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Diabatic states in the avoided crossing region
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Abstract. A method of performing diabatic transformation on a pair of adiabatic states in
the region of sharp avoided crossings is discussed. By choosing a region [R,, R,] where
the diabati¢ transformation is to be made, the diabatic wavefunctions in the interval [R,,
R,] are constructed as R-dependent linear combinations of adiabatic wavefunctions at R,
and R,. The method is applied to treat the adiabatic potential curves of helium caleulated
in hyperspherical coordinates. It is shown that the resulting coupling terms between the
diabatic states are small and that the diabatic wavefunctions evolve smoothly with the
hyper-radivs. The limitation of this approach is also discussed.

1. . Introduction

The adiabatic approximation is a widely used approach in the study of many quantum
mechanical systems. If a single coordinate R can be treated as a slow variable in
comparison with other coordinates #, in the adiabatic approximation one separates the
Hamiltonian of the whole system in the form

H=--L d—2+H (R; r) (1)
T 2w dRPOTY

where the first term is the kinetic energy of the slow variable and Hy(R; r} is the
Hamiltonian of the system with a fixed R. In this approximation, the total wavefunction
is expanded as

(R, r}=% F(R)Y.(R; 1) (2)

where the adiabatic wavefunctions are the eigensolutions of Hy at a fixed R,
Ho(R; 1) (R; r}y = U (R)¥.(R; 1) (3)

and the ‘radial’ functions F,(R) satisfy the coupled equations

(—-(%#UF(R)—WMM+2E)F“(R)+Z W,.(R)F,(R)=0. 4)

Note that
W, = 24,|d/dR|¢,) d/dR +{¢,|d*/d R,
=2P,d/dR+Q,., (5)
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where the bracket indicates integration over the coordinates r. The first term P..
involves first-order derivatives, and the second term Q,, involves second-order derwa-
tives, of the adiabatic wavefunctions with respect to R. Small values of P, e and Q.
give a measure of the ‘adiabaticity’ of the adiabatic wavefunctions. For the diagonal
W, terms only the second-order derivatives are non-zero. If one assumes that the
adiabatic basis set in (2) is complete, then we have the identity

Q.. =(P%,,+dP, /dR. (6)

The adiabatic approach is useful in situations where the non-adiabatic couplings
between different channels w are small. For any quantal systems, (3) and (5) provide
the well defined procedure for calculating the potential curves U, (R) and the coupling
terms P, and Q,,, respectively. The coupling among the channels can be accounted
for by solving the coupled equations (4).

The above adiabatic procedure is quite straightforward, but in actual numerical
applications one often does not solve (4) directly. In general the family of potential
curves calculated in the adiabatic approximation show numerous localized avoided
crossings. At such crossings the non-adiabatic coupling terms P,,(R} and Q,,.(R) are
quite large and vary rapidly with R. The strong R-dependence of the coupling terms

_not only makes the numerical calculation of these matrix elements cumbersome because
the adiabatic wavefunctions have to be calculated over fine-meshed points, but also
presents difficulty in the numerical integration of the coupled equations (4).

Various methods have been suggested in the literature (Heil ef af 1981, Garrett and
Truhlar 1981, Smith 1969, Delos and Thorson 1978) where sharp avoided crossings in
the adiabatic representation can be transformed away. The general procedure is to
employ a unitary matrix C(R) which transforms the set of radial functions F*(R) in
the adiabatic representation to a set F*(R) in the diabatic representation

FY(R)=C(R)F*(R) )]
where
dC/dR+PC=0. (8)

In (s), (P),. = P,.. For the two-channel problem, one can show that

_{ cos é(R) sin £(R)
C(R)_(—sin§(R) cosg(R)) @)
where
g(R)=rP12(R')dR'. (10)
R

Thus such a diabatic transformation requires the knowledge of P,. (R} over the whole
range of R If only a finite number of channels are included, the  ~type coupling
terms vanish between all the resulting diabatic states and thus the states are ‘truly’
diabatic (Smith 1969) despite that the wavefunctions are still R-dependent. In this
diabatic representation, the Q,.-type matrix elements in general do not vanish but
they are neglected in the literature. We mention that if this diabatic procedure is applied
to the whole Hilbert space the diabatic wavefunctions will have no R-dependence and
then all the Q,, terms vanish as well, see Gabriel and Taulbjerg (1974).

The above diabatic transformation procedure has been used by practitioners in
atomic collisions (see for example, Kimura and Lane 1990)). However, it has three
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undesirable features. (i) The transformation has to be applied to all values of R instead
of only in the region of avoided crossings. The resulting diabatic potential curves often
deviate substantially from the original adiabatic curves even in the region where there
is no obvious avoided crossing and that the off-diagonal potential coupling terms
between the diabatic states are large (Heil er al 1981, Tan and Lin 1988). (ii} The
solution of (8) or (10) requires the knowledge of Py, over the whole range of R,
especially one needs to know this term in the asymptotic region. In the perturbed
stationary state (pss) approximation for atomic collisions, it is known that there exist
spurions coupling terms in this region such that the evaluation of (10) becomes
inaccurate. (iii) Since P,, is used in calculating the rotation matrix, adiabatic wavefunc-
tions have to be computed over very fine mesh points in the region of avoided crossing.
In this paper, our goal is to show a procedure where diabatic transformation is
carried out only in the region of a sharp avoided crossing. A similar procedure for
making local diabatic transformation has been discussed by Christensen-Dalsgaard
{1984). Our procedure differs from hers and we do not need to calculate P,,.(R) over
dense mesh points even in the sharp avoided crossing region. This method is described
in section 2. In section 3 it is applied to the adiabatic potential curves of He calculated
in hyperspherical coordinates. We show that all the off-diagonal coupling terms in the
diabatic basis are small and the diabatic wavefunctions evolve smoothly with R. The
Ilimitation of this method and alternative approaches are discussed in section 4.

2. Theoretical method

Consider two adiabatic curves which have a sharp avoided crossing between R; and
R, (see figure 1). The goal is to find a procedure such that a pair of diabatic curves
can be constructed within this interval. In the present context, we use diabatic to
describe states that are not adiabatic and that two diabatic potential curves cross. In
contrast to the more strict definition (Smith 1969) the P, (R) is not required to vanish
within the [R,, R;] interval, but it needs to be small. Thus the conditions for the
diabatic states are that the diabatic potential curves are smooth functions of R within
the [R,, R,] interval and that all conpling terms within the interval are small. The

U.(R)

Figure 1. Schematic diagram of an avoided crossing between two adiabatic curves. A local
diabatic transformation is to be carried out for the interval [R,, R;] shown by broken
curves. The adiabatic functions at the two boundary points are defined as indicated.
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ofi-diagonal coupling terms consist of P,., Q,, and U,,, where U,, is the off-diagonal
potential matrix (¢, |Hole,).

In figure 1, two adiabatic functions are denoted by , and .. We also define two
functions ¢; and ¢ at R = R, as shown. When R evolves from R, to R,, at least one
of the adiabatic functions at R, has to change its sign since 8 becomes #/2 in crossing
the region (see equation (9)). Thus, we have ¥ [(R; r)=F¢(R;; r) and ¢y R,; r) =
+¢,(R,; r), where the upper signs are for P,,(R) > 0 and the lower signs for P,,(R) <0.
In defining the new diabatic states we require that the diabatic states and the adiabatic
states coincide at the boundaries R, and R,. Define two new functions

=¢1(R2;T)+¢;(R1;") '»bl(Rz;r)_'ff;(Rl;")

Fi(r) N, Fi{r)= N (11a)
and
Fz(r)='f12(R2;r)+¢:'a(Rl;r) F,Z(r)zil’z(Rz;r)*'flé(Rl;")_ (11b)

2N, 2N}

From the definition, it is obvious that F; is the mean of the two diabatic functions at
the boundaries and F is the difference. The N in (114, b) are normalization constants:

(1+ (| gp) 2 _ O =Cly)' (11c)
72 V2o c

The procedure is to construct diabatic states within the [ R,, R,] interval from the
adiabatic functions defined at R, and R,:

& (R; r)=[cos a;( R)F\+sin a;{ R)F 1+ C (R, + CH( R3]/ M, (R}
$2(R; r) =[cos ax(R)F;+sin a;(R)F3+ C(R)n + C(R)¢1]/ My(R)
where R-dependent functions are explicitly indicated and M, and M, are normalization
constants. The R-dependent functions @ and C are arbitrary except that they are to
result in smooth potential curves and small coupling terms in the interval {R,, R,].
They are also chosen such that the wavefunctions and the coupling matrices join
smoothly with those calculated from the adiabatic representation at the boundaries R,
and R,.

We illustrate the procedure for the construction of ¢,.

(i) Continuity at R=R,:

¢'2(R2) = h”z(Rz)-

This condition gives

N, = N;

(12)

CxR:)=0 (13a)
CHR;}=0 (13b)
a,(R,) =tan”'( N3/ N,). (13¢)

(ii) Continuity at R=R,:
d:(Ry) =5 Ry).

This condition gives
Cy{R;)=0 (14a)
CYR)}=0 (14b)
ay(R) =—a,(R,). (14¢)
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(iii} Continuity of R-dependent derivatives at R = R,,

P?z(Rz) = P1{R;) (152)
Wgz(R2)= sz(Rz) (15b)
d d

a’; Wgz(Rz):a 52(R;) (15¢)

where the superscript d and a refer to matrix elements calculated with diabatic basis
functions and adiabatic basis functions, respectively. A similar set of equations can
be obtained at R = R,.

We chose to expand Co(R), C3(R) and a,(R) in polynomials of (R —R,) in the
interval [R,, R;]. By making the additional auxiliary condition that

dC5(R,)/dR=0 (16a)
one can express C,{R) in the form

(R_Rl)ls dcz(Rz)_{_(R_Rz)2 d2C2(R2)]
(Rz_'Rl)l.s dR 2 (i}z2

C(R)= [(R_Rz) (17a)
such that the boundary conditions {(13a) and (13b) are satisfied. The derivatives at
R =R, inside the square bracket are obtained from solving (15a4-¢) and thus can be
expressed in terms of non-adiabatic coupling terms calculated at R = R,. In (17a), a
power of 2.5 was chosen since it gives the best behaved coupling terms, but its precise
value is not impoertant so long that it is greater than 2 such that the boundary conditions
for the C and their derivatives are satisfied.

By imposing an auxiliary condition that

dCHRy)/dR =0 (165)
one can obtain a similar expression for C3(R)
(R~ R)**® dCy(R)  (R—R\)’ d“cs(Rl)]
(Ry— R)* dR 2 dR?
where the derivatives inside the square bracket are similarly solved in terms of non-

adiabatic coupling terms at R=R,.
Finally the angle «,{R) can be expanded in the form

a,(R)=d +d(R-R\)+d;(R-R)’+d,(R-R,) (17¢)

CiyR)= [(Rle) (176)

where the coefficients d, and d, are solved from the boundary conditions (13¢) and
{14c) and d; and d, are solved from (15a-¢) in terms of the non-adiabatic coupling
terms at R = R,.

We emphasize that this method, as seen from the equations above, does not use
any non-adiabatic coupling terms within the interval [R,, R;].

3. Applications to the adiabatic hyperspherical potentials of He

3.1. Coupling terms between two diabatic functions

We illustrate the procedure above by performing a diabatic transformation on the
hyperspherical potential curves of He. Among the three 'P® curves that converge to
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the He"{ N =2) limit, it is known that the + and ~ curves (labelled 2 and 3, respectively,
in figure 3) have a sharp avoided crossing at R =7.4 (Macek 1968, Lin 1986). This
avoided crossing results in a sharp P,, = (¢r,|d/dR|¢,) and large second-order diagonal
coupling terms W, = (¢,|d*/dR?|y,) for each channel. In figure 2(a) and (b) we show
these two matrix elements calculated in the adiabatic basis {in full curves).

The local diabatic transformation is carried out between R, =6.75 and R,=38.10.
The resulting P,, and W, (for u =2, » =3 of figure 3) from the diabatic basis functions
are shown as broken curves in figure 2(a) and (b). It is clear that the coupling terms
in the diabatic representation are reduced significantly.

1
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Figure 2. (a) The first-order coupling matrix P,,(R) between the (g, ¥)=(Z2, 3) channels
for the "P° states of He (see text). The full curve refers to adiabatic basis states and the
broken curve to diabatic basis states. The couplings differ only in the crossing region
[R,, R,]. (b) Same as (a) except for the diagonal W, , term for u=3.

0.0

U.(R) (Ry)

20 . L ' : L

Figure 3. Diabatic potential curves for the 'P° channels of He that converge to the N =2
and N =3 thresholds of He*. The g =1 channel is not shown.
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The diabatic potential curves for the 'P° channels of He below the N =2 and N =3
thresholds of He™ constructed using the present procedure are shown in figure 3 where
an index v is used to label each diabatic potential curve, with » = | being the lowest
channel converging to the He*( N =1) threshold (not shown). We mention that each
channel can be classified using the K, T and A quantum numbers (Lin 1936}, but the
precise classification of channels is not important for the present purpose.

The present diabatic transformation procedure gives smooth diabatic potentials.
However, in a single channel approximation the hyper-radial wavefunctions are calcu-
lated from an eftective potential including the contribution from the second-order
diagonal term W,,,. If such effective potentials are plotted against R'/?, as shown in
figure 4, the curves still display small kinks in the [R,, R,] region. The inset in this
figure gives an expanded view of this region. On the other hand, the kinks are quite
small and are not ‘visibie’ to the resonance states where the typical wavelength of each
resonance is much larger than the range R,— R,.

a0

U.(R) (Ry)

Figure 4. The effective potential, {J, (R) = U,(R)+ W, (R), for the p.=2 and g =3 chan-
nels. The small kinks near the crossing region are due to the structure in the W, term.
The inset displays the crossing region in more details.

We examine further the coupling terms between the w=2 and »=3 channels
(referring to the label in figure 3). We see from figure 2(a) that P,; has a peak value
of —=9.0 in the adiabatic basis, but only 0.1 in the diabatic basis. A more clear display
of the P,; in the diabatic basis is shown in figure 5(a) and the second-order diagonal
term Q. is given in figure 5(b). The off-diagonal U;;(R) is non-zero only in the
[R,, R;] region and is shown in figure 5(c). These figures show that all the off-diagonal
coupling terms are small and can be neglected in a first-order single channel approxima-
tion. However, all of them still show non-monotonic variations with R.

3.2. R-dependence of diabatic wavefunctions

Besides the coupling terms, one can also compare the variation of the adiabatic versus
the diabatic wavefunctions in the [R,, R,] region. For this purpose we calculate the
electronic density function on the {«, 6,,) plane, where the two angles measure the
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(e) Figure 5. The off-diagonal coupling matrix elements
0015 | L i between the two diabatic states ¢, and ¢, (u=2,
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relative radial and angular coordinates of the two electrons (Lin 1984). This is done
at each R by averaging over the rotation of the whole atom. In figure 6{a), in the left-
and in the right-hand columns, the density functions for the two adiabatic channels
{¥»=2,3 of figure 3) are shown for R =8.10, 7.76, 7.43, 7.10 and 6.73 (counted from
the top), respectively. It is clear that the adiabatic functions do not preserve the density
distributions within this interval. In fact, the last frame in the second column is closer
to the one on the top in the first column, and the density plots vary rapidly in the
interval. In figure 6(b) we show the density distributions of the diabatic states. It is
clear that these density distributions evolve smoothly with R.

3.3. Non-adiabatic couplings between pairs of channels belonging to different manifolds

The diabatic transformation discussed above has been used to treat the potential curves
of 'P° doubly excited states of He, as shown in figure 3. In this subsection we discuss
the coupling terms of the » = 2 channels with all the five channels of the N = 3 manifold.
According to the (K, T)% classification scheme, (Lin 1984) the »=2 channel is
designated as (0, 1)7 and the » =5 channel as (1, 1)7. The wavefunctions of these two
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Figure 6. (a) Electron density distributions on the (a, #,2) plane for the two adiabatic
channels in the crossing region. The left-hand column is for the u=2 channel and the
right-hand column for the p=3 channel. The values of R, from the top, are 8.10, 7.76,
7.43, 7.10 and 6.73, respectively. (b) same as (&) but for the diabatic states obtained from
the local transformation procedure,
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channels are similar and one expects that the coupling terms between them be larger
than the couplings of the » =2 channel with other channels in the N =3 manifold.

In figure 7(a) the P,, for p=5-9 are shown. The full curve is for Pps which is
much larger than other couplings. However, the coupling between the =2 and 6
channels (chain curves) is not very weak. The » =6 channel is classified as (—1,1)7.
It is clear that only channels with the same A quantum number have larger coupling
terms. The other three channels are labelled as (2,0)3, (0,0)5 and (-2, 0)$ for =7,
8 and 9 respectively. These channel functions have rather different nodal structure
from the » =2 channel and thus the coupling terms are small.

In the diabatic basis set, the off-diagonal potential matrix elements are non-zero.
In figure 7(b) we show the ratio of the off-diagonal matrix element U, with respect
to the difference of U, — U,. Again the ratio is largest for (g, #) =(2,5) and the rest
are much weaker. This result, together with those shown in figure 7(a}, indicate that
in a coupled-channel calculation the coupling between the » =2 and » =35 channel is
the most important one and coupling of the » =2 channel with other channels may
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Figure 7. First-order coupling terms P, (R) for ¢ =2 and the five channels belonging to
the N =3 manifold. The dominant coupling is with the » =3 channel, and is given by a *
full curve, The other channels are with the » =6 (chain curves), » = 7 (dotted curves), ¥ =9
(dauble chain curves) and » =8 (broken curves). (b) Ratios of U,,/(U, — U,) for p=2
and »=35-9. The notations for different v are identical to those given in (a).

be neglected in the first-order calculation. Such coupled-channel calculations are
currently underway.

4, Summary and discussion

In this article we illustrate a local diabatic transformation procedure to a pair of
adiabatic states. Unlike the previous methods where diabatic transformation was carried
out over the whole range of R, this method performs diabatic transformation only in
the region of sharp avoided crossing, thus preserving the global character of the
adiabatic approach. After this diabatic transformation is carried out, it is shown that
all of the remaining off-diagonal coupling terms are small, and the wavefunction of
each diabatic channel does evolve ‘adiabatically’ with R and that diabatic functions
preserve the nodal structures.

The present local diabatic transformation has one important advantage over other
approaches. Since the precise values of P,, between the two adiabatic states are not
used in the transformation, there is no need to calculate P,, over dense mesh points
in the avoided crossing region. However, the present approach still has a number of
shortcomings. First, the residual coupling terms, while are small in the crossing region,
exhibit relatively non-monotonic behaviour. It is not clear whether different choices
of the fitting functions (see (17)) can remove such structures. Second, the present
procedure only applies to avoided crossings between two channels. If three or more
channels have to be treated together in a local region, the present method can be
generalized but it would be more tedious to do. For many-channel problems, the
diabatic-by-sector method (Pack and Parker 1987, Launay and Le Dourneuf 1989,
1990, Light and Walker 1976) employed by practitioners in atom-molecule reactive
scattering may be preferable.
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