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Mean-lifetime calculations of the metastable doubly charged NeAr?* rare-gas dimer

Z. Chen, 1. Ben-Itzhak, and C. D. Lin

James R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506

W. Koch

G. Frenking
Fachbereich Chemie, Universitdt Marburg, Hans-Meerweinstrasse, D-35032 Marburg, Germany

I. Gertner and B. Rosner
Department of Physics, Technion, Haifa 32000, Israel
(Received 29 October 1993)

The energies and mean lifetimes of the different vibrational states of the =" electronic ground state of
NeAr?* have been calculated using the phase-shift technique. An efficient searching method for these
narrow resonances was developed. The calculated lifetime of the v =12 vibrational state is in reasonable
agreement with the experimental value of 275125 nsec, reported recently by Ben-Itzhak, Gertner, and
Rosner [Phys. Rev. A 47, 289 (1993)], while the lifetimes of other states are more than three orders of
magnitude off, thus determining the long-lived vibrational state detected unambiguously. From the
difference between the calculated and measured mean lifetime, we have estimated that the potential
curve of this 26-electron system is accurate to a few meV. We have also performed ab initio calculations
of the 23* electronic ground state of NeAr™ and calculated the Franck-Condon factors for the final
vibrational-state distribution of the NeAr?* molecular ion produced in the NeAr* charge-stripping col-
lisions in order to estimate that high vibrational states are indeed produced in the experiment. We have
also examined the validity of the WKB method for calculating the lifetimes of highly excited vibrational
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states.

PACS number(s): 31.50.+w, 34.50.Gb, 35.20.Wg, 35.80.+s

I. INTRODUCTION

In recent years there has been an increasing interest in
the theoretical and experimental studies of multiply
charged rare-gas dimers. These molecular ions have
bound states and metastable states despite the fact that
the rare-gas atoms do not react chemically. The two-
electron He,”>* molecular ion has been discussed theoreti-
cally already in the 1930s by Pauling [1]. Since the first
observation of the metastable electronic ground state of
this molecular ion by Guilhaus [2], it has been followed
by extensive experimental [3-5] and theoretical [6—10]
works. The mean lifetimes of the different vibrational
states of this metastable electronic state of He,>" have
been calculated using the amplitude [8] and WKB [9-10]
methods, but no measurements have been reported so far.
A few long-lived many-electron doubly charged rare-gas
dimers have been discovered experimentally [11-14] and
their mean lifetimes were estimated from their flight time
through the experimental setup. The experimental evi-
dence is insufficient to identify specific states observed.
Theoretical calculations of some of these molecular ions
[15-17] provide some insight about the possible long-
lived states, but given the scarce experimental data, these
states cannot be determined conclusively. Some theoreti-
cal calculations predict the existence of other long-lived
doubly charged rare-gas dimers which have not yet been
detected. For example, Ackermann and Hogreve pre-
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dicted that Ar,*" is metastable in its ground state [18].

Very recently, Ben-Itzhak, Gertner, and Rosner re-
ported the production of NeAr’™ [19] in 0.9-MeV
charge-stripping collisions in Ar gas. Furthermore, the
mean lifetime of this molecular ion was measured direct-
ly. This measured mean lifetime can be calculated if the
electronic potential curves of the molecular ion under
consideration is known. Following the measurement,
Koch, Frenking, and Gobbi [20] have performed ela-
borate ab initio calculations of the '=" electronic ground
state of NeAr?*" and found a rather deep local minimum,
shown in Fig. 1. These theoretical calculations indicate
that the measured long-lived NeAr’t was most likely
produced in its metastable electronic ground state. Their
mean-lifetime calculations for the different vibrational
states using the WKB approximation are, however, or-
ders of magnitudes off the experimental value. The
discrepancy makes one doubt whether the long-lived
state of NeAr?™' has been successfully determined.

One may address this discrepancy differently. Com-
paring the mean lifetimes, calculated for tunneling out of
the '=7 potential, to the experimental mean lifetime of
NeAr?t, one can determine the precision of the calculat-
ed potential curve and the vibrational levels bound in it.
The vibrational states of the metastable 'S electronic
ground state of this molecular ion dissociate by tunneling
through the potential barrier. In the commonly used
WKB approximation the tunneling rate is given by
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FIG. 1. Potential curves for the =% and !'3% electronic
ground states of NeAr® and NeAr?", respectively (notice the
different energy scale used for each potential curve). Represen-
tative vibrational levels and wave functions are also shown.

A=f,exp

where f, is the vibration frequency, u is the reduced
mass of the molecule, V' (R) is the potential energy, E, is
the vibration energy, and a and b are classical turning
points. The tunneling rate is extremely sensitive to the
exact value of V(R)—E, because they appear in the ex-
ponent, especially for molecular ions with a large reduced
mass. The fact that the mean lifetime was measured with
an accuracy of about 10% (275125 nsec [19]) sets a
stringent test on the precision of V(R)—E,. We will
show in this paper that mean-lifetime measurements and
calculations of metastable molecular ions can be used to
probe the precision of structure calculations of molecular
potential curves.

In this paper we report our calculations of the energies
and resonance widths of the vibrational states bound to
the metastable ! electronic ground state of NeAr?™.
The mean lifetime of the v =12 vibrational state is in
reasonable agreement with the measured value while the
other states are more than three orders of magnitude off.
The phase-shift method used for these calculations of ex-
tremely narrow resonances is described in Sec. IIA. We
have also performed ab initio calculations for the poten-
tial curve of the 237 electronic ground state of NeAr*
(Table I), which are described in Sec. IIB. The vertical
transition rates from the 237 state of NeAr™ to the '=%
state of NeAr?* caused by the collision were evaluated in
Sec. II C in order to determine the final population of vi-
brational states of the NeAr?". In Sec. III we compare
our mean-lifetime calculations to the measured value and

~2v2u ['dRVVR-E, |, (1)
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TABLE I. Total energies of the X 2= and X '3 electronic
ground states of NeAr" and NeAr?*, respectively. D is the
multireference analog of the Davidson correction to the MRCI
total energies (see Ref. [20]).

E(MRCI+D) (a.u.)

R NeArt 23+ NeAr2*t 13+
(a.u.) (this work) (Ref. [20])
24 —654.918 61
2.5 —654.292 87
2.6 —655.088 94
2.7 —654.37035
2.8 —655.203 87
29 —654.409 87
3.0 —655.278 74
3.1 —654.427 26
32 —655.32577 —654.43078
33 —654.43199
34 —655.35428 —654.43152
35 —654.429 86
3.6 —655.37093
3.7 —654.424 40
3.8 —655.38025
39 —654.417 82
4.0 —655.38516 —654.41454
42 —655.38753 —654.408 68
44 —655.38848
4.5 —655.388 63 —654.40303
4.6 —655.388 65
4.7 —655.38858 —654.402 18
4.8 —655.38845
4.9 —655.38827
5.0 —655.38807 —654.404 08
5.2 —655.387 64
5.5 —655.38699
6.0 —655.38608 —654.422 89
7.0 —655.38491
8.0 —655.384 31 —654.47108
10.0 —655.383 88 —654.496 66
20.0 —654.544 45
100.0 —654.585 86
© —655.388 34 —654.595 86

to the commonly used WKB calculations. Atomic units
are used throughout this paper (unless units are
specified).
II. THEORY
A. Phase-shift method

For a single electronic state problem, given the Born-
Oppenheimer potential, the resonance energy and width
of the vibrational state can be obtained precisely by cal-
culating the elastic scattering phase shift as a function of
energy. Using this method, we first solve the Schrédinger
equation

1 d?

_ 1(1+1)
2u dR?

iR +V(R)—E |¢,(R)=0 (2)
m

numerically, where V(R) is the ground-state potential
curve of the NeAr?". This potential has a deep well, but
becomes repulsive at large R where it dissociates into
Ne* +Ar*. The solution of this radial equation has an
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asymptotic form

¥,(R)~sin kR—%ln(ZkR)—%l-Hr,-i-n(E) 3)

at large R, where o, is the Coulomb phase shift and 7(E)
is the phase shift due to the deviation from the Coulomb
potential. The resonance energy and width can be ob-
tained by fitting the phase shift in the following form:

r/2

E‘-—Tr ) 4)

7(E)=n,+tan !
where 7, depends weakly on E near the resonance and
can be taken as constant, E, is the resonance energy, and
I' is the width.

The major difficulty in this procedure lies in locating
the resonance. The typical energy widths are of the order
of 107'% a.u. or less. For a given potential, a good esti-
mate can give resonance energy as close as 10™* a.u.
This means that millions of trials are needed just to locate
the resonance unless a better procedure is found.

In Fig. 2 we plot the radial wave functions for several
energies near the v =12 vibrational resonance state, the
energy of which is finally determined to be
E,_,=0.1907534725 a.u. The solid lines represent
wave functions with energies below the resonance and the
dashed lines represent wave functions with energies above
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the resonance. The approximate positions of the reso-
nances are first estimated by, say, the finite difference
method, by assuming that the resonance is bound by the
inner potential well only. This is done by setting the
value of the potential to the top of the potential barrier
for all the R’s beyond the top of the barrier. This pro-
cedure allows us to approach the resonance positions to
within about four-digit accuracy for each given potential.

The next task is to locate the resonance to high accura-
cy. A ‘“standard” approach would be simply to calculate
the phase shifts at energies near the estimated position.
This method is not practical since the width of the reso-
nance for the present system is of the order of 107'° a.u.
One thus needs to find an efficient method to narrow the
intervals considerably. Furthermore, one would like to
avoid calculating the phase shifts directly since this
would require the integration of the differential equations
to a much larger R value in the asymptotic region where
the potential becomes Coulombic.

The method we developed for searching for the narrow
resonances is as follows. First, we use two energy points
near the estimated resonance position and integrate the
differential equation to some points beyond the outer
classical turning point. We focus on the wave function in
the classical forbidden region. As an example, we show
in Fig. 2(a) the two wave functions, one below and one
above the resonance. If the energy is below the reso-
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FIG. 2. The vibration wave function ¥,(R)
calculated by the phase-shift method (solid

lines represent energies above the resonance
and dashed lines represent energies below).
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nance, its wave function in the classical forbidden region
(the two classical turning points are marked by short
thick vertical dashed lines) should exhibit no node. Actu-
ally the derivative of the wave function should vanish at
some point within this interval. If the energy is above the
resonance, its wave function should have a node within
the classical forbidden region. This feature of the wave
functions in the classical forbidden region is expected
since the phase shift has to undergo an increase of 7
across the resonance. This procedure allows one to nar-
row the interval where the resonance is located rapidly by
using the information provided by the relative ampli-
tudes. It has the advantage that one does not need to in-
tegrate the differential equation to the large R region
where the wave function oscillates rapidly. A standard
binary search method can also be used.

When the energy is still far from the resonance (mea-
sured in terms of the width of the resonance), the wave
functions are mostly concentrated in the region outside
the potential barrier, as seen in Fig. 2(a) where the ampli-
tude in the outer region is normalized to one and the os-
cillation inside the potential barrier is of the order of
0.05. As the energies become close to the resonance, the
wave functions in the region inside the potential barrier
become very large, as seen in Fig. 2(b) where we have
normalized the amplitude of the oscillatory wave func-
tion to unity and the wave functions in the inner region
has oscillations with amplitudes of the order of 10*. Once
the resonance region has been narrowed to the order of
its width, the phase shifts can be calculated and the actu-
al position and width are then obtained by fitting to Eq.
(4). One can tell if the two energy points are very close to
the resonance when the approximate phase shifts are less
than 7.

Because of the large reduced mass of NeAr?™, the
wave functions oscillate very rapidly. To make sure of
numerical accuracy, we have used quadruple precision in
integrating the Schrodinger equation. As a test case for
our method we have calculated the mean lifetimes of
He,?" vibrational states with / =0 and compared them to
previous calculations by Babb and Du [8], who have used
the amplitude method. The results from both methods
are in good agreement, as shown in Table II, for example,
for the v =2 vibrational state of *He*He?’'. The
difference between the resonance energies is about 3 meV
(8E /E ~0.03%), while the relative difference in the res-
onance width and mean lifetime are about 15%. The
present phase-shift method is considered to be the more
accurate since the other method uses additional approxi-
mations.
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B. Ab initio calculations of potential curves

The calculation of the potential curve for the 22" elec-
tronic ground state of NeAr™ involved two steps. Oppo-
site to our previous investigation of the '=* electronic
ground state of the NeAr?*t dication [20], the molecular
orbitals were generated by simple restricted open-shell
Hartree-Fock (ROHF) calculations and not through
multiconfiguration self-consistent field (SCF) calculations.
The latter were not necessary since nondynamical elec-
tron correlation is not an issue for the NeArt ground
state. Exploratory calculations revealed that the
Hartree-Fock determinant is by far dominating and that
the occupation numbers of the formally doubly occupied
orbitals is virtually identical to two for all geometries.
Actually, full valence complete active space SCF [21] cal-
culations lead to erratic results, since due to the strongly
occupied orbitals, orbital flipping between the inactive
and the active orbital spaces occur. The one-particle
basis set was a generally contracted Gaussian basis of the
atomic natural orbital type as introduced by Almlof and
Taylor [22]. The exponents and coefficients have been
taken from Widmark et al. [23] and the final basis set in-
cluded 5s,4p,3d,2f and 6s,5p,4d,3f contracted functions
for Ne and Ar, respectively. Since for the construction of
these basis sets the positive atomic ions were also includ-
ed, we expect a balanced description for the NeAr™ cat-
ion. In the second step the ROHF molecular orbitals
were subjected to multireference configuration-
interaction (MRCI) [24] calculations. The reference
space consisted of all electron configurations of the
correct spatial and spin symmetry generated by distribut-
ing 23 electrons (i.e., all but the Ne and Ar 1s electrons)
in the 3-80 and 1-3m orbitals. All single and double re-
placements from the six reference configurations were in-
cluded in the CI, leading to a CI expansion of 1351536
configuration-state functions. The multireference analog
of the Davidson correction [25] was applied to the MRCI
total energies to account for higher than double excita-
tions. All calculations have been performed employing
the MOLCAS—2 program installed on an IBM RS/6000-
computer workstation [26]. The computed D, of 0.13 eV
is slightly larger than our previous result of 0.08 eV ob-
tained using a smaller one-particle basis set and many-
body perturbation theory to fourth order to account for
the dynamical electron correlation [27].

C. Transition rate calculations

The NeAr'+Ar charge-stripping collisions at 0.9
MeV are very fast relative to the nuclear motion. Under

TABLE II. Energy and width of the v,/ =2,0 state of *He *“He’* calculated by the amplitude method

(Ref. [8]) and the phase-shift method (this work).

Amplitude method

Phase-shift method

State Ref. [8]
E (a.u) T (a.u.) T (sec) E (au) I (a.u.) 7 (sec)
v, =2,0 0.354 86 1.49%107° 1.62X1078 0.35474 1.75X107° 1.39x1078




3476

TABLE III. Transition rates from NeAr*(v;) to NeAr** (v,
for v;=0and 1.

Final state Transition probability

Vs T(v;—v,)

v; =0 v, =1
10 0.009 256 0.025514
11 0.026 265 0.054 744
12 0.068239 0.092 753
13 0.184 366 0.088 576

these conditions the transition rates from the 2= state of
NeAr™ to the =7 state of NeAr?* (shown in Fig. 1) are
approximately proportional to the Franck-Condon fac-
tors, i.e., the square of the overlap integral between the
initial and final vibrational wave functions,

Plo—op)= | [ dR (R, (B[ (5)

The vibrational wave functions for the electronic ground
state of NeAr™' were calculated using the finite-difference
method while the ones for the metastable electronic
ground state of NeAr*' were calculated by the phase-
shift method as described in Sec. II A. The overlap in-
tegrals were then evaluated by numerical integration and
the transition rate matrix is shown in Table III for v, =0
and 1. The NeAr' molecular ions that are produced in
the rf source of the Technion Van de Graaff accelerator
are mostly in the vibrational ground state with a small
fraction in the first vibrational excited state. Taking into
account only the NeAr*(v;=0) initial state, the dom-
inant final vibrational states populated are the v =12 and
13 states and the distribution is shown in Fig. 3. The

1 T T T T

0.1+ b

P(v,)

0.01 1 L L .

FIG. 3. Final vibration state population of NeAr?* assuming
vertical transition only from NeAr*(v;=0) and using the
Franck-Condon principle.
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lower vibrational states are practically not populated
since the equilibrium internuclear distance of NeAr™
aligns with the barrier peak position of the NeAr?™, thus
the overlap of the wave functions with low-energy vibra-
tional states is very small.

ITII. RESULTS AND DISCUSSION

A. Comparison with the measured mean lifetime

The mean lifetimes of the highly excited vibrational
states (v>10) of the 'S™ electronic ground state of
NeAr’t, shown in Table IV, were calculated using the
phase-shift method. These mean lifetimes decrease rapid-
ly with increasing vibrational quantum numbers. In fact,
the mean lifetime changes by about three orders of mag-
nitude for each increase in v. Since the measured mean
lifetime is of the order of hundreds of nanoseconds, only
the mean lifetime of the v =12 state is determined. For
v <12, the [ =0 states are essentially stable and for v =13
the state decays immediately.

The very long-lived NeAr?* molecular ions (i.e., 7>>1
usec) have not been seen experimentally [19]. A careful
analysis of the number of NeAr?™ counts as a function of
the distance (Fig. 7 of Ref. [19]) enabled us to set an
upper limit of 10-15% on the fraction of NeAr’™,
which has mean lifetimes much longer than the typical
flight time through the apparatus. This fraction is small-
er than the one estimated by the Franck-Condon princi-
ple and the discrepancy may be attributable to the failure
of the latter. Given the relatively wide range of internu-
clear distances which contribute to the stripping and that
stripping is expected to be more effective with increasing
internuclear distances since the valence electrons become
more delocalized, it is plausible that the failure of the
Franck-Condon principle will result in more favorable
population of higher vibrational states. Any quantitative
discussion can be carried out only if the electronic transi-
tion amplitude D (R) is calculated. If we assume that
the fraction of very long-lived states relative to the total
NeAr?* is the maximum permitted by the experimental
value, then the measured mean lifetime is

T=275"%, nsec , (6)

which is to be compared to the calculated lifetime of 72.5
nsec for v =12 and / =0.

The mean lifetimes discussed above were calculated as-
suming that the rotational quantum number is / =0. For
the heavy NeAr?" molecular ions the dependence of the
mean lifetime on the rotational quantum number is rath-
er weak. In Table IV, the mean lifetimes calculated for a
few v =11,12 and [ >0 are shown. For v =12 and / =15
the mean lifetime decreases by about a factor of 2 as com-
pared to the mean lifetime for / =0 for the same v. The
mean lifetimes decrease with increasing /, thus highly ex-
cited [ states of the lower v states might have mean life-
times comparable with the experimental value. For ex-
ample for v =11, [ has to be about 50, but it is difficult to
believe that such highly excited / states are populated,
especially in a narrow distribution. We mention that the
dependence of the mean lifetime on the rotational quan-
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TABLE IV. Energy and width of the vibration energy levels of NeAr** calculated by the phase-shift
method, the WKB method, and the WKB’ method. The numbers in brackets denote multiplicative

powers of ten.

State WKB method Phase-shift method WKB' method
v,l Energy (a.u.) T (sec) Energy (a.u.) T (au) 7 (sec) T (sec)
10,0 0.0234754 1.33 0.023413 1.30[17] 1.87 1.80
11,0 0.0253178 1.55[—4] 0.025235 8.90[— 14] 2.72[—4] 2.30[—4]

11,10 1.75[—4]

11,20 6.78[—5]

11,30 2.00[—5]

11,40 1 85[—6]

11,50 44[—7]

11,60 7 63[ 9]

12,0 0.027 1040 3.08[—8] 0.026 907 3.34[—10] 7.25[—8] 7.74[—8]

12,10 5.30[—38]

12,15 3.72[— 8]

13,0 0.028 8394 1.08[—11] 0.028 446 3.98[—7] 6.09[—11] 6.33[—11]

tum number is expected to be much stronger for the
lighter molecular ions such as He3™. However, no
mean-lifetime measurement has been reported so far for
the He,?>* molecular ion.

By comparing the calculated mean lifetimes with the
experimentally determined mean lifetime, we are able to
identify the vibrational state of the doubly charged
molecular ions that are produced in the stripping reac-
tion. Although the calculated lifetime is about a factor of
3 shorter than the measured one, this discrepancy is most
likely due to the accuracy of the calculated potential
curve. We will come to this aspect later again.

B. The WKB method
One commonly used method for the evaluation of tun-
neling rates is the WKB method; see Eq. (1). The same
method can be used to evaluate the vibrational energy
levels bound within the potential curve (Table V). The
energy levels are given by

b —
[ dRVUE,—V(R)=(w+1)m, ¥)
a
where a and b are the inner and outer classical turning

TABLE V. Energy and mean lifetime of all vibrational states
(with 1 =0) of NeAr?" calculated by the WKB method. The
numbers in brackets denote multiplicative powers of ten.

State Energy (a.u.) T (sec)
0 0.001 267 30 1.27[55]
1 0.003 761 34 1.02[44]
2 0.006 203 26 2.59[41]
3 0.008 591 83 1.57[35]
4 0.0109214 2.06[29]
5 0.013 188 5 5.52[23]
6 0.0153918 2.88[18]
7 0.0175277 2.85[13]
8 0.019 588 8 5.40[8]

9 0.021569 6 1.97[4]
10 0.0234754 1.33
11 0.0253178 1.55[—4]
12 0.027 1040 3.08[—38]
13 0.028 8394 1.08[—11]

points, respectively. The energy levels calculated by the
WKB method deviate slightly from the ones calculated
by the phase-shift method for states far from the barrier
maximum, as expected. In contrast, significant devia-
tions occur for the highly excited states; see Table IV.
The deviations of the mean lifetimes calculated by the
WKB method are even more significant. For example,
the energy of the v =12 vibrational state, which is our
main interest, is over estimated only by 5.4 meV by the
WKB method relative to the more accurate phase-shift
method. On the other hand, the mean lifetime is off by
more than a factor of 2. In order to check if this large
deviation in the WKB calculation of the mean lifetime is
caused by the decay rate calculation [Eq. (1)] or the rela-
tively small inaccuracy in the energy level, we have car-
ried out WKB’ calculations of the mean lifetimes using
the energy levels calculated by the phase-shift method.
These values are in excellent agreement with the ones cal-
culated by the phase-shift method, as seen from Table IV,
indicating that the WKB method fails mainly because of
insufficient precision of the energy levels. In cases where
the energy levels are known with enough precision an ac-
curacy of about 10% is reasonable for this method. On
the other hand, for highly excited states the small error in
the energy is sufficient to make WKB calculations of
mean lifetimes accurate only within an order of magni-
tude.

As stated earlier, the extreme sensitivity of the depen-
dence of the mean lifetime on the exact values of the po-
tential curve can be used as a powerful tool for probing
the precision of existing molecular structure calculations.
Using the WKB' method, we estimated that if the reso-
nance energy is lower by about 7 meV, then the calculat-
ed mean lifetime will be in good agreement with the mea-
surement. To reach such an accuracy in potential curve
calculation for a 26-electron diatomic molecule is not
trivial, particularly at large internuclear separations.

IV. SUMMARY

The energies and mean lifetimes of the highly excited
vibrational states of the metastable '=* electronic
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ground state of NeAr?™ have been calculated using the
phase-shift method. An efficient searching method for
these narrow resonances was presented. The mean life-
times of the different vibrational states decrease rapidly
with increasing vibrational quantum number and for each
increase of v, the mean lifetime decreases by about three
orders of magnitude. The mean lifetime of the v =12 vi-
brational state (with / =0) is in reasonable agreement
with the experimental value of 275733, nsec [19]. The
difference between the calculated and measured mean
lifetime indicates that the potential curve of this 26-
electron system is probably accurate to a few meV. We
have also performed ab initio calculations of the 37
electronic ground state of NeAr". Franck-Condon fac-
tors have been calculated for the NeAr ™ +Ar— NeAr**
vertical transitions in order to determine the population
of final vibrational states of NeAr**. This population
peaks at the highest vibrational level and decreases rapid-
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ly with decreasing energy. Thus only the first vibrational
state whose mean lifetime is within the measurement
range is expected to be detected, as have been observed
experimentally [19]. We have also compared our phase-
shift calculations to the commonly used WKB method
which gives reasonable mean lifetimes, even near the po-
tential barrier, if the “correct” energy of the level is used.
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