and 3sdsms
(m > 4), 3s5sms (m > 5), ..., etc. The contour plot of
the electron density for the lowest few of these channels
is shown in Fig. 6. Since the innermost electron now also
acquires nodes, horizontal nodal lines appear. Thus for
233s there is only one horizontal nodal line, and for 2s4s
an additional vertical nodal line appears. For 3s4s, two
horizontal nodal lines appear, and for 3s5s an additional
vertical nodal line emerges. Note we use vertical or hori-
zontal lines only in an approximate way. We do not mean
to imply that they are straight lines.

Within the approximation adopted in the present pa-
per, we thus see how the channels are characterized in
terms of the nodal structure of the channel functions.

V. CONCLUDING REMARKS

We have studied the hyperspherical potential curves
and the channel wave functions of Li within the sub-
space of [y =l = I3 = 0. The properties of both channel
potential curves and channel functions show that they
can be classified by the nodal lines in the two hyperan-
gles which in turn can be explained approximately by the
independent particle quantum numbers. These quantum
numbers group the channel potential curves into different
families and the sharp avoided crossings between curves
of different families can be treated diabatically. Fur-
ther calculations including mixing of different (1, l2, l3)
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3s4s: R=16.1

3s5s:

R=18.8

COS (o)

==

FIG. 6. The contour plots of the channel functions for the
first two members of the 2sns family and the 3sns family on
the domain of 7y > r2 > r3: 283s at R = 5 (p = 4), 2s4s
at R="7.5 (p=7), 3s4s at R = 16.1 (. = 16), and 3s5s at
R =188 (u = 20).

subspaces are underway, which indicates that the group
structure among the channel potential curves remains
and the results will be discussed elsewhere.
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