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Abstract. Differential cross sections for the double charge transfer process in C4+-He 
collisions are studied using a quantal two-channel molecular orbital close coupling 
expansion method. The calculated results for C4+ at incident energies of 1520 and 500 eV 
are found to be in good agreement with recent measurements. It is also shown that the 
quantal calculations and the experimental results are well reproduced by a semiclassical 
approximation. Comparison with the recent semi-empirical study of the same system by 
Barany et a1 is also discussed. 

The charge transfer process between multiply charged ions and neutral atoms has been 
the subject of much theoretical and experimental investigation in recent years (Janev 
and Winter 1985). Most of the experiments carried out with different ion sources and 
with recoil ions provide total charge transfer cross sections. In the last few years, with 
the introduction of energy-gain spectroscopy (Schmeissner et a1 1984, Okuno et a1 
1983) and with optical measurements (Dijkkamp et a1 1985), charge transfer to specific 
final states has been reported. Only in the last two years, experimental differential 
cross sections for charge transfer processes from different ion sources have been carried 
out at several laboratories. 

In this letter we report a theoretical study on the differential cross section for the 
double charge transfer process in C4+-He collisions. For this system there are measure- 
ments from two laboratories at several energies using recoil ion sources (Cederquist 
et a1 1985, Barany et a1 1986). In the low-energy region (500-1500 eV for C4+) studied 
here, double electron capture of He by C4+ (1s') to C2' ( ls2 2s2) is the dominant 
process and thus the collision can be treated as a two-channel problem. We adopt a 
full quantum mechanical formulation; thus the motions of the electrons and of the 
heavy particles are both treated quantum mechanically. The results are also analysed 
to check the validity of the semiclassical approximations. 

This collision system has also been studied theoretically by Barany et al (1986). 
These authors adopted a semiclassical two-channel approximation. They fitted the 
relevant potential curves and coupling terms so that experimental differential cross 
sections are well reproduced. Our approach is different in that the relevant potential 
curves and the coupling terms are obtained through ab initio calculations and the 
differential cross sections are calculated in a full quantal formulation. Our goal is to 
show that the present ab initio calculations are capable of reproducing these differential 
cross sections. We further show that in this energy range, a semiclassical calculation 
is also valid. 
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In a full quantum formulation of heavy particle scattering at low energies (Heil et 
a1 1981), the total Hamiltonian includes two parts-an electronic part and a heavy- 
particle part. The total wavefunction of the system in the adiabatic representation is 
given by 

where R is the internuclear separation and r denotes the electronic coordinates. In 
(l),  F n ( R )  is the wavefunction of the heavy particle when the electrons are in state n 
and the x n ( R ;  r )  are the adiabatic molecular wavefunctions including electron transla- 
tional factors (ETF). It is more convenient to solve differential equations for heavy- 
particle wavefunctions in a diabatic representation. Transformation from adiabatic to 
diabatic representation is achieved through a transformation matrix C( R ) .  In this 
representation the radial wavefunction for the heavy particles is Fd = C- 'Fa ,  and the 
diabatic potential matrix is V d  = C-'VaC, where V" is the adiabatic potential matrix. 

In the diabatic representation Fd satisfies (in atomic units) 

[(-1/2p)V2,1 - V d ( R ) + E I ] F d ( R )  = O  (2) 

where I is the identity matrix, and p is the reduced mass. Equation (2) becomes a 
coupled radial equation by a partial wave expansion of Fd(R).  The resulting radial 
equation for each partial wave is then solved numerically using the log-derivative 
method of Johnson (1973). From the S matrix calculated for each partial wave, the 
differential cross section is obtained from the standard formula 

where Si2 is the off-diagonal matrix element for partial wave 1, k is the momentum of 
the incident particle in the centre of mass frame and 6' is the angle of the scattered 
particle with respect to the incident direction. 

We have carried out a two-channel full quantum calculation for C4+ on He to 
obtain the differential charge transfer cross section at impact energies 1520 and 500 eV 
(13.97 and 4.60 au in centre of mass). The adiabatic potential curves (matrix V")  and 
coupling term used for this work are taken from Kimura and Olson (1984). The readers 
are referred to that article for the relevant potential curves. The boundary condition 
for the transformation matrix is C ( R  -+ 00) = I. In figure 1 we show the results of the 
theoretical calculation and its comparison with the measurement of Cocke et al (see 
Barany et al 1986). The theoretical calculation has been folded with an experimental 
angular resolution of 4.8 mrad (L Tunnell, private communication) and the relative 
experimental measurement has been normalised for comparison. We note that the 
experimental oscillatory structure is well reproduced by the theoretical calculation, 
particularly the positions of maxima and minima and their relative heights. On the 
other hand, there is a small but noticeable shift in the position of the first maximum. 

A similar comparison with the experimental data of Cederquist et a1 (1985) for 
collision energy at 500eV is shown in figure 2. Here the differential cross section is 
displayed against the energy gain of the projectile. The theoretical results are con- 
voluted with an energy resolution of 1.2 eV (J Pedersen, private communication). It 
can be seen that the theoretical energy-gain spectra are in reasonable agreement with 
the data. It is noted that if the experimental data are shifted by 1 eV so that its highest 
peak coincides with the theoretical result, the positions of the other pronounced maxima 
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Figure 1. Differential charge transfer cross section for C4+ collision on He at 1520 eV (the 
relative velocity V = 0.071 au). Experimental data are from Tunnel1 and Cocke (Barany 
et a1 1986). The theoretical cross sections are given in units of cm2 and convoluted 
with experimental resolution (full line). Experimental data are in abitrary units. 

Figure 2. Energy-gain spectrum for double charge transfer process for C4+ on He at 500 eV 
(the relative velocity V = 0.041 au). Experimental data: Cederquist er a /  (1983,  arbitrary 
units. Theoretical result: full line in units of cm2 eV-'. 
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and minima would then be in good agreement with the theoretical calculations. In 
obtaining the energy-gain spectrum from the calculated angular distribution, we use 
the relation 

Q = 2y[ E,( Eo+ COS 6 + (1 + y ) (  E , + A E )  + (1 - ?)Eo (4) 
where E, is the incident energy, A E  is the energy gain, Q is the energy defect between 
initial and final states and y is the ratio of the mass of C to that of He. 

The total double charge transfer cross sections at 500 and 1520 eV were calculated 
to be 4.079 x cm2, respectively. These results are larger than 
those obtained from a multichannel calculation done by Kimura and Olson (1984). 
This discrepancy can be attributed to the idealised two-channel model used in the 
present calculation which tends to overestimate total cross sections. The numbers of 
partial waves needed to reach a reasonable convergence for the total cross section 
calculation for 1520 and 500 eV are about 1500 and 900, respectively. 

The results in figures 1 and 2 indicate that the experimental differential charge 
transfer cross sections are well described by a two-channel full quantal model. It is 
desirable to see if the major features of these differential cross sections can be explained 
by semiclassical methods. To this end, we first show in figure 3 (full curve) ISi2I2 at 
1520 eV obtained from the quantal calculation against total angular momentum. The 
broken curves in the figure are from the semiclassical calculation which will be discussed 
later. Figure 3 shows that the magnitude of SI2 is oscillatory. The irregularity in the 
oscillation at small 1 is due to the inaccuracy of the ab initio potential curves in the 
small-R region. Since the potential curves were calculated using a pseudopotential 
for C4+, the potential is not expected to be valid at small R. However, this irregularity 
at small 1 would not affect the results of this study since their contribution to the 
measured angular region is very minimal. 

cm2 and 4.098 x 

1 

Figure 3. 1 S , 2  / *  against partial waves at impact energy 1520 eV. The full curve is the result 
of a full quantal calculation. The broken curve is from a semiclassical calculation using 
a curve trajectory (see text). 
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We next consider how the oscillatory features of the differential cross sections are 

( 5 )  

related to the oscillatory structure of IS121. For this purpose Si2 is expressed as 

SI2(1) = A' sin [' e x p ( i ~ : ~ )  

where A' is a slowly varying function of 1 and the oscillation of I SI21 is governed by 
the function sin 6'. Note that, from ( 5 ) ,  the scattering amplitude f ( 0 )  is the sum of 
the product of three oscillatory functions, namely the two functions sin [' and e x p ( i ~ : ~ )  
of ( 5 )  and the Legendre polynomial P,(cos 0)  which is approximately given by 

for 1 sin 0 >> 1. This oscillatory sum can be evaluated using a stationary phase approxi- 
mation (Mott and Massey 1949). Constructive interference occurs only near the Z 
value, 1 f = Zo, where the phase is stationary, i.e. where the first derivative of the phase 
with respect to Z vanishes: 

Thus f (  e )  is evaluated at the two stationary phases, 1 * =le ,  , 

f ( e )  = C+ eiP+ + C- eiP- 

and 

d o  k2 
dR k ,  

- [ I  c+ 12+ I c- I2+2CTC- cos@+ - p - ) ]  

where 

(9) 

p d e )  = ( d 2  + t9f* - ( 1 ,  +; )e  -h (11) 

and k ,  and k2 are the momenta of the incident and exit channels, respectively. From 
(7)  it is natural to introduce e+ and 6- as the two classical deflection functions of the 
two charge transfer 'paths'. The oscillatory term, CO@+ - p-) ,  may be interpreted as 
the interference due to the two paths. In the present studied system, d['/dZ is very 
small over a large range of 1 so that we can define a single deflection function 

In this limit, p+ - p- = 25', C,  = C-,  and (9) becomes 

d o  k2 
-= 4-1 c+( e)  Izsin2 [(e). 
dR k ,  

Note that (13) is proportioal to ISI21* at an angle defined by (12). Equations (12) and 
(13) allow us to perform a simple mapping from I SI2 1' to d a / d R  under the mathematical 
stationary phase approximation. Such a mapping is displayed in figure 4. In this 
figure, three quantities from the quantal calculations are compared with the correspond- 
ing ones from the semiclassical calculations. 
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Figure 4. Mapping of electron capture probability to obtain differential cross sections via 
a deflection function. The full curves in the deflection function and in the differential cross 
sections are obtained from quantal calculations while the same quantities calculated by 
the semiclassical method are shown as broken curves. 

(1) The quantal I SI2 l 2  is displayed against classical impact parameter b = L/ k. This 
quantity can be identified with the charge transfer probability P ( b )  at a given impact 
parameter b calculated from the semiclassical model. Such a comparison is given in 
figure 3 where P( b )  is given by broken curves. The trajectory used in the semiclassical 
calculation is determined by an average diabatic potential, V,, = ;( Vll( R )  + V22( R)).  
The agreement between the two calculations is quite good at large impact parameters 
(or large 1). The discrepancy at small 1 does not affect the angular distribution at the 
small angles studied here. 

( 2 )  The deflection function calculated from (12), shown by full curves, is compared 
with the classical deflection function 

In (14), Ro is the turning point and p(R)  is the radial momentum calculated in the 
average potential Vav. The classical deflection function, as shown by broken curves, 
is not too different from the quantal one obtained from (12). 

(3) The differential cross sections; using I $ , I 2  as the capture probability, together 
with the classical deflection function, one can obtain the differential cross sections by 
mapping from 1 to scattering angles. The results are shown by broken curves in figure 
4. Notice that this simplified semiclassical result is in good agreement with the quantal 
calculation as well as with experimental data. 

The agreement between the quantal and the semiclassical calculations deteriorates 
as the collision energy decreases. Generally, the number of oscillations in the semi- 
classical P( b )  is proportional to the inverse of the impact velocity while that of quantal 
I SI2l2 is not. We have checked the comparison at 500 eV and the agreement between 
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quantal and semiclassial results is still reasonable. At lower energies the semiclassical 
method used here becomes invalid. 

We have also used the empirically determined diabatic potentials V, of Barany et 
al(1986) to evaluate the differential cross sections in our quantal calculation. Although 
the resulting du/dO are very similar to theirs (and in agreement with experiments), 
the details in S , ,  are actually quite different. The oscillation in I S1212 from the deduced 
potentials is much more rapid than the I SI, l 2  shown in figure 3. It indicates that the 
rate of change in the phase of S12 is also larger in their calculation. It has been 
demonstrated by Dinterman and Delos (1977) by a semiclassical argument that the 
transition amplitude does not depend upon the three potential matrix elements, K j ,  
taken independently, but only upon the behaviour of ( VI - V2,)/2 V,, . In other words, 
it is not possible to deduce potential curves uniquely from relative experimental 
differential cross sections for two-channel problems. 

In summary, we have demonstrated in this letter that the measured differential 
charge transfer cross sections in C4+( ls2) + He + C2+( ls22s2) + He2+ are well described 
by a model based on a quantal two-channel molecular orbital close-coupling expansion 
method. It is shown that the molecular expansion with the electron translational factors 
adopted in this calculation does give a good description of the measured differential 
cross sections. We have also illustrated that the present two-channel results can be 
described by a semiclassical theory. Recent measurements of differential cross sections 
involve systems which are inherently multichannel phenomena. It is desirable to pursue 
the question of whether these new data can be described by a full multichannel quantal 
calculation and if there is a corresponding semiclassical description. 

This work is supported in part by the US Department of Energy, Office of Energy 
Research, Division of Chemical Sciences. 
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