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The hyperspherical close coupling method for general Coulomb three-body systems is used to
examine e~ + H, et + Ps, and e* + H collisions to investigate how the excitation cross sections and
resonances depend on the masses, the charges, and the quantum statistics of the system. Hyperspherical
potential curves are used to help unravel the nature of Feshbach resonances, shape resonances, and

overlapping resonances in these systems.

PACS numbers: 36.10.Dr, 32.80.Dz, 34.50.—s

In nonrelativistic quantum mechanics, the solution of
the Schrodinger equation for a Coulomb two-body system
is well known. However, much less is understood for
Coulomb three-body systems. While many theoretical
approaches have been successful for treating special
subsets of Coulomb three-body systems, there is no well-
established method for addressing the general problems.

In this Letter we compare the inelastic scattering cross
sections and analyze resonances in e~ + H, et + H,
and ¢~ + Ps collisions to illustrate how the properties
of these systems vary with the charges and the masses.
Among the three systems, the first and the third each
contains two identical fermions, while the second consists
of three distinguishable particles. For H™ and Ps~,
we note that the two-body systems, H and Ps, differ
only in the reduced mass where the energy levels and
lengths can be appropriately scaled. Furthermore, the
calculated ground state energy of H™ is —1.05550 Ry
(assuming the mass of the proton is infinity), and of Ps™
is —0.52401 Ry. By removing the reduced mass factor
0.5 for the latter, the total ground state energies of the two
systems differ by about 0.7%.

In view that the experimental data for these systems
are incomplete, we perform the analysis based on results
obtained using the hyperspherical close coupling method
(HSCC) which can be applied to any Coulomb three-body
systems [1—-5]. When comparison is possible, it is shown
that numerical results obtained using the HSCC method
are in good agreement with variational calculations. Thus
results from the HSCC method for different systems are
believed to be accurate enough to address even the small
differences found in the calculations.

The basic idea of the hyperspherical close coupling
method is very simple. Denote the three-body system as
ABC. From the two vectors, Fap and rapc, where the
former is from A to B, and the latter is from the center
of mass of A and B to C, one can define a hyperspherical
radius R and a hyperangle ¢. In the HSCC method, the
total wave function is expanded in the form

VR, Q) =D FuR)P,(R: Q), (1
I

2296 0031-9007/95/75(12)/2296(4)$06.00

where ) denotes (¢, ap, Papc) collectively and
®,(R;()) is the adiabatic “channel" function obtained
by solving the three-body Schrodinger equation at fixed
values of R

HlR:consch,u,(R;Q) = U}L(R)(D,U.(R;Q)' 2)

The potential curves U, (R) obtained in (2) are used to
identify different channels in each collision system. In the
asymptotic limit, each potential curve U, (R) approaches
one of the well-known two-body excitation thresholds.

In actual calculations the adiabatic approach outlined
above is slightly modified. The more accurate HSCC cal-
culation employs the so-called diabatic-by-sector method
where in the inner region the hyperradius is divided into
many small sectors. Within each sector, the basis functions
are fixed, and are chosen to be the adiabatic functions (2)
calculated at the midpoint of the sector. The resulting set
of hyperradial equations is integrated over the sector until
the boundary where it is expanded in terms of basis func-
tions of the next sector. This procedure is continued until
it reaches a large hyperradius where the resulting solutions
in hyperspherical coordinates are matched to the solutions
in the asymptotic region expressed in independent particle
coordinates. The matching provides the K matrix which
is used to obtain scattering cross sections. The detailed
method is described in Ref. [4], although some numerical
procedures have been modified in the present calculation in
order to obtain accurate potential curves at large R. Fur-
thermore, the independent particle wave functions in the
outer region used are dipole states to account for the long-
range interaction when the core is in the hydrogenlike ex-
cited states. The outer matching radius was chosen to be at
250 a.u. in the calculation. We used about 20—40 chan-
nels in the close coupling calculation and the results are
very stable against variation of the matching radius.

In this Letter we show results for L = 0 states only,
emphasizing the comparison among the three systems
mentioned above. The results for nonzero angular mo-
mentum states will be presented in the future.

At first, the ground state energies for H™ and Ps™
from the present restricted calculation were found to
be —0.52779 and —0.26205 a.u., respectively, in good
agreement with the well-known data —0.52775 and
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FIG. 1. Comparison of attractive adiabatic potentials vs hy-

Ferradius below the N = 2 threshold. The solid line is for
¢H~. The dashed line is for L = 0 states of the e™ + H
system converging to the H(N = 2) threshold. The dotted line
is for 'S¢ states of Ps™ where the potential has been multiplied
by 2 and the hyperradius reduced by a factor of +/2 in order to
account for the smaller reduced mass for Ps.

—0.26200 a.u. There is no stable ground state for the
et + H system. We then proceed to analyze the three
systems at energies near and above the N = 2 excitation
threshold. In order to compare Ps~ with the other two
systems on an equal footing, we remove the reduced mass
factor by multiplying the energy scale by 2 and reduce the
hyperradius by a factor of /2.

(i) Resonances below the N=2 threshold.—The lowest
L = 0 potential curves from each system that converge
to the N = 2 threshold are shown in Fig. 1. For H™ and
Ps™, these curves support singlet S states. Because of the
2s-2p degeneracy for two-body Coulomb systems, each
curve approaches the limit following a dipole potential
—a /R? where « is the permanent dipole moment. On the
other hand, the potential at small R is drastically different
if the system has two identical particles, as shown by the
deep attractive potential wells for H™ and Ps™. Also note

TABLE L.

that the potential curves for these two systems are very
similar after being rescaled by the reduced mass.

The potential curves in Fig. 1 allow for an estimate
of the positions of resonances. However, more accurate
calculations can be carried out using the HSCC method.
The results for the first two Feshbach resonances in each
of the three systems are shown and compared to those
from other methods in Table I [6,7]. It is clear that the
positions and widths obtained using the HSCC and those
from the variational methods [6] are in good agreement.
In Table I we also show results from the other earlier
hyperspherical calculation performed by Sadeghpour [8].
His approach differs from ours in that he used adiabatic
hyperspherical basis functions for the inner region and
that his method is applicable only to one-centered atomic
systems such as H™. His calculations using a smaller
basis set are also in reasonable agreement with ours for
the two states shown. In Table I, it is also clear that the
lowest states of H™ and Ps™ have much lower energies,
reflecting the effect of Pauli exclusion principle. For these
states, the two electrons tend to stay on opposite sides of
the positive charge and at about the same distances from
it, resulting in a smaller Coulomb repulsion between the
two electrons and thus lower binding energies. (This is
also reflected in that there is always at least one stable
bound state for a three-body Coulomb system if it contains
two identical particles [9]. If all the particles are different,
there is a restricted range of masses where bound states
can exist [10].) For the e™ + H system, the positron
in the lowest Feshbach resonance state tends to stay far
away from the proton; it is bound essentially only by the
attractive dipole field of the excited H atom.

The HSCC method solves the three-body Schrodinger
equation directly. Unlike the complex coordinate rotation
method [6] which is very useful primarily for studying
resonances, the HSCC approach gives full details of
inelastic scattering cross sections over the whole energy

Comparison of 1§¢ resonances in H ™, Ps~, and in L = O states in e + H below

the N = 2 threshold [for e* + H, below H(2)]. Each resonance is expressed as (—Eg,1'/2)
where E is the resonance energy and I' is the width in Rydberg units. For Ps~, both the
energies and widths have been multiplied by 2 to account for the scaling due to the reduced
mass in Ps. The results from the present calculations are shown without the superscript in

each entry.

H-

Ps™ et + H

1 (0.29743, 1.7373)
(0.29755, 1.7373)
(0.29743, 1.7573)¢
2 (0.25203, 9.165)
(0.25201, 9.555)¢
(0.2509, 11.475)°

(0.30416, 8.7075)
(0.30412, 8.6075)®

(0.25470, 1.7573)
(0.25460, 2.0075)®

(0.25731, 6.647)
(0.25725, 6.66%)°

(0.25030, 3.91°°)
(0.25017, < 1.0075)°

2Ho [6(a)].

YHo [6(b)].

¢Ho [6(¢)].

dpathak, Kingston, and Berrington [7].
¢Sadeghpour [8].
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FIG. 2. L = 0 partial wave contribution to H(2s) and H(2p)

excitation cross sections in e” + H scattering. The solid line
is for H(2s) and the dashed line is for H(2p). The arrows
along the horizontal axis indicate the inelastic thresholds. The
thresholds are Ps(N = 2), H(N = 3), and H(N = 4) in the
order of increasing energies.

region. In Fig. 2 we show the cross sections for excitation
to 2s and 2p states of H in e* + H collisions. The
cross sections are quite small and rise rapidly with
energies. They are also marked by numerous Feshbach
resonances below each higher threshold (see below).
These thresholds are indicated by arrows in Fig. 2; they
are Ps(2), H(3), and H(4), respectively, in the order
of increasing energies. Another calculation for these
excitation cross sections used the close coupling method
in momentum space [11]. Although their cross sections
are very close to ours, the resonance positions are about
30% higher than ours as measured from the threshold.
The HSCC method has also been used to calculate 'S¢
excitation cross sections to the N = 2 states for the other
two systems. For e~ + H, both 2s and 2p excitation
cross sections calculated are relatively energy independent
and are in agreement with other calculations and with
the recent results of Wang and Callaway [12] where the
Schrédinger equation was solved in a numerical grid. For
excitation to the 2s and 2p states of Ps in e~ + Ps
collisions, the cross sections are also relatively energy
independent.

(ii) Resonances near the N=3 threshold.—In Fig. 3 we
show the two lowest potential curves for 'S¢ states of
H™ and of Ps™, and the lowest curve for L = 0 states
of e + H. The lowest curve of each system has a
similar shape as the corresponding one below the N = 2
threshold. On the other hand, each of the upper curves
of H™ and Ps™ has an attractive well at small R and a
repulsive potential barrier at large R. Depending on the
strength of the potential well, resonances associated with
such a curve can lie either below or above the threshold.

We have performed HSCC calculations to locate res-
onances in the energy region near the N = 3 threshold.
The results are listed together with those from other calcu-
lations in Table II. For H™, we have found that the energy
positions of the first, second, and fourth resonances follow
reasonably well the scaling relation expected from a dipole
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FIG. 3. Comparison of attractive potential curves vs hyper-
radius below the N = 3 threshold. The two solid lines are
for 'S¢ states of H~. The two dotted lines are for 'S¢ states
of Ps~, with the scaling as explained in Fig. 1. The avoided
crossing near R = 17 should be treated diabatically. The only
dashed curve is for the L = O states of e™ + H. Other be-
longing to this manifold are repulsive and are not shown.

potential, namely, that successive resonances follow the re-
lation €, /€, = ¢ 2™/B where B = Ja — 0.25, with
being the permanent dipole moment from the lowest curve
and that energy € is measured from the threshold. The
third resonance does not follow the scaling pattern and it
is attributed to be associated with the second H™ curve in
Fig. 3. The same analysis for the first four resonances for
Ps™ indicates that they follow the relation expected from
the dipole potential of the lowest curve. By carrying out
a scattering calculation for ¢~ + Ps collisions above the
N = 3 threshold, there a shape resonance was found and
we interpret it to be associated with the second potential
curve of Ps™. Table II also shows that resonance param-
eters obtained using HSCC are in good agreement with
variational results [6].

(iii) The overlapping resonances near the H(N=4)
and Ps(N=3) thresholds.—For the e™ + H system, the
H(N = 4) and the Ps(N = 3) thresholds lie at 0.9375
and 0.9444 Ry from the ground state of H, respectively.
The two thresholds are so close that resonances associ-
ated with the two limits may interact with each other. In
Fig. 4 we show the two lowest curves from each thresh-
old and we note that the lowest curve from Ps(N = 3)
indeed lies below the H(N = 4) threshold in the region
where the potential curve is near the minimum. More
importantly, Fig. 4 indicates that the lowest curve from
each threshold interacts with each other strongly, showing
a pronounced avoided crossing at R = 100 a.u. Such an
avoided crossing may modify the spectral behaviors from
those expected out of a single isolated potential curve.

We have carried out HSCC calculations in the
energy region below the H(N = 4) threshold and iden-
tified four resonances. The positions and half-widths
(=E,,T'/2) (in rydbergs) of the lowest four resonances
obtained are (0.077100,4.767°), (0.067902,4.7877),
(0.064625,1.6373) and (0.063725,4.887°), in good
agreement with the variational results of Ho [6]. By
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TABLE II. Camparison of 'S¢ resonance in H~, Ps~, and in L = O states in e™ + H below
the N = 3 threshold [for e* + H, below H(3)]. Format is the same as in Table I.

Ps™

et + H

0
1 (0.13798, 1.4273)
(0.13801, 1.4273)¢
2 (0.115593, 3.07°4)
(0.115563, 3.08 4)¢
3 (0.112262, 9.137%)
(0.112277, 8.2075)d
4 (0.112012, 5.065)

(0.112013, 4.5075)d

(0.14142, 1.487%)
(0.14137, 1.574)
(0.11945, 1.04™%)
(0.11938, 1.174)

(0.11610, 6.16°%)
(0.11606, 6.274)°
(0.11210, 1.307%)
(0.11206, 1.4-4)®

(0.11322, 2.507%)

(0.11162, 1.0775)

Shape (0.11102, 1.00™%)
(0.1109, 8.475)°

aHo [6(b)].

®Ho [6(c)].

‘Ho [6(e)].

dHo [6(f)).

analyzing the relative resonance positions, €,+1/€,, we
found that they do not follow the expected scaling from
a single dipole potential. The relative widths, which are
to scale like the relative energy positions for a dipole
potential, also display no simple regularity among the four
resonances. We interpret this irregular sequence as the
result of channel coupling between resonances associated
with two different thresholds. Such interchannel coupling
can result in modulation in the spectral intensity, as seen
experimentally in He above the N = 5 threshold [13].
In the present et + H system, the coupling is between
resonances associated with channels from two different
dissociation arrangements.

In summary, we have shown that the hyperspherical
close coupling method can be used to obtain accurate
results for any Coulomb three-body systems. From the
adiabatic potential curves, the nature of resonances and
inelastic scattering cross sections for the three elementary
systems, H™, Ps™, and ¢~ + H, has been analyzed
simultaneously. The analysis reveals that the existence
of two identical particles tends to make the three-body
Coulomb systems more bound. We further examine the
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FIG. 4. Attractive potential curves that converge to the
H(N = 4) and Ps(N = 3) thresholds for the L = 0 states in

+

e’ + H system.

fine dependence of resonance positions on the masses in
the system, and show that the HSCC method is a powerful
approach for studying reactive scattering in three-body
Coulomb systems. It is worthwhile also to mention
that the hyperspherical approach can be applied to non-
Coulombic three-body systems, as demonstrated recently
in the study of the role of three-body collisions in Bose-
Einstein condensation [14].
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