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Abstract. We give a detailed account of the formulation of the recently developed hyperspherical
close-coupling (Hscc) method. Using this method, we have made calculations of photoicnization
cross sections for the He atom and He-like ions, Lit and C* below the N = 2 (the ioner
electron’s principal quantum number) threshold. From amalysing the photoionization cross
section spectra and resonance structures of the two-electron systems with different nuclear charge,
the effect of the interplay between the electron—nucleus and electron—electron interactions on
doubly excited states is smdied.

1. Introductions

Since the first observation of doubly excited states in helium in the early 1960s (Madden
and Codling 1963), great progress has been made in understanding the nature of electron—
electron correlation in doubly excited states. As the simplest many-clectron system, helium
has received most attention both experimentally and theoretically in the study of doubly
excited states. With the improving performance of synchrotron radiation sources, a great
deal of experimental efforts have been devoted to precision measurements of photeionization
cross sections in the vicinity of autoionizing doubly excited states. In particular, the photon
energy range of 59—73 ¢V, which covers the doubly excited states associated with N = 2
and three manifolds of He, have been most extensively studied (e.g. Woodtuff and Samson
1982, Morgan and Ederer 1984, Lindle er al 1985, 1987, Zubek er gf 1989, Domke ef
al 1991, 1992), The resolution of experimental measurement has reached (o as high
as 4 meV, giving details of resonance profiles of high lying doubly excited states and
uncovering weak resonances which had not been observed before (Domke er al 1991,
1992). Along with the rapid advance in the experimental study, theoretical understandings
of doubly excited states have reached a new level, since the early work of Cooper et
al (1963). A new set of approximate quanturn numbers K, T, A, characterizing radial
and angular comelations of the electron-electron interaction, have been introduced and
successfully employed in the classification of doubly excited states (Herrick 1983, Lin 1986
and references therein). Energy positions and autoionization widths have been calcutated
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and compared with experimental results where available (Lipsky er al 1977, Bachau et
al 1991, Chung 1972, Chung and Davis 1980, Ho 1981, 1979, Ho and Callaway 1985).
Caiculations of photoionization cross sections, the asymmetry parameter of the photoelectron
angular distribution, for photon energies below the N = 2 thresheld, as well as between
the N =2 and N = 3 thresholds, have been performed, utilizing various approaches, such
as the R-matrix method (e.g. Scott and Burke 1984), the many-body perturbation theory
(e.g. Salomonson et @/ 1989) and the variational method using the L? basis set (Sdnchez
and Martin 1990, Moccia and Spizzo 1987, 1991). Recently, Tang e al (1992a, b, ¢) have
demonstrated the use of the close-coupling method in the hyperspherical coordinates (HSCC)
in producing highly accurate results of both the doubly excited state energy positions and
photoionization cross sections of He,

A well known fact about doubly excited states in He is that the strong electron—-electron
interaction is responsible for the failure of the independent electron model and accounts
for all new features seen in doubly excited states. If nuclear charge increases, the relative
importance of the electron—electron interaction is lessened in the face of overwhelming
elecron-nucleus Coulomb interaction, but the independent electron model is stilt inadequate
because the first order solutions are degenerate due to the 0(4) symmetry of the Coulomb
interaction. It is desirable to make a systematic comparative study of the He-like ion series
to see how the interplay between the two interactions affects the spectra of doubly excited
states as the nuclear charge Z varies. To this end, in this paper we report an extensive
calculation of photoionization cross sections of helium, the lithium 1+ ion, and the carbon
4+ jon, with Z varying from 2, 0 3 and 6, in the energy ranges below the N = 2 threshold
P; (we shall adopi the noiation Py for the ionization potential limit which equals o the
total energy of the system required to ionize one electron while leaving another in the state
of principal quantum number N) in the framework of the HSCC method. The results for
energies between the N = 2 threshold IP; and the N = 3 threshold 1P; are reporied in the
following paper (Zhou and Lin 1993), From studying the photoionization cross sections of
the He-like series, we uncover some interesting trends in physical quantities such as the
Fano shape parameter q and widths of doubly excited states, as a function of Z,

Compared with the neuiral atomic helium and the hydrogen negative ion, both
experimental and theoretical studies of photoionization of the He-like positive ions are
far from complete. Theoretically, numerous studies on energy positions, and autoionization
widths 10 some exient, of doubly excited states in the He-like series have been carried out
(Lipsky et al 1977, Bachau et al 1991, Chung 1972, Chung and Davis 1980, Ho 1979,
1981) using variational type calculations. Besides the result of the Fano parameter 4 for
the three lowest 'P° autoionization states of the N = 2 manifold for Lit by Bhatia and
Temkin (1983), Sanchez and Martin (1990) made a more systematic study of Li* and other
He-like systems below the N = 2 threshold. On the experimental side, doubly excited
states of He-like positive ions are mainly studied in atomic collision experiments, where
energy positions and widths of doubly excited states can be determined. Experiments
on the photoionization of the He-like positive ions are scarce: the lonely example was the
measurement of the photoabsorption spectrum below the N = 2 threshold for Li* in a laser-
produced plasina by Carroll and Kennedy (1977). However, with the advance in ion sources
and new storage rings for heavy ions, direct measuremenis of photoionization cross sections
for singly or multiply charged ions are being planned. Thus, the photoionization cross
sections presented in this and the subseguent paper may also serve as a timely stimulation
for future experiments.

The hyperspherical coordinates have been successfully utilized in describing the
properties of doubly exciied states of two electron systems since their introduction to atomic
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physics in the late 1960s (Macek 1968). In the most widely used adiabatic approximation,
the hyperradius R is treated as an adiabatic parameter, analogous to the intermnuclear distance
in the Born—Oppenheimer approximation for diatomic molecules, and the two-electron
Schridinger equation is solved at different values of hyperradius. This approach, which
gives the adiabatic potentials and two-clectron wavefunctions, has played a prominent rofe
in the classification of doubly excited states as well as the visualization of electron—electron
correlations in these states (Lin 1986). However, compared with other methods the adiabatic
approach has failed to provide more precise energy positions and widths of doubly excited
states. The lack of accuracy of the adiabatic approach stems from twO main reasons:
(i) the couplings among different adiabatic channels, significant in the avoided crossing
region, are difficult to handle numerically; (i) in the asymptotical region, i.€. when the two
electrons are well separated in space, the adiabatic channels in the hyperspherical coordinates
have spurious couplings proportional to R~ (Macek 1985), since they are not suitable for
describing dissociative channels. Despite these difficnlties, there have been some efforts to
directly solve coupled adiabatic hyperradial equations (Sadeghpour 1992).

In the present HSCC method, the shove mentioned difficylties of the adiabatic
approximation are overcome respectively by employing the diabatic-by-sector technique
(DBS) and the two dimensional frame transformation. The DBS technique, which has already
been extensively used in treating reactive scatterings by quantum chemists (¢.g. Lepetit ef al
1986), is a simple but rather general technique in solving coupled differential equations. By
the frame wransformation, the wavefunctions calculated in hyperspherical coordinates in the
inner region are matched to the asymptotic physical solutions in the independent electron
coordinates (Christensen-Dalsgaard 1984).

In this work we neglect the spin-orbit interaction, therefore the atomic states are
designated by 25+1 L™ with the total angoiar momentum L, total spin S and parity 7. Only
final !P° states are reached from the ground state 'S¢ by photoabsorption within the dipole
approximation. Besides the global symmetry represented by L., § and =, it has been shown
that doubly excited states are properly classified by a set of approximate quantum numbers
K.T and A which describe the properties of the electron—electron correlation (Herrick
1983, Lin 1986). These quantum numbers are complemented by two other approzimate
quantum nambers N and n, which are the principal quantum numbers of the inner and
outer electrons in the independent electron picture. These quantum numbers will be used
here to designate doubly excited states calculated. The value of T, the projection of the
total angular momentum L onto the interelectronic axis, can take [0, 1, ..., min{Z, N —1)].
The value of K, which is related to the angle between the Runge-Lenz vectors of the two
electron orbitals, is assigned by (N —T - 1), (N-T-73), ..., —(N—-T —1)]. The quantum
number 4 is used to characterize the radial correlation between the two electrons: when the
two-electron wavefunction is concentrated mainly near the potential ridge (1 = r;) A can
take either +1 or —1 depending on whether the wavefunction has an antinode or a node
right on the potential ridge; when the two-electron wavefunction is located mosty in the
potential valleys (ry < rz or r 3> r2) A is assigned to be zero. Doubly excited states having
the same correlation quantum numbers K, T, A have similar internal electronic structures
and physical properties, with little dependence on other quanfum numbers. A more detailed
discussion of these guantum numbers can be found in Lin (1986).

The rest of the paper is organized as follows: in the next section, we will give a detailed
description of the HSCC method, with emphasis on the channel basis calculation, the DBS
technique and the frame transformation, The technical details of the present calculation
and the analysis of the calcutated spectra will be explained in sections 3 and 4 respectively
while results and discussions of photoionization cross sections for energies below the N = 2
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threshold will be given in section 5. A brief conclusion is given in the last section 6. As
the second part of the series, results and discussions of photoionization cross section in the
energy range between the N = 2 and N = 3 thresholds are presented in the following
paper. Atomic units are used throughout unless stated otherwise,

2. Theory: the HsCC method

Assame the nucless to be infinitely massive, the Schrodinger equation for a two electron
atomic system with nuclear charge Z and iotal energy E in the independent eleciron
coordinates is

2
[—%21 - F-Z-Zi sy = v, . M
o re
In the hyperspherical coordinates, the electron coordinates v are replaced by the
hyperradius R = {r + r2)!/2, the hyperangle @ = tan~'(r1/r2), and Q which denotes
collectively four angles (¥, #3). R represents the overall size of the electron pair while
o represents relative radial distances of two electrons from the nucleus. Expressing the
two-electron wavefunction by

o YR D)
T Rsinecosa

2

and substituting it in (1), one gets for the reduced wavefunction ¥ in the hyperspherical
coordinates

1 8% Hu
28R " R?

+ — —E) YR, o, 2)=0. (3)

Here the adiabatic Hamiltonian is given by

Hy(R; o, Q) = A% () — RC (e, 612) @
with
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83 is the angle between |, ©; and I, I, are the individual angular momentum operators

for the two electrons.

Treating R as a slowly varying adiabatic parameter, ¥ (R, a, ©2) can be expressed in the
close-coupling expansion by a set of Ny, channel functions ¢, at each R

Nen
Y(R, 0, Q) = Y Fu(R)u(R; o, Q). )

p=1
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2.1. The channel function ¢, and the DBS method

In the standard adiabatic approximation, the channel function ¢, is usually chosen to be
the eigenfunction of the adiabatic Hamiltonian:

Haa(R; o, D¢, (R; 0, Q) = UL (R)¢u(R; o, 2) &)

where U, (R) Is the adiabatic potential. In solving (8) for a given R, the adiabatic channel
function ¢, is further expanded by basis functions with the angular part Y5 (Q), the coupled
spherical harmonic function formed by angular momentum [y, f> of the two electrons, and
functions depending on a, which are often taken in analytic forms (Lin 1986). Equation (8)
is then solved as an eigenvalue problem 1o yield both the adiabatic potentials U, and the
channel functions ¢,. Substituting (7) back to (3), combined with (8), leads to equations
for the hyperradial function F,.(R)

az
(-3~ U - 28 ) LR+ THaBA® =0 G=l..N) O

with the diabatic coupling between adiabatic channels u, v

2
Wa = 2guls )=+ (04l zwu}. (10)

The fact that derivatives of ¢, (R; @, ) with respect to R are involved in W, implies that
one has to use very small R grids in order to calculate them accurately. This difficuity
becomes more severe in avoided-crossing regions of R.

To remedy this problem, in the diabatic-by-sector (DBS) method, R is partitioned into
many small sectors Ry, Ry, ..., Ry . For a given sector, R;_; < R < R;, the wavefunction
15 expanded in terms of diabatic channe] functions ¢,, which are independent of R within
the sector,

(R, e, Q) = ZF,,,(R)%(R”‘ @) (Rt <R<R) (11)
p=1

where we chose RT 10 be at the midpoint of the ith sector. It is easy to show that the
hyperradial function F,, now satisfies the following close-coupling equations

32
(_W - 25) F,(R) + Zv: V(RIFAR) =0  (u=1,..., Na) (12)

where the coupling term V,,,(R) between the channels 4 and v is simply given by
Vs (R) = 25 (B (RF: 0, | HualR: t, D16 (BT 0, 2)
= % [Axe(RT) + RBL(RT)] (i=1,...., M) (13)
with
Auw(R") = (@u(RF; 0, DA% (@) |u(R]; @, Q) (14)
Bu(RY) = —(@u(R]; &, Q)|C (e, 012) |6 (R 1, 2)). (15)
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The brackets indicate integrations over the hyperangle ¢ and the angle Q. Notice that both
A and B are independent of R for a given sector, so the calculation of channel couplings V.,
is greatly simplified compared with W,,, in the adiabatic approximation, as one only needs
to calculate them once for each sector. Therefore, simply by stipulating that the channel
functions are independent of the hyperradius withis each sector, the DBS method avoids the
calculation of derivatives of ¢, with respect to R in the standard adiabatic approximation.
As a result, the calculation of coupling terms V., is much simpler and more accurate.

In principle, one can stilt use the adiabatic basis function at each RT as the basis function
in the DBS method, but disregard its R dependence within a given sector. Nevertheless,
for the convenience of matching the channel functions to the asymptotic fragmentation
channels, in the present work the channel functions in a sector { are defined, for a pair of
angular momenta ({{', 15), as

Gu(RT; 2. Q) = AR (RT; )Yl (@) (R < R < R]) (16)
with .4 as the antisymmeirization operator and &, (R[; «) is chosen to be the eigenfunction
of the diagonal part of the adiabatic Hamiltonian

(Tl | Haa(RT 0, DY AL (RE @) = uu (RIBL(R] o). (n

These eigenfunctions /,, form an orthogonal basis set for the (/{", /5') pair and such functions
from different ({1, I;) pairs are used to construct the global orthonormal basis functions ¢, in
equation (16). for each sector. Therefore we see that the basis or channel index w identifies
not only different (/;, /) pairs but also different eigenfunctions #{c) in equation (17)., The
latter is characterized by the number of nodes in o, which is related to N, the principal
quantum ramber of the inner electron in the limit R — o¢. The numerical aspect of solving
equation (17) has been discussed by Tang ef al (1992a).

Once channel functions ¢, are obtained, channel couplings V,,(R) are calculated
straightforwardly for each sector. Starting from the innermost sector i = 1, the close-
coupling equations (12) are integrated from R;.) to R, to obtain the radial functions F,,
whose values at the end point R; will serve as the initial boundary condition for the
integration in the next sector. The step size between any two adjacent sectors | and (f 4 1)
is chosen to be small enough to ensure the unitarity of the local transformation matrix

T (i = i+ 1) = {u(R7)@u(RT)). (18)

The integration propagates from inner sectors to outer ones, until the matching boundary
R = Ry is reached. From (12), with Ny, linearly independent boundary conditions

FN(0) = 0, FP(0) = 3, (r=1,...,Ng) (19)
where the prime denotes the derivative with respect to R, one can obtain Ny, sets of solutions

Fﬁ"}(R) for each channel . Thereby one can construct Ny, general solutions for any sector
i<M

No,
VR, 0,2 =) FPRIGRLe,Q  (r=1...Na). (20
pn=l1
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2.2, Matching at R = Ry

Beyond R = Ry, the two electrons are well separated and can be described more adequately
by the known analytical wavefunctions in the independent electron coordinates r, r». For
the cases considered here (Z > 1), in the asymptotic region R > Ry, the two-electron
wavefunction of energy E can be conveniently written as

1 Nen
VE () = o D T U3 — 6 ) Kip(B))

(B=1,..., Nop). 1)

where ®; is the bound hydrogenic radial function of nuclear charge Z of the inner electron
for channe} / characterized by a binding energy E; = ‘2‘1\% with N (i} as the inner
elecron’s principal quantum number. The functions f;, g; are the energy normalized regular
and irregular radial Coulomb functions of charge (Z — 1) respectively of the outer electron if
channel | is open (E 2 E;), or exponentially increasing and decreasing functions if channel
i is closed (£ < E;).

Similar to the R-matrix method, the reaction matrix K is obtained when the numerical
solution and its derivative with respect to R in the inner region are matched with the
asymptotic solutions at R = Ry. That is,

Nr.h

> Cu¥ PRy 0, Q) = (R sinacosayy P ry,m)| 22)
r=l1 =
Nen d '
[Z Cyp ¥ (R; a, sz)] o= [(Rm sina cos ) ¥ (ry, Ti)]R (23)
r=l R IR=Ry R=Ru

C is a constant (N, x N,) matrix. To obtain an expression for the K matrix, the asymptotic
solutions wg‘” on the right-hand sides of (22) and (23) are wansformed from the independent
electron coordinates into the hyperspherical coordinates. Then both equations are multiplied
by the channe! function ¢,({Ry; o, &2} and integrated over o and L2 on the & = Ry surface,
Substimuting the expressions of ¥ and 1 in equations (20), (21) into equations (22), (23)
and utilizing the orthonormality of the channel functions ¢, , the X-matrix can be expressed
in the following (Ng x Ng) matrix equation

RN — N’
K=Rr—7 @

where R is the logarithmic derivative matrix of the hyperradial function F' [F,, = F”(R)]
at the matching point:

R=FF" |pp,- : (25)

Expressions of matrices J, N, J/, N' are given in the appendix.
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2.3. Initial and final state wavefunctions

To calculate a bound state wavefunction such as the ground state wavefunction (1s?) '8¢,
one first needs to determine its binding energy. This is achieved by searching for the
zeros of the determinant |K =" (E)| when all channels are closed. Once the binding energy
Ey is known, the hyperradial function FJ(R) of the initial bound state wavefunction
Y1(R, 2. 2) = Y, FI(R)$.(R; &, ) can be obtained by integrating the Schrodinger
equation with £ = Ep, as described in 2.1, subject to boundary conditions which represent
exponentially decaying waves at R = Ry, The number of nodes in the function F,(R) is
equal to (n — 1), with » as the outer electron’s principal quantum number of the state in the
Rydberg series u.

When there are open channels, continuum wavefunctions are calculated at each given
energy E, subject to the asymptotic boundary condition which represents oscillatory regular
and frregular Coulomb functions, as shown in (21). However, the continuum wavefunctions
thus calculated with the asymptotic behaviour given by (21) do not comrespond to the physical
final states of the photoelectron in photoionization experiment, Instead of (21), the final
states should be subjected to the boundary conditions of an incoming wave,

v P, ) = E & (r DY @UE )8 — g (1) (E)]

<>i

(8= 1,.,..Nch) (26)

where S is the scattering matrix. The energy-normalized final state wavefunction,
Ye(R, e, Q) = Z“ Ff(R)%(R; o, ), corresponding to the boundary condition (26),
can be obtained by a simple matrix transformation from the wavefunction satisfying the
boundary condition (21}, as given by Jacobs (1971).

2.4, Photolonization cross sections

For photon energy w = E — Ep, where Ejp is the binding energy of the initial bound state
and E the total energy of the final state, the photoionization cross section, in the length (L)
or the acceleration (A) form, are given by

2

olw) = (4{—) @l DLP @
2 ’)

oA w) = (i’-’-) 0] 28

c [47)
with corresponding dipole matrix elements
bub)=} [ rareE@pFlRIL® 29)
DaB=ZF [ S FERFIRIAR) 30

where FF{(R) and Ff (R} are hyperradial functions of the initial and final state wavefunctions
respectively. 75, (R) (G = L or A) is the angular integral part as given in detail by Park et
al (1986),
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3. Calculations

The calculation of the photoionization cross section consists of two major stages: firstly
the initial bound state wavefunction has to be calcufated, then the final continuum state
wavefunction as well as the dipole matrix element of the transition from the initial to
the final state for different photon energies are calculated. Generally the diabatic sectors
are allocated densely in the small R region but sparsely in the outer region. Since the
imtial bound state wavefunction is concentrated more in the interior of the system while
the final continuum wavefunction spreads out, in actual calculations the initial and final
wavefunctions are computed with rather different number of sectors and the matching
distance Rjys. Furthermore, since R scales approximately as 1/Z, wavefunctions for ions
are much closer to the nucleus so the matching point can be taken at smaller distances. For
the initial state wavefunction ¥; of all three elements, bases of individual eleciron angular
momentum / up to 4 and total 19 of them (containing up to N = 9 channels) have been
included. For the final state wavefunction, bases of / up to 5 were used while different
channel number Ny, and matching distance Ry were implemented for different elements.
For He, 100 sectors and Ry = 7.0 were used for the initial state, while 320 sectors,
Ry = 119.5 and 20 channels were used in calculating final 'P° state wavefunctions. For
Li*t, 95 sectors and Ry = 3.45 are used for the initial state while 290 sectors, Ry = 74.75
and 25 channels were used for the final state. For C**, 65 sectors and Ry = 1.225 were
used for the initial state while 230 sectors, Ry = 39.75 and 30 channels were used for
the fina! state. In the bound state calculation, the range of the matching radius is limited
by the divergence of the exponentially growing asymptotic irregular Coulomb function g;,
especially for high Z ions. Ry values for initial bound states mentioned above are the
largest possible values obtained in the current scheme. No such problem exists for Ry of
final states and we have varied the matching radius Ry and the number of channels Ny
for final continuum states to ensure their convergence of the result. It is required that the
matching radius of the final state be much larger than the distances occupied by the doubly
excited states pertaining to the energy range under consideration. Accordingly the matching
racius has (o be set further away from the nucleus when calculating the spectrum near a high
Iying doubly excited state (high M channel) or a higher member (high n) of the Rydberg
series of a low N channel,

The accuracy of the present calculation is first demonsiraied by comparing the binding
energy Eo of the ground state (1s?) 1S8¢, obtained from searching the zeros in det|K !,
with other theoretical or experimental results, For He, the calculated ground state energy
Ey = —2.903 8135, which is to be compared with the ‘exact’ non-relativistic value —2.90372
(Freund et o 1984), the experimentai value —2.9038107 (Kelly 1982), For Lit, our
calculated energy is —7.279 718, to be compared with the experimental value —7,280389
(Kelly 1982), and theoretical values —7.279914 (Ho 1981) and —7.27893 (Bhatia and
Temkin 1983). For C**, the calculated ground state energy is —32.426 356, to be compared
with experimental vaiue —32.417253 (Kelly 1982). The relative larger discrepancy with
the experimental value in the C** might be attributed to the fact that the matching radius
for the initial state is not large enough.

Photoionization cross sections using both length (L) and acceleration (A) forms are
calculated in the present work. For He, the two forms agree with each other to better than
1% for all energies considered in the present wotk. For Li* and C**, they differ at most by
about 5% and 25% (especially in the higher energy region) respectively, presumably due to
the inaccuracy in initial state wavefunctions which are obtained with small matching radii
as restricted by the exponentially growing asymptotic function. Since the A-form weights
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more of the smaller R region while the L-form does the opposite, it is believed that the
results given by the A-form are more accurate than those given by the L-form.. This belief
is reinforced by the fact that the photoicnization cross section obtained in the A-form shows
little change whereas the photoionization cross section of the L-form moves towards the
A-form cross section when Ry for the initial state is increased. Thus we will only present
the results from the A-form. Fine energy mesh points have been used to scan energy regions
where autoionizing resonances are expected.

4, Analysis of resonances

As mentioned in the introduction, a doubly excited state can be classified by a set of
approximate quantum numbers K, T, A and N,n. The notation y(K, T)# will be used
to designate different doubly excited states. Energy positions E, and widths T of the
dominant autoionizing doubly excited states such as the 2(0, 1)} series are obtained by
fiting the calcnlated total photoionization cross section near a resonance with the Fano
formuta, which determines the profile of an ‘isolated’ autoionization resonance embedded
in a continuum background (Fano and Cooper 1965),

+¢€
Owu(E) = ag[l + a(E — E})] I:.Oz(? np: 3 +1~ ] (31)
where ¢ = 2(E — E,)/T. Note that a linearly energy dependent background due to the
direct photoionization is assumed. The autoionization width I', which is the sum of all
partial widths to different outgoing channels, can be expressed as

F=3 0 =2r ) |(WoeslHIVE (32)
J J

where |Ypes) is the wavefunction of the autoionizing doubly excited state and [¢g) is
the channel j continuum wavefunction of energy E. H is the two-electron Hamiltonian
operator. The matrix element {Y¥pps|H |¥5) measures the interaction between the doubly
excited state y¥pps and the outgoing continuum yri of channel j. In (31), the parameter p?
is defined as

[ osstH vy + aalvn) |
~ [E s R[S e + 2l ]

which represents the relative strength between two portions of the cross section which
correspond respectively to transitions to parts of the continuum that do or do not interact
with the resonance state |¥pgs). The Fano shape parameter g, is given by

WDEsiZl +nly) + P [ ME'/(E - ENTL, (WDESIHWE')(‘#EIH + i)
w24 I/"DE,S“L”‘!’_&; (‘ffslzl + 22\¥n)

where P denotes the principal value integration and the summation over j includes all open
channels. By using (z; + z;) in (33) and (34) for the electric dipole transition operator, the
photon polarization direction has been assumed to be along the z-axis.

While energy positions E, and widths I" of the (0, 1) states are obtained by the least-
squares fitting of equation (31) with six varying parameters E,, T, 0o, 02, g and g to the
spectra in the neighbourhood of those major resonances, energy positions of other weak and
narrow states are estimated simply by zooming in the local resonance energy region. Since
these resonances are extremely narrow in width (at least two orders -of magnitude smaller
than the major ones) energy positions thus determined are still quite accurate.

(33)

(34)
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5. Results and discussion

S.1. Photoionization spectra

In the energy range between the threshold Ip; and [Pz, only 1sep channel is open. There are
three 'P° series associated with the N = 2 manifold, i.e. 2(0, N (n=2,3,..,2(,0)
and o(~1,0)% (n =3,4,...).

Before discussing the photoionization cross sections, let us first note that photon energy
ranges between IP; and IP; are very different for the three elements, with 24,60 ~ 65.41
eV for He, 75.64 ~ 167.48 eV for Li* and 392.56 ~ 759.92 eV for C**. Moreover,
autoionizing resonance structures appear only in the energy regime close to the N = 2
threshold P;, For instance, the first doubly excited state ;(0, 1)5r , shows up at phoion
energy of about 60 eV in He, about 150 eV in Li* and about 665 eV in C**. Since the
main interest here is in doubly excited states, we have calculated the photoionization cross
section starting from an energy just slightly below the energy of the first doubly excited
state.

In figure 1, the photoionization cross sections of He, Lit and C* are shown. For
casier comparison, we plot the photoionization spectra as a function of the scaled energy,
E* = (E—Py)/(Z — 1)%. In this case, N = 2, thereby E* = 0 corresponds to E =IP;.
From the figure, we clearly see prominent resonance structures from the autoionizing doubly
excited states which are embedded in a smoothly decreasing single ionization background.
We have used the simplified notation K to designate the different resonance states in the
figure and in figures hereafter.

In the following we discuss some features of particular significance, as observed from
figure 1.

(i) As in He, the dominant series for both Lit and C** ions is the 0F (n = 2,3,...)
series. The other two series 17 and (—1)? (n = 3,4, ...) have much narrower widths and
are much weaker. This implies that the propensity rule that only the states with K = N -2,
A = + are predominantly populated in photoabsorption is still valid here.

(i) The magnitude of the background cross section decreases with increasing Z. For
instance, the cross section at E* = —0.25 decreases from ~ 2 Mb in He to ~ (.18 Mb in
C* . This is a reflection that [P, for the higher Z element is larger and most of the oscillator
strengths have been taken by the singly excited states.

(iil} Relative positions between different autoionization states shift as the nuclear charge
Z varies from 2 to 6. This can be seen more clearly if we expand the energy scale and
focus on resonances associated with # = 3-6, as done in figure 2. For example, in the He
spectrum (figure 2(a)), the state (—1)2, which is also referred to sometimes as the 2pnd
state, is very close to the state 1. .|, and therefore quite difficult to identify. (We mention
that this series has been observed in He experimentally only very recently and the present
HSCC method has been applied to examine this series in a separate publication.) But in the
case of Li* (figure 2(b)), these two series are well separated, as the (—1)° states drift to
the lower energy side towards the 07 states while the 17, states move toward the OE',', +
states in the opposite direction. This trend becomes more obvious in C* (figure 2(c)),
where the three states of the same n cluster together in a group (1,07, —12). It should
be noted that the successive order (1,07, —1°) of the energy positions is the same for
ali elements. This energy splitting, from the largest X to the smallest, is a result of the
polarization of the inner electron wavefunction under the influence from the outer one, with
the quantum number K being the measwre of different polarizabilities of the inner core.
For higher Z, groups of resonances belonging to different n become well separated because
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Figure 1. Photcionization cross section below the N = 2 threshold plotted against the scaled
energy E*: (a) for He; (b) Li*; (¢} C**. The autoionizing doubly excited states are denoted
by KA.

intershell couplings (from the configuration interaction viewpoint) for these states become
negligible.

5.2, Resonance positions and widths

Energy positions and widths of autoionizing states for » up to 6, obtained in the calculation
are presented in tables 1-3 for the three elements. Only the widths of the prominent series
OF are given. In the earlier work (Tang ez al 1992a), Tang et a! have determined the energy
positions and widths of He doubly excited states using the delay time of the ¢ + He®
scattering process, The present calculation gives aimost the same energy positions while
the widths obtained here are also in excellent agreement with the widths tabulated in Tang
et al (1992a) with Jess than 2% difference. In tables 1-3 results from some other theoretical
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Figure 2. A close-up of the photoicnization spectra showing resonance structures near the
n = 3-6 region: (a)} for He; (b} Lit; (c) C¥.

works are also shown, For He, energy positions and widths calculated in the present work
are in excelient agreement with results of the complex coordinate rotation method (CCR)
(Ho 1981) and the L2 basis method (LB) (Sanchez and Martin 1990). The energy positions
obtained vsing the saddle-point technique (Chung and Davis 1980) also agree very well with
the present resuits, while the energy positions predicted by Lipsky er al (1977) using the
truncated diagonalization method (TD) are considerably higher than other results. For Li*,
energy positions and widths obtained are in excellent agreement with the CCR calculation
{Ho 1981) and the LB calculation (S4nchez and Martin 1990). Results obtained using the TD
method (Lipsky er al 1977) for E, are again much higher than results of other works. For
C**, the present results are compared with Chen’s configuration interaction (CI) calculation
(1992), besides the Ho’s CCR results (1981). Once again the present results, both the energy
positions and the widths of 0} series, are in excellent agreement with their counterparts of
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Table L. Energy positions and widths —E, (I} in au of He 'P® resonances below the N =2

threshold.
N{E. T2 oo ccxb LB® spd Preseat work
2(0, l)i’“ 0.6884 0.6931 {1.37E-3) 0.5929 (1.41E-3) 0.6927 04930 (1.39E-3)
2(1, 007 0.5965 0.5971 0.5972 (4.12E—6) 0.5971 0.5672
20, D 05620 0.5640 (3.00E-4) 0.5640 (3.08E—4) 0.5639 0.5642 (3.01E—4)
3(-1,09 0.5468 0.5469 0.5471 (5.77E-8) 0.5470 0.5473
21,007 0.5462 0.5465 (2.09E—6) 0.5464 0.5467
240, 1)} 0.5339 0.5344 (1.32E—4)  0.5341 0.5346 (1.28E—4)
21-1,08 0.5275 0.5277 (1.38E~38) 0.5275 0.5279
2(1, 03 0.5271 0.5274 {1.02E-6) 0.5272 05275
20, )7 0.5213 0.5216 (6.87E—5) 0.5217 (6.55E-5)
2=1,0 0.5180 0.5180 (1.05E—9) 0.5183
2(1, 0 0.5178 0.5180
* Lipsky et al (1977), the truncated diagonalization method.
b Ho (1981), the complex coordinate rotation method,
¢ Sinchez and Martin (1990), the L? basis method. The ground state energy Eg = —2.90372 au and 1

an(*He) = 27.207 696 eV have been used in the conversion.
4 Chung and Davis (1980), the saddle-point method.

Table 2. Energy positions and widths —E, (") in aun of Li* 1P° resonances below the N =2

threshold.

N(E, A ™* ccrb LB® Present work

20, LMT3 17576 (ZM4E-Y) 17568 (229E-3) 17574 (2.38E-3)
21,05 14295 14307 (6.50E-6)  1.4312 (6.25E-6) 14307

20,17 13565  1.3614 (6.60E—4) 13617 (724E—4) 13615 (6.32E—4)
2-1,0% 13230 1.3252 (4.0E-6) 1.3253 (5.18E—6)  1.3253

(1,005 1.2815 1.2831 (3.20E—6) 12829

200, )7 1.2523 1.2559 (3.21E—4)  1.2563 (3.04E—4)
2(—~1,08 1.2393 12411 (242E-6) 12412

201, 0)5 12203 1.2216 (1.74E—6)  1.2214

200, 1) 1.2062 1.2083 (1.67E—4) 12082 (1.62B—4)
2(-1,02 1.1994 1.2008 (1.29E—6)  1.2006

21,0 1.1890 1.1899

200, 13} 1.1812 1.i824 (9.29E-5)

" Lipsky et al (1977), the truncated diagonalization method.

® Ho (1981), the complex coordinate rotation method,

© Sinchez and Martin (1990), the L2 basis method. The ground state energy Ep = —7.280389
au and 1 au "Lit) = 27.209536 ¢V have been used in the conversion.

Ho, while Chen’s CI calculation, which is essentially the same as Lipsky ez af °s TD method,
gives energy positions considerably higher than others. From tables 1-3, one also sees that
the widths " for the series 0 behave with the expected n~> dependence (Fano and Cooper
1965).

In table 4, the resonance photon energy w,, autoionization width I', along with
parameters g, oo, o° and a, obtained from fitting the Fano profile (31) to the spectra near the
most prominent resonance of the 05 state, are shown for the three elements. Results from
some representative theoretical and experimental works, mainly for He and Li*, are also
shown. The present resulis of resonance positions in terms of the total energy E. have been
converted to the photoh energy w, in eV in order t0 be direcily compared with other results.
In the case of He, not only the energy position w, and the antoionization width " obtained
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Table 3. Energy positions and widths —£, (')} in an of C*t 'P° states below the N = 2

2569

threshold.

N(E DA ot ccr® Present work

2(0, 1 79205 79403 (3.35E-3)  7.9399 (3.36E—~3)
2(1,0)5 6.0962 60978 (8.15E-6)  6.0981

200, 1 5.8068 59132 (L31E-3) 59134 (1.27E-3)
2(-1,09 58117  5.8230 (3.20E-5)  5.8229

2(1, 07 5.3631 5.3660

200, 1] 5.2807 52936 (4.75E—4)
20-1,05 52466 5.2562

2(1, 007 5.0399 50433

200, )5 4.9973 50072 (3.01E-4)
2(—1,0)% 4.9804 4.9884

(1,005 4.8691 4,8805

200,17 4.8440 4.8518 (1.98E—4)
2(~L B 4.8346 4.8410

* Chen {1992), the configuration interaction method.
5 Ho (1981), the complex coordinate rotation method.

Table 4. Fano parameters of the 'P° 5(0, l);’ resonance. The numbers in parentheses represent
experimental uncertainties.

ar (eV) F V) q og (Mb)  a(au”!) PP
He
Present work 60.154? 0.0378° 273 1.4011  —0.0098 0.9984
Chang and Tang 60.1825 0.0397 —2.68+0.06 1.40
Sanchez and Martin (1990) 60.151 0.0383 —2.83 1.374
Bhatia and Temkin (1983) 60.1450 0.0363 —2.849 1.3845
Morgan and Ederer (1984) 60.151(10) 0.038(2) -2.6(3)
Li+
Present work 150.26(° 0.0648® —1.96 0.575¢ —0.4978 1.0029
Sénchez and Martin (1990} 150.295 0.0622 —2.20 0.573
Bhatia and Temkin {1984) 150.2470 0.0593 -2.199
Caroll and Keonedy (1977)  15029(5)  0.075(25) -1.5(*D)
o4+
Present work 666.287¢ 00914 -1.74 0.1298 -0.1137 0.9993
Sénchez and Martin (1990) ~—1.72¢ ~Q,13¢

3 The conversion of 1 au (*He) = 27.207 636 ¢V is used,
b The conversion of 1 au ("Li) = 27.200 536 eV is used.
* The conversion of 1 an (2C) =27.210418 &V is used.
4 Taken from figure 3 in (Sanchez and Martin 1990).

in this work are in very good agreement with other works, the Fano shape parameter g, the
background cross section oy at the resonance are also very close o the theoretical results
given by Sinchez and Martin (1990} and Bhatia and Temkin (1983). A similar situation
occurs for the case of Li*, For C*, relatively few works exist; the parameter g and oy
obtained here appear (o agree with those by Sdnchez and Martin (1990}, judging from values
in figure 3 in their paper.

5.3. Z-dependence of oo, T" and q of 0, resonance

From table 4, some systematic trends of parameters oo, I" and ¢ for the 0 resonance as
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a function of Z can be studied, within the non-relativistic approximation. The background
cross section oo at the energy of the resonance decreases from He to C** with approximate
Z~? dependence, in accord with the observed diminishing magnitude of the spectral intensity
from figure 1 as mentioned in 5.1. For all three elements, p? obtained from fitting the
resonance profile is almost identical to one, which is expected from (33) as p? = 1 when
there is only one open channel. More interestingly, the autoionizing width ™ increases
monotonically with Z, from 37.8 meV for He to 64.8 meV for Li* and 91.4 meV for C*.
It has been shown that the width increases further for still higher Z to a finite limit of about
133 meV or 0.0049 au for Z = oo (Ho 1981, Chen and Lin 1989). The Fano parameter g,
while negative for all three elements, shows similar behaviour as the autoionization width,
It increases markedly with increasing Z, from —2.73 for He, to —1.96 for Li* and —1.74
for C**, rapidly approaching a limit of about —1.7 for Z = oc (Sdnchez and Martin 1990).
As seen from figure 1, the change in g value refiects different shapes of the resonance
profile from He to C4t.

In the remainder of this subsection, we will ry to examine the role of elecon—electron
correlation in determining the observed Z-dependence of these resonance parameters. One
way to incorporate the electron—glectron correlation is to express the wavefunction in terms
of products of independent electron wavefunctions, i.e. the configuration interaction (CI)
expansion. For this particular case, the initial state wavefunction ¥, the doubly excited
state Ypes and the (energy normalized) final continuum state g can be represented as

W1} = a11818) + ax]1s2s) + ...
[¥pES) = Wz} = €11252p) + ¢2|2p25) + ¢31283p) + ca|2p3s) + ¢5{2p3d) + . ..
[¥re} = |1s€p}.

Here [nln'l'y denotes a product of two hydrogenic wavefunctions and 3, a2 = ¥, |e;|* =
1. For simplicity, we have neglected the configuration interactions in the final continuum
state. From the expressions og = const E{{{rg|z; + zz|¥)5, T = |(We|H|¥pes)® =
|(¥g|1/r12]¥pes}2, one immediately sees from scale analysis that the Z dependence for oy
is 272 and that T does not explicitly depend on Z, given the fact that the total energy £
scales with Z2, z; with Z~7, 1/r12 with Z, discrete wavefunctions scale with Z*/2, continuum
wavefunctions scale with Z'/2 and the integration volume scales with Z 6, Therefore, the
Z dependence of the matrix clement {rg|1/ri2|Y¥pes) and its width T is governed solely
by the mixing coefficients ¢;, or the electron—¢lectron correlation in the doubly excited
state. On the other hand, for large Z, the electron—clectron interaction is small compared
to the Coulomb attraction of the nucleus that the intershell couplings, namely the couplings
between states of n # #’, become negligible. This in turn means ;¢ 2 3) will go to zero
when Z — oo. Obviously magnitudes of ¢;, ¢; take their largest values when Z = oc.
Since the matrix elements {1sep|1/r2{202I'} contribute to ' most significantly compared
with other matrix elements {1sepil/r2|2lnl’ > (n = 3), it is clear that I' should take its
largest vaiee in the limit Z = co.
The Z dependence of the ¢ parameter,

(Wozl21 + 2231} + P J IAE'/(E ~ E"VYoy | H|15€'p) (Ise"plzy + z207)
7 (Wo; | H |1sep)(Iseplzi + 2|3}

(3%

is related to several matrix elements and therefore is more difficult to explain. However
we can at least justify that there is a finite value of g in the Z = oo limit, using scale
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analysis. The contribution from the principal integral term, which has the same explicit Z
dependence as the denominator and is usually negligible, should give a finite constant in the
limit Z — co. For the first tenm, which corresponds to the dipole transition from the ground
state to the doubly excited state, the major configuration |1s1s) in the ground state i; makes
no contribution at all to the matrix element {Yioy |21 + z2iyfr). Therefore, one may rewrite
the matrix element (Yoi |z + z2|Yr) = (@ (Yo 21 + 22|1528) + as (gt 21 + 22[1838) + .. )
where the individual matrix elements (W |21 + z2|nsn's) scale with Z~!. Furthermore,
the Z dependence of the mixing coefficients @, (( = 2,3,...) for the ground state
can be shown also to be Z7!, simply from the first-order perturbation theory where
@ = {1sis|1/r3|1s*)/(E; — E1). Given that the matrix element {Wor|H|lsep) in the
denominator (which is essentially 4/T") of (35) scales independently with Z and the other
matrix element (1sep|z; +z3|3¥;) in the denominator scales with Z~%, the Z dependence for
the first term in ¢ scales off explicitly. In conclusion, both terms in ¢ do not have explicit
Z dependence thereby g will go to a finite limit when Z — oo, a fact which has been
demonstrated numerically.

6. Conclusions

We have presented the formulation of the hyperspherical close-coupling (HSCC) method
in the context of photoionization of a two-electron atomic system. By employing the
diabatic-by-sector technique and the frame transformation at the matching point, the two
major problems encountered in the traditional adiabatic approximation in the hyperspherical
coordinates are solved. Consequently, the results obtained ussing the HSCC method, in
terms of the energy positions and autoionization widths of doubly excited states, as well
as photoionization cross sections, are quite accurate compared with other theoretical and
experimental results.

Using the HSCC method, we have conducted a systematic calculation of the
photoionization cross section for the two-electron systems of He, Li* and C** in the energy
range below the N = 2 threshold. We have investigated energy positions and widths of
resonances up to #n = 6 states for all three elements. In particular, resonance parameters
of the most prominent state 05 are studied as functions of Z. We have shown that the
diminishing electron—electron interaction, especially the intershell interaction, relative to
the increasing electron—nucleus interaction, gives rise to the observed Z dependence of
those parameters. However, due to the intrinsic energy degeneracy of hydrogen-like ions,
the infrashell electron—electron interaction is still vitally important in describing doubly
excited states for very highly charged He-like ions. As a reselt. the independent electron
modetl is not suitable for any two-electron atomic systems. The results obtained here may
serve as a guidance for future experiments on the photoionization of pogitive He-like ions
which become increasingly possible with the recent progress in ion sources,
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Appendix
In terms of matrix elements, expressions of J, N, J' and IV’ are given by
Ton= [ (a0, DISfo(r Y @ a2 (Ala)
Npw = [ 6ulRuri 2, D125 a7l (Do (Alb)
I, = Ry f ¢ (Ru; @, .Q)[ Do) f5(rs) Y gos (sz)] I dardQ (A2q)
SRy
Ny = 83" [ 8uRuts 0, D [RP @0 Igpr VES @] | docn (A20)
R=Ry

with 8, u =1, ..., N, Functions f, g are the regular and irregular Coulomb functions of
the outer electron and & is the radial hydrogenic function of the inner electron as used in
equation (21). Primes on the right-hand side of equation (A2) denote the derivatives with
respect to R. r.[= max{r, r2)] and r.[= min{r;, r2)] are expressed at R = Ry

e = Rysino > = Rycosa fagw/d4 (Ala)

¥. = Rycosa F, = Rysina ifa>m/4 (A35)
Substituting the basis function
$u(Rut; @, @) = 3 [ (Rus X (@) + (DT, (Rog; /2 — ) M) | (A)

into equations (A1) and (A2), after some algebra to eliminate the angular integration over
2, one obtains

o = [ XoutRut 9500 15020 (ASa)
Ng, = f Xpu(Ru; ) Pp(re)ga(rs)do (A5B)
PR xﬂH(RM,a)[ (r<)f5(r>)( )+¢ﬁ<r<>fﬁ<r>)( R)Lﬂmd’”
(A6a)
Ng, = ;g“ +fXﬂu(RM o) [¢ﬁ(r<)g,s(r>) (dr )+¢g(r<)gﬂ(r>) (drR )]R.—_Rmda
(A6b)

where the function X is given by

Xpu(Ry; ) = \/_ [,g,ua,s,m (Rag; @) + B Bypy (—1 DAHELSp (Ryg /2 — a)] (A7)
with

dro . dr. .

i sin o R = Cos¢ fogr/4 {A8a)
or

— =cosc & =sing if @ > /4. (ASh)

dR dR

S’ ¢ and &' are derivatives of f, g and & respectively.
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