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Abstract. We adopted mass-weighted hyperspherical coordinates to study the properties of
Coulombic three-body systerns where all three particles are different. Using an adiabatic
approximation, we applied the finite-element method to the two-dimensional eigenvalue problems
at fired hyperradius. We have calculated the adiabatic hyperspherical potential curves, and
examined the wavefunctions (in terms of density plots) and the non-adiabatic coupling terms
for a number of three-body systems. By fixing the masses of two of the particles, we examined
how these properties vary with the mass of the third particle. The existence of stable bound
states versus the masses of the systems is also investigated.

1. Introduction

The non-relativistic three-body systems consisting of three charged particles have been
studied extensively over the years. In general, it is important to distinguish systems where
two of the three particles are identical (to be called AAB systems hereafter) from systems
where all three are different (to be called ABC systems). The indistinguishability of the
two identical particles poses constraints on the symmetry of the wavefunctions. It has been
proved that in all Coulombic AAB systems there exists at least one stable bound state (Hill
1977). Using the exponential trial functions in the relative coordinates the ground state
enecrgies of the AAB systems have been calculated accurately (Frotov 1987). Furthermore,
it has been observed that the total binding energy of an AAB system nearly scales with
the reduced mass of A and B (Chen and Lin 1990). For the higher excited states it has
been further shown that many properties of the AAB systems depend weakly on the relative
masses of A and B (Liu ef al 1991). This weak mass dependence also reflects in that
doubly excited states of atomic systems such as H™ and He exhibit ro-vibrational energy
level structure similar to those in molecules (Herrick ef 2! 1980, Lin 1984, 1986). It further
suggests why the molecular interpretation is reasonably successful in qualitatively explaining
the structure and dynamics of doubly excited states of atoms (Rost and Briggs 1991, Berry
and Krause 1988).

in the last few years a unifying approach for treating non-relativistic three-body systems
in mass-weighted hyperspherical coordinates has been proposed (Lin and Liu 1988). The
method has been applied to examine properties of excited states of an AAB system as a
function of the mass ratio A = my/mp (Liu et al 1991). It was shown that for a fixed
angular momenturn and parity of the system, the adiabatic hyperspherical potential curves
are very insensitive to the mass ratio A and that the shape of the comresponding states, as
exhibited by the density distribution of the wavefunctions, is also very similar,
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In this paper, we study the properties of Coulombic three-body systems where all three
particles are different using mass-weighted hyperspherical coordinates. We will consider
systems where the charge on each particle is one unit, and the signs of the charges of A and
B are identical and m, > mg . Atomic units are used unless otherwise noted. Furthermore
we set me = 1. Obviously we can use A*BTC™ to represent such three-body systems.
Note that iwo-body bound states can be formed for either of the AYC™ or the BYC™ pairs.

For the ABC systems, there is only a certain range of mys and mp (with m¢e = 1)
where the system can have stable ground states. The range of masses for such stability
to exist has been investigated by a number of authors using variational methods (Poshusta
1985, Gur’yanov and Rebane 1991, Frolov and Thakkar 1992, Bishop and Frolov 1992,
Martin e al 1992). We will examine a number of systems by calculating the hyperspherical
potential curves which will give indications of the existence of bound states. Our major
goal, however, is to study scattering states as weil. In particular, our final goal is to develop
a computational procedure based on the hyperspherical coordinates method for calculating
inelastic excitation and rearrangement collision cross sections. Such an approach based on
the hyperspherical method has been fully developed for two-electron systems where the
mass of the nucleus is much heavier than that of the electron and thus the centre of mass
can be considered to be stationary (Tang et @ 1992). To apply the hyperspherical approach
to general three-body systems, a number of numerical methods have to be developed. The
basic nature of the three-body systems, in terms of adiabatic potential curves and adiabatic
wavefunctions, should be examined before scattering calculations are actually carried out. In
this paper we study the three-body systems within the adiabatic approximation, to examine
the potential curves, the wavefunctions and the coupling terms, so as to follow how these
quantities vary with the masses of the system.

The present mass-weighted hyperspherical approach has been used by quantum chemists
for calculating reactive scattering cross sections (Launay and Le Doumeuf 1989, 1990,
Pack and Parker 1989). It has been applied by Archer et @/ (1990) in calculating the
positronium formation cross sections. When applying the method to Coulomb problems, the
singularity of Coulomb potentials poses numerical difficulties not encountered in chemical
reactive scatterings. Furthermore, the higher precision in atomic physics requires that all the
numerical calculations be carried out to at least five digits accuracy. This was not possible
in most of the numerical codes that have been used. For example, Archer et al (1990) stated
that they can only achieve two digits accuracy in the potential curves at large distances.

After a brief review of the basic formulation in section 2, we present the higher-order
finite element method used in our numerical calculations in section 3. The results are
presenied in section 4, together with a discussion of the general trends. The paper finishes
with a brief summary and discussions of future developments. We should mention that the
present hyperspherical approach has been used by a number of authors in a more limited
sense and that the numerical approaches are rather different, see Hara et af (1988), Hara
and Ishihara (1989), Fukuda et al (1990) and Botero and Greene (1985).

2, Summary of the hyperspherical methodology and the potential surfaces

2.1. The coordinate systems

We briefly summarize the coordinate systems and the notations used in this article. The
three particles are denoted by A, B and C, respectively, each carries one unit of charge,
and can be designated as A*B*C™ in general. Since charge conjugation applies, there is no
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difference between this system and the A"B~C* system. We also choose the convention
that ma 2 mg. In the dissociation limit, particles B and C can form *hydrogenic’ bound
states, with energies given by —upc/2n? in atomic units, where upc is the reduced mass
of B and C and # is the principal quantum number. Similar bound states can be formed by
particles A and C. For the same #, the binding energy of the AC system is larger than that
of the BC system because of the larger reduced mass pac.

o
P

A u B A B A p!
p‘ F B

o—set B—set Y-set

Figure 1. Definitions of the three sets of Jacobi coordinates. The convention is that the charges
of particles A and B have the same sign, and charge of particle C has the opposite sign to that
of A or B. The convention ma 2 mp is adopted.

For a given ABC system, we can choose three sets of Jacobi coordinates, see figure 1.
Note that the B-set is convenient for describing the scattering states for A 4+ (BC), where
(BC) is a two-body bound state, and the y-set is convenient for describing the scattering
of B + (AC). The advantage of the a-set is less obvious, but it is important to recognize
that in the o-set, the line joining A and B is a symmetry axis if A and B are two identical
particles. Furthermore, if both A and B are much heavier than C, the line joining A and
B is a ‘molecular’ axis which is approximately a good quantization axis according to the
Bormn-Oppenheimer approximation.

Starting with each set of Jacobi coordinates, we can define two mass-weighted vectors
£, and &; (Liu er of 1991)

£ =@/ wp & = (uaf ) pa. ¢y

where p; and p; are defined in figure -l and p; and u» are the reduced masses associated
with the ‘pair’ of particles connected by each vector, respectively, and g is arbitrary. For
each set of coordinates we can define a hyperradius R and a hyperangle ¢:

R*=&+& . tang =&/k (2)

where R is invariant among the three set of coordinates, but ¢ depends on the specific
Jacobi coordinates. For convenience, we also define a ‘regular” hyperspherical angle y:

tan y = p2/p1 = +/ (p2/pe1) tang. (3)

Thus x is a measure of the ‘actual’ distances p; and p2 . The y angle also depends on the
Jacobi coordinate system used.

It should be pointed out that there are various ways of defining the five angles in the
hyperspherical approach, even though the definition of the mass-weighted hyperradius is
the same. A complete list of references on hyperspherical coordinates up to 1989 can be
found in the monograph by Avery (1989). Our present choice is convenient for transforming
the wavefunctions in hyperspherical coordinates to those given in the independent particle
coordinates in the asymptotic region. This latter procedure is anticipated when the present
method is extended to scattering problems.
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2.2. The potential surfaces

Using the mass-weighted hyperspherical coordinates, the kinetic energy operators for all
the three-body systems are identical, and the mass dependence enters only through scaling
factors in the potential. Using the a-set coordinates, the potential surface is

V(R,¢,6)=C(¢.0)/R G

where # is the angle between the two vectors €, and &> and

12
c=2r2 (ﬁi)m o ZoZe (1 / 4 ZeZa ("—'{)Iﬂ ®)
cosd® \ p cosdf \ u cosg” \ u
The potential surface has two valleys, with singularities located at (¢%, 6%) = {¢1, 7) and
{2, 0), where
tan ¢y = [mpmc/ma(ma + ms + me)1'? (6)

and

tan g = [mamc/mp(ma + mp + me)l'?, ¢}

Table 1. The singularities of the potential surface Tor different masses of the Coulombic three-
bedy systems as viewed in the a-set coordinates. The singularities of the potential valleys
are located at (¢*.0%) = (${. 1) and ($2.0). In the table, mc = 1. The angles x¥ for the
singularities are also shown.

System (ABC) nma mg ] L) X1 x

ttu 26.58 26.58 174 194 26.57° 26.57°
dtu 26.58 17.75 680° 101" 21140 31.52°
ptu 26.58 8.88 547 1599 14.06° 36.86°
Xt 26.58 300 348° 2829° 5.79° 41.94°
ety 26.58 1,00 2.08°  4396° 2.08° 43.94°

For tty, ¢ = ¢ = 7.74°. As my decreases, ¢, decreases to a smaller angle, while ¢
increases to a larger angle. One can also use x to express the angles at the valleys. In table
1, the locations of the potential valleys, x; and x», are listed for a number of systems,

Contour plots of the potential surfaces for a number of ABC systems are shown in
figure 2 to illustrate the evolution of the positions of the potential surfaces on the (x®, 8%)
plane as the mass of particle B is reduced, while the masses of A and C are fixed. Clearly,
as mp becomes smaller and smaller compared to ma, the ¥ angle for the potential valley
on the 8% = x axis becomes smaller, while that for the potential valley on the 8% = (
axis becomes larger. Recall that the kinetic energy operators are identical for all the four
systems shown, thus the origin of the difference in the properties of the three-body systems

versus the masses will be attributed to the differences in these potential surfaces, as will be
further discussed in section 3.
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Figure 2, Contour plots of the potential surface for systems where ma = 26.58, m¢ = I, and
four different mp as shown in the a-set hyperspherical coordinates, The singulasities of the
polential valleys at the y angles are listed in table 1. (To illustrate the potential valleys more
clearly, we actually plot the potential to the 2/3 power.)

2.3. The adiabatic approximation

In this paper we will consider systems where the total angular momentum is zero. Since we
do not include spin interactions, thus the total orbital angular momentum is zero and only
three coordinates are needed to describe each system. We choose these three coordinates to
be R, ¢ and 8, where @ is the angle between the two vectors £; and & and ¢ is defined in
(2). We can use either of the three sets of Jacobi coordinates for defining ¢ and @, but the
hyperradius is independent of these coordinate sets.

The Schrédinger equation in hyperspherical coordinates is

[_L (.i L322 A2<¢,9)) LC@.0)
2u\3R2" RaR R R

] Y(R,¢,8)=EW¥(R,9,0) (8)

where the explicit expression for the grand angular momentum operator A% can be found
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in Liu et al (1991). We expand (we use it = (ma + mc)/ mantc)

¥ = (R"singcosg)™" ) Fu(R)Du(R; $,6) 9
H

where R is treated as an adiabatic parameter, and ¢,(R;¢,8) is the solution of the
differential equation

a2 1 ! ? 2
—_— e —{5sin 0 —) + 2uRC (¢, ¢, = R°U(RD 10
[ 367 st poosigeing 36 M0 gg) TIHRCE 9)] # wRID, t0)
where U, (R) is the hyperspherical potential curve and ¢, (R; ¢, 8) is the channel function.
The hyperradial function F,(R) is obtained from solving the coupled equations

a2 1
(W + g TRHE - U;x(R)) Fp(R)+ EWM(R)F»(R) =0 (1)

where the coupling terms are

d d d?
!‘I’u)_' + (

wpw =2(¢u|g§ dR q’ul'aﬁlq)v)‘

The coupling terms are small in general except in the local avoided crossing region. These
terms are not included in the present article where we analyse the qualitative behaviour
of a number of systems. In a more precise calculation and in scattering calculations for
individual systems these terms should be included.

3. Finite element methods for solving the channel functions

In order to obtain accurate calculations for the bound and resonance states of an ABC system
using the hyperspherical approach, it is essential to solve the adiabatic channel functions and
the eigenvalues accurately. Previously the partial differential equations (10) were solved
using some simpie basis functions (Chen and Lin 1990). Because of the singularity of the
Coulomb potential, the accuracy of the calculated eigenvalues is limited to two or three
digits.

The two-dimensional partial differential equations (10) are solved by the finite element
method (FEM) (Bathe and Wilson 1976, Bathe 1982, Shertzer and Levin 1991 and Botero
and Shertzer 1992). In the FEM method, the domain of the two-variable function F(x, y) is
divided into rectangular elements. Within each element ¢, the function F(x, y) is expanded
in a local basis:

N
Flx,y) =Y Ufei(x,y) (12)

j=1

where ef(x,y) = g;(x)h{(y), with g and h each being a polynomial. The expansion
coefficients U? are the values of F(x, y), dF/0x,8F/dy, and 82F/3x8y at the nodes of
the element. in this work, we choose nine nodes for each element ¢~—four at the corners,
one each at the midpoint of each side and another at the centre of the rectangle. Each local
basis function g and # is a fifth-order polynomial.
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To determine the coefficients of the polynomials in the local basis function, consider
the domain of the element ¢ {0 be a square of unit length. If U; is the value of F at
(x,y)=(0,0), and F = (a0 + a1x + ... + asx>)(bg + b1y + .. + bsy’) is the expansion for
the element ¢, the coefficients a are determined by requiring that F = 1 at (x, y) = (0, ),
and F =0 at (%,0) and (1,0) and 3F/3x=0 at these points. Similarly the b can be
determined by the same conditions at the three points along the y-axis. Applying this
procedure to each node allows the determination of the 36 local basis functions within the
element.

Substitution of the expansion (12) into the Schridinger equation (10) allows the
construction of a local matrix. After summing over all the elements and mapping local
indices to global indices, a global matrix is obtained which can be diagonalized to obtain
the eigenvalues. Since there are four unknowns at each node, the dimension of the matrix
is ronghly equal to the total number of nodes on the (¢, 8) plane multiplied by four.

The partial differential equations (10) can be expressed in terms of either of the three
sets of Jacobi coordinates. Typically we use the @-set coordinates for the small R region,
and either 8 or y sets for the large R region. The ¢ range (0 € ¢ < 7m/2) is typically
divided into 25 segments, and the range of (0 < @ < =) is typically divided into 10
segments, thus there are about 250 elements and the size of the matrix is a sparse matrix of
order 4032, We can achieve typically five digits accuracy in the potential curves in the small
R region and four digits in the larger R region with the present method. In general, the
accuracy is better for systems where one particle is much heavier than the other two. This
accuracy is related to the singular structure of the potential surface in the mass-weighted
hyperspherical coordinates.

4, Results and discussion

For the three-body systems, ABC, we choose me = 1, my = 26.585 and study the
evolution of the systems as the mass mp varies from mc to ma. Thus if ma = mg,
the system corresponds to a tty ion where the mass of the muon is set to unity, Similarly,
mp = 17.75(8.88), corresponds to a dtu (ptu) system. If mg=1, it is a tu* ™~ system. We
will also consider a xtu system, with the mass of x being m; = 3, as an intermediate case.

4.1. Potential curves

We first study the two lowest potential curves for the four systems dtu, ptic, xtw and tuetp~
for the case of total angular momentum L = O and even parity. The results are shown in
figure 3. In the asymptotic region, the lowest curve corresponds to the limit of B (tu~)is
where {tn7) s is the two-body ‘hydrogenic 1s’ state between the two particles t and px~,
with the energy given by 0.9637 Ryd. Similarly, the second lowest curve corresponds to the
limit of tT(By™) , with the energy given by mpa, = mg/(l + mg) Rydbergs. We actually
renormalize the energy scale in figure 3 so that the lowest curve for each system approaches
the asymptotic energy of —1.0 Ryd.

From these four systems, it is clear that the lowest potential curve is more attractive
and the second lowest potential curve is more repulsive when mp = ma. This result is also
related to the fact that the two curves are quite close to each other in the asymptotic region
when mp = ma. As mp becomes smaller, the two curves in the asymptotic region becomes
more separated, and each curve shows only a shallow potential well.

The locations of the potential minimum for the curves shown in figure 2 differ quite
significantly. This difference is mostly due to the mass scaling of the hyperradius. Since
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Figure 3. The adiabatic potential curves for the four systems indicated. The total angular
momentum of the system is zero and the energies calculated have been renormalized so that the
lowest curve approaches —1.0 Ryd in the asymptotic limit.

the lowest curve corresponds to the B + (AC) dissociation limit, it is convenient to use
the yv-set coordinates to describe this channel. (All the variables in this paragraph refer
to y-set coordinates hereafter.) The potential minimum occurs when o) =~ g so that
R? = (u1p? + popd)/p = (11 + p2)p?/u. Since the length scale of py is inversely
proportional to the reduced mass u;. the hyperradius where the potential curve reaches the
minimum is propartional to /(ity + i1}/ 1. If we use the Ry, = 6.75 from the calculated
value for dtu, then the comesponding Rp, for the ptu, xti and tu* g™ systems are 5.45,
3,77 and 2.73, respectively, which are in good agreement with the values actually calculated
shown in figure 3.

For L = 0, the dti system is known to support two bound states. This means that
the lowest potential curve for dtu in figure 3 can support two bound states. For the ptu
system, the curve {s supposed to support one bound state. A simple procedure to estimate
the number of bound states is to calculate the classical action
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Figure 4. The phaseshift as defined in equation (13) for £ = —1.0, i.e. at the threshold.
The symbols * are phaseshifis obtained from calculated adiabatic potential curves and the lines
are obtained by interpolation. The two horizontal lines correspond to phaseshifis of %JT and
%n. If the phaseshift is below the fisst horizontal line, then no stable bound state exists, If
the phaseshift is between the two horizontal lines, then there is one bound state. The mass of
particle C is set at 1,0 and the mass of particle A is shown.

Ry
[=2 [E - Ui{R)]dR (13)
R’

at the threshold energy (E = —1.0), where Ry is the inner classical turning point and R is
the outer turning point which was set at infinity, For the existence of (z + 1) bound states,
the classical action (or the zero-energy phaseshift) has to be greater than (n 4 %):ﬂ:. In figure
4 we plot I against 1/mg for the above four systems where ma = 26.58 and another four
systems with the same mp and mc, but with my = 17.75. From the phaseshifts of the four
calculated systems an interpolated phaseshift curve is obtained for each m,. Two horizontal
lines corresponding to phaseshift of %n’ and %n‘ are also indicated. For a given mg, if the
phase shift is below %n’, there will be no bound state. If the phaseshift is between %n‘ and
%R’, there will be one bound state. According to our calculated phase shifts, we conclude
that there is no bound state for the tutu™ system, one bound state for the xti and ptu
systems, and two bound states for the dtu system. This conclusion is consistent with the
results obtained from variational calculations for the diy and piy systems (Frolov 1987).
The binding energies for the other two systems have not been calculated. From the curve
for my = 17.75, we can conclude also that there is one bound state for pdu and one bound
state for xdu, and no bound state for dut ™. The result of one bound state only for pdu
is also consistent with the variational calculations. According to this estimate, the mass of
particle B has to be greater than 2.22 for a bound state to exist if ma = 26.58 and mc = 1.0,
The critical mass for particle B is 2.63 if my = 17.75 and m¢ = 1.0. (The actual masses of
the protons, deuterons, tritons and muons are 1836.1515, 3670.481, 5496.918 and 206.769
in atomic units,)

4.2. Density plots

We have discussed that the two potential curves in the asymptotic limit correspond to the
dissociation of the three-body system into B+ (AC) for the lowest curve, and inte A4 (BC)
for the second curve. In this limit, the wave function, or density, should concentrate at

the two potential valleys around ¢ and ¢, respectively. However, it is not clear at what
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Figure 5. The density distribution of the two lowest channels for the dty system (L = () at
three different values of R. At & = 10 where the lowest potential is near its minimum, the
density distribution covers most of the {x*,8%) plane. The v = 1 and ¥ = 2 channels show
resemblance to the bonding and antibonding states in that # = /2 is nearly an antinodal line
for the v = 1 channel and a nodal line for the v = 2 channel. Note that at R = 25 where the
potential curves are approaching the asymplatic limit, there is still a significant probability of

finding the particle C near both centres. Only at R = 40 is particle C bound to particle A for
v =1 and to particle B for v = 2,
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distance this separation occurs, since at smaller values of R the density is expected to
occupy most of the (¢, 8) plane. In figure 5 we show the density plots of the dtu system at
R=10, 25 and 40. It is clear that at R = 10, the density distribution for the lowest channel
occupies most of the (x, ) plane. In fact, the lowest curve displays bonding nature in that
particle C has a large probability in the region between the two potential valleys, while for
the second lowest channel, there is a nodal line in this region, similar to an antibonding
state. Notice that these bonding and antibonding characters become exact if particles A and
B are identical. At R = 25 where the potential curves are quite close to the asymptotic
region already, we notice that there is still a large probability for finding p near d in the
fowest channel, and for finding x4 near t in the second lowest channel. Only at R = 40 do
we begin to see that the muon is attached exclusively to one centre or another.

n 1
2 (a) . 2 (v) s
=1 V=2
£ %
0 9 5 0 0 d T
n I
2 (c) =7 2 (d) =7
va=l V=]
£ L
Q 0 T 0 0 5 T

Figure 6. Similar density distributions for the tu™ 4™ system at two different values of R. At
R =3, there is indication of antinodal and nodal lines for v = 1 and v = 2, respectively, except
that the line is curved in the (x¥, #*) plane. The breakup of this system into one pasticle and
another pair occurs at small R. The lower frame shows that the breakup itnto u¥ + {t, ™) for

v=landt+(ut. u")forv=20ccusat R =7

We next examine the situation for t* ™ . As can be seen from figure 2, the singularity
of one of the two potential valleys is very close to the y = 0° axis, while the other is at
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x = 44°, In figure 6(z) and (b), the density plots for the two channels at R = 3 are shown.
The lowest channel does show that the density Hes between the two potential valleys (see
figure 2(d)), while for the upper channel, a distinct nodal line is seen lying perpendicular
to the curve which is the locus of the local potential minimum. Compared to figure 5(a)
and (), the bonding and anti-bonding characters are much less evident in the present case.
In fact, at R = 7, the separation of the ground channel into u* + (tx7) and the second
channel into t + (utu™) is already quite evident. The large energy separation between
the ground state of (ti~) and of (utpu™) in comparison with the exchange energy of the
negative muon between the two positively charged centres is responsible for the lack of
stability of this three-body system.

4.3. Non-adiabatic coupling terms

The two adiabatic potential curves shown in figure 3 display pronounced avoided crossings
similar to those considered by Demkov for near-resonance charge exchange processes in
ion—atom collisions. The non-adiabatic coupling term (®;|d/d R|®2) shows a sharp avoided
crossing at 24, 15, 8 and 4.5, respectively, for the four systems shown. The location of
this avoided crossing occurs when the exchange energy of the negative charged particle
with respect to the two positive charges is about equal to the energy separation of the two
channels at large R. We mention that the ‘muon transfer’ probability is determined by this
non-adiabatic coupling.

5. Summary and conclusions

In this paper we discussed the application of mass-weighted hyperspherical coordinates to
Coulombic three-body systems where all three particles are different. We applied adiabatic
approximation to calculate the potential curves and examined the corresponding channel
wavefunctions for the lowest two channels. By fixing the masses of two of the particles we
studied how the adiabatic potential curves, the density distribution of the channel functions
and the non-adiabatic coupling terms of the three-body systems evolve as the mass of the
third particle is varied. We also demonstrated the use of higher order finite element method
for calculating eigenvalue problems in two dimensions. The existence of bound states for
Coulombic three-body systems was examined from the calculated potential curves.

As stated in the introduction, our main goal is to develop a computational procedure for
carrying out calculations of inelastic and rearrangement collision ¢ross sections involving
three charged particles using hyperspherical coordinates., Such calculations have been
carried out for the two-electron atomic systems where no rearrangement channels exist
and where the mass of the nucleus is taken to have infinite mass (Tang er a! 1992, Zhou
et al 1993). The extension of the hyperspherical close-coupling method to three particles
of any masses involves additional complications. In this paper we illustrated that the finite
element method can be used 1o obtain accurate adiabatic potential curves. We are currently
extending the method to states of non-zero angular momentum and treating the matching of
the hyperspherical solutions to the single particle states in the asymptotic region to extract
the scattering matrix.
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