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Effect of transition dipole phase on high-order-harmonic generation in solid materials
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High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes
contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole
phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene
and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we
demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry,
or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be
neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further
show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic
spectra of a solid the TDP cannot be ignored.
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I. INTRODUCTION

Since the first observation of nonperturbative high-order
harmonic generation (HHG) in ZnO crystals in 2011 [1], HHG
from solid materials has been reported by various experimental
groups. It has been demonstrated that more efficient harmonic
emission can be achieved from solid materials than from atoms
and molecules [2] because of the high density and the periodic
structure in crystals. The HHG plateau in crystals has been
extended to the extreme-ultraviolet region recently [3,4] and
it may become potential sources of attosecond pulse genera-
tion. The highly nonlinear interaction between femtosecond
lasers and crystals also paves the way for controlling the
electric current in solids into the petahertz domain [5,6]. This
means that the maximum processor speed can exceed the
limit imposed by the traditional metal-oxide-semiconductor
field-effect transistors (MOSFETs) in the future. It has also
been proposed that HHG from solids can be used for all-
optical reconstruction of the band structure [7–9] and spatial
structure [10].

To implement such possible applications, an accurate
physical model that can describe the mechanism of HHG
from solid materials is needed. To date, there are three main
theoretical approaches for the study of the HHG process from
solids: the Wannier–Bloch approach using localized Wannier
wave functions for the valence band and delocalized Bloch
functions for the conduction band [11], the time-dependent
Schrödinger equation (TDSE) and semiconductor Bloch equa-
tions (SBEs) approaches using the Bloch basis functions under
the single-electron approximation [12,13], and time-dependent
density functional theory (TDDFT) that involves solving the
time-dependent Kohn–Sham equations [14–16]. Since the
band theory gives a direct access to the crystal structure, the
TDSE and SBEs based on the Bloch basis functions were
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widely used in recent years. We show later that SBEs can be
derived from TDSE where the dephasing effect in solids can
be introduced [17–19]. When using the Bloch picture, there
are two major mechanisms that contribute to the HHG process:
the intraband current and the interband polarization. These two
mechanisms have been used to successfully interpret many
experimental results [1,3,9,10,20–23]. Generally speaking,
both mechanisms depend strongly on the band structure [1,3]
of the solid and the nature of its transition dipole moment [24].
However, it is not clear whether one mechanism dominates
the other in a given experiment without the analysis of the
calculation.

In solids, angular-dependent HHG spectra have been
reported in many experiments [1,10,20,23,25–27]. While in
certain laser polarization directions only odd harmonics were
observed, in other directions even harmonics also appeared.
Based on a simple physical picture, the appearance of even-
order harmonics can be easily understood as due to the break-
down of the inversion symmetry in a given experiment. Yet
in a number of theoretical calculations, the emergence of even
harmonics has to rely on more complicated theoretical models.
In particular, in Ref. [20] it was stated that “a two-band model
with one conduction and one valence band cannot explain
the occurrence of even harmonics in the emission spectrum.
For this reason, we generalize the theory presented in Refs. [9]
and [10] beyond a two-band description.” Reference [28] states
that “it is not possible to account for even harmonics generated
directly from crystalline ZnO only with a two-band model.”
Alternatively, a second harmonic of the driving field was added
artificially to account for the appearance of even harmonics [9].
Thus, in the first two references, the origin of even harmonics
was attributed to the lack of convergence of a two-band model,
so a multiband model is required. Intuitively this is inconsistent
since a multiband calculation may improve the accuracy of the
calculation but not the appearance of “new” spectral features.
In the third reference, the appearance of even harmonics
was attributed to the asymmetry of the laser light. If this is
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true, then even harmonics should be observed in solids in all
systems.

In the present work, we offer a much simpler interpretation
of the appearance of even harmonics in solids that is consistent
with the intuitive picture that even harmonics occur due to the
breakdown of inversion symmetry in the solids. A simple two-
band model is able to predict the generation of even harmonics
for such systems. We traced the failure of the earlier works to
the approximations made of the dipole transition elements
where the transition dipole phase (TDP) was neglected. In
this approximation, the broken symmetry of the system was
inadvertently “restored,” thus resulting in the disappearance
of even harmonics. Thus, in this article, we investigated the
role of the TDP in the generation of harmonics in solids. We
emphasize the importance of treating the TDP correctly in
the theory for a correct interpretation of experimental HHG
data. TDP has not been widely investigated in linear optical
physics. In the nonlinear HHG in solids, the broadband nature
of the interaction requires the correct treatment of TDP over
a broad spectral region. Such a requirement poses additional
challenges in the HHG theory in solids since most commercial
software packages do not treat the TDP correctly. Thus in the
present work, we look to study HHG in graphene where the
band structure can be approximately calculated by using the
tight-binding model. We used the two-band model to illustrate
how even harmonics are generated for systems that exhibit
broken symmetry.

In Sec. II we begin with a brief account of the theory. The
role of the TDP is demonstrated in Sec. III by calculations of
HHG spectra from graphene (with inversion symmetry) and
gapped graphene (without inversion symmetry). In graphene
the TDP can be ignored and only odd harmonics exist, while
in gapped graphene the TDP cannot be neglected and both
even and odd harmonics are generated. In Sec. IV we study
the role of TDP in the generation of even harmonics from
the quantum orbits point of view. In Sec. V we investigate
whether the structure of a crystal in a dynamic system can
be revealed by monitoring the strength of even harmonics by
deforming the lattice geometry of a crystal. Based on this
study, we find that the lattice separation has to be substantially
reduced before the even harmonics can become comparable to
the odd harmonics in strength. On the other hand, the strength
of even harmonics grows rapidly when the lattice distance is
reduced even if just by a few percent. Future experimental
studies should investigate whether even harmonics in a solid
can be used to probe the change of lattice separations in
a dynamic system. We summarize this article in Sec. VI.
Atomic units are used throughout this article unless otherwise
noted.

II. BASIC THEORY

A. Semiconductor Bloch equations

The SBEs, which were derived from TDSE in the length
gauge under the single-electron approximation, are used in this
work to calculate the HHG spectra from crystals. Consider two
energy bands in the HHG process. As in semiconductors, the
upper band is treated as the conduction band (“c”) while the
lower band is the valence band (“v”). For a two-band model,

the SBEs read

∂pcv(k,t)

∂t
=

(
−iEg(k) − 1

T2

)
pcv(k,t) + F(t) · ∇kpcv(k,t)

+i[ρc(k,t) − ρv(k,t)]F(t) · Dcv(k), (1)

∂ρv(k,t)

∂t
= −2Im{F(t) · Dcv(k)pcv(k,t)}

+F(t) · ∇kρv(k,t), (2)

∂ρc(k,t)

∂t
= 2Im{F(t) · Dcv(k)pcv(k,t)}

+F(t) · ∇kρc(k,t). (3)

Here pcv(k,t) is the micropolarization between the conduction
band and the valence band. Eg(k) = Ec(k) − Ev(k) is the
energy difference between the two bands and ρc(k,t) [ρv(k,t)]
is the electron density in the conduction (valence) band. T2 is
the interband dephasing time. In this paper, T2 is set to 1 fs for
graphene as used in Refs. [3,22,27]. F(t) = ε̂F (t) is the electric
field of the laser pulse with ε̂ being the polarization direction.
Dcv(k) is the transition dipole moment (TDM) between
the valence band and the conduction band, which can be
calculated by

Dcv(k) = i

∫
cell

u∗
c,k(r)∇kuv,k(r)dr, (4)

where uc,k(r) [uv,k(r)] is the periodic part of the Bloch
wave function for the conduction (valence) band with crystal
momentum k. The derivation of the SBEs starting from the
TDSE is given in Appendix A. The SBEs are solved by the
finite difference method with constant time grid �t = 0.000 25
a.u. and crystal momentum grid �k = 0.00001 a.u.

After solving the SBEs, one can obtain the intraband
current

Jintra(t) =
∑
λ=c,v

∫
BZ

vλ(k)ρλ(k,t)dk, (5)

and the interband current

Jinter(t) = ∂

∂t

∫
BZ

Dcv(k)pcv(k,t)dk + c.c., (6)

where vλ(k) = ∇kEλ(k) is the group velocity. In this work we
are interested in the spectrum of parallel harmonics, which
is proportional to the absolute square of the projection of
the Fourier-transformed total current onto the polarization
direction ε̂, i.e.,

SHHG(ω) ∝
∣∣∣∣ε̂ ·

∫ ∞

−∞
[Jintra(t) + Jinter(t)]e

iωtdt

∣∣∣∣
2

. (7)

B. Properties of transition dipole moment with respect to
crystal symmetry

The TDM, with Dcv(k) given in Eq. (4), is an important
quantity in HHG processes. Here we discuss what properties
the TDM should have if the crystal has certain spatial
symmetry. To begin with, the wave function um,k(r) satisfies
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the k · p eigenvalue equation:(
−1

2
∇2

r + V (r) − ik · ∇r

)
um,k(r)

=
(

Em(k) − k2

2

)
um,k(r), (8)

where Em(k) is the energy eigenvalue for band m with a crystal
momentum k, and V (r) is the periodic potential of the crystal
used in the one-electron model.

In Eq. (8) if we replace k by −k, noting that Em(−k) =
Em(k), then (

−1

2
∇2

r + V (r) + ik · ∇r

)
um,−k(r)

=
(

Em(k) − k2

2

)
um,−k(r). (9)

On the other hand, if we take the complex conjugate of Eq. (8),
then (

−1

2
∇2

r + V (r) + ik · ∇r

)
u∗

m,k(r)

=
(

Em(k) − k2

2

)
u∗

m,k(r). (10)

Consider nondegenerate energy bands, from Eqs. (9) and (10)
we can set um,−k(r) = u∗

m,k(r). Then from Eq. (4) one obtains
a general property

Dcv(−k) = D∗
cv(k) (11)

for any crystal. If the crystal has inversion symmetry, V (r) =
V (−r), by replacing r by −r in Eq. (8), we have(

−1

2
∇2

r + V (r) + ik · ∇r

)
um,k(−r)

=
(

Em(k) − k2

2

)
um,k(−r). (12)

Comparing Eq. (12) to Eq. (9) we find um,k(−r) = ±um,−k(r);
then from Eq. (4),

Dcv(−k) = ±Dcv(k). (13)

Therefore, for crystals with inversion symmetry, the TDM
Dcv(k) is either even or odd with respect to k.

Moreover, consider if the crystal has no inversion symmetry
but has reflection symmetry with respect to a symmetry
plane. Let n be the unit vector perpendicular to the symmetry
plane (normal direction), we can introduce a reflection op-
eration Tnr = r − 2(r · n)n such that V (Tnr) = V (r). From
Eq. (8), (

−1

2
∇2

Tnr + V (Tnr) − ik · ∇Tnr

)
um,k(Tnr)

=
(

−1

2
∇2

r + V (r) − i(Tnk) · ∇r

)
um,k(Tnr)

=
(

Em(k) − k2

2

)
um,k(Tnr). (14)

Since Em(Tnk) = Em(k), we can find um,k(Tnr) = ±um,Tnk(r).
Finally from Eq. (4) we can obtain a relation for the TDM when

the crystal has reflection symmetry:

η̂ · Dcv(Tnk) = ±Tn(η̂) · Dcv(k), (15)

where η̂ can be any unit vector. A particular case of interest is
when η̂ = n and k = kn, in which

n · Dcv(−kn) = ∓n · Dcv(kn). (16)

For the HHG processes considered in this work, the TDM
that contributes most to the parallel harmonic can be reduced
to a scalar function D‖,cv(k) = ε̂ · Dcv(ε̂k). Here ε̂ is the laser
polarization direction, and the crystal momentum k is confined
along this direction.

For the system that has inversion symmetry, Eqs. (11) and
(13) imply

D‖,cv(−k) = D∗
‖,cv(k), (17)

and

D‖,cv(−k) = ±D‖,cv(k). (18)

Therefore, the TDM D‖,cv(k) can only take two forms: a real
and even function, or a pure imaginary and odd function of k.
In either case its phase is trivial and not important.

On the other hand, only Eq. (17) holds if there is no
symmetry. The TDM can then be expressed as

D‖,cv(k) = |D‖,cv(k)|eiθ(k). (19)

Here θ (k) is the nontrivial TDP, which is an odd function of k.
For the crystal that has reflection symmetry, the property

of TDM depends on the polarization direction. If ε̂ ‖ n,
then from Eq. (16) we can see that Eq. (18) still holds
for D‖,cv(k), just as in the case with inversion symmetry.
However, if the polarization direction ε̂ is not parallel to
the normal direction of the symmetry plane, Eq. (18) is
not valid, and the TDP, θ (k), as given in Eq. (19), cannot
be ignored. In other words, ignoring the TDP is equivalent
to introducing additional symmetry that is not present in
the problem, thus resulting in the disappearance of even
harmonics.

In previous papers, the TDMs were calculated approxi-
mately by first-order k · p theory where the θ (k) was not
taken into account. Strictly speaking, the first-order k · p
approximation is valid only when k is close to 
 or other
high-symmetry points. When interacting with strong laser
fields, the electrons would be driven away from the high-
symmetry points and even travel through the entire Brillouin
zone, thus the first-order k · p approximation is not appro-
priate. In our previous papers [21,24] and in Ref. [29], the
absolute values of the k-dependent TDMs are calculated from
density functional theory (DFT). However, based on the above
analysis, ignoring the TDP is not justified for a system without
symmetry.

To conclude this section, the TDP will reflect the spatial
symmetry of the solid. For a crystal without inversion sym-
metry, the TDP should be taken into account. In the following
sections we will take the graphene (with inversion symmetry)
and the gapped graphene (without inversion symmetry) as
examples to demonstrate the role of TDP in the HHG
process.
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III. HARMONICS FROM GRAPHENE
AND GAPPED GRAPHENE

The interaction of a strong laser field with graphene, or
graphene-like materials, has been studied theoretically [30–33]
and in a recent experiment [34]. Here, we choose model
graphene and gapped graphene for several reasons. First,
relatively pure graphene can be grown in the laboratory.
Second, gapped graphene with broken symmetry can be grown
on substrates. Third, as a two-dimensional (2D) material,
graphene or gapped graphene can be easily treated by the
tight-binding approximation [35] where analytical expressions
for the energy bands and the TDM can be derived. Since it is
not trivial to obtain accurate TDP from DFT-based commercial
software, the TDM obtained from analytical expressions is
particularly important.

The lattice structure and the 2D first Brillouin zone of
graphene or gapped graphene are shown in Figs. 1(a) and 1(b),
respectively. There are two atoms per unit cell, labeled “A” and
“B” in Fig. 1(a). When both of these two sites are occupied
by carbon, the system is graphene with inversion symmetry. If
the graphene is grown on SiC substrate these two sites become
inequivalent and the system becomes a gapped graphene that
has no inversion symmetry. Assuming that only the 2pz wave
function of each atom contributes to the Bloch wave function,
based on the nearest-neighbor interactions and tight-binding
approximation, analytical expressions of the energy band
and the wave function for graphene-like materials can be
derived:

Ec/v(k) = ±
√

�2

4
+ |g(k)|2, (20)

|n,k〉 = 1√
2

⎛
⎝ eiα(k)/2

√(
En(k) + �

2

)
/En(k)

±e−iα(k)/2
√(

En(k) − �
2

)
/En(k)

⎞
⎠, (21)

where

g(k) = γ1e
ik·R1 + γ2e

ik·R2 + γ3e
ik·R3 . (22)

In the above equations, |n,k〉 denotes the Bloch wave function
of the conduction band (“c”) or the valence band (“v”). The
positive sign in “±” is for the conduction band while the
negative sign is for the valence band. � is the energy gap at
K points, � = 0 for graphene with inversion symmetry, while
� > 0 for gapped graphene without inversion symmetry. γ1,
γ2, and γ3 are the two-center hopping integrals which depend
on bond length [36]. The vectors R1, R2, and R3 are shown in
Fig. 1(a) and describe the spatial structure of the system. The
factor α(k) = arg{f (k)} with

f (k) = eik·R1 + eik·R2 + eik·R3 . (23)

In this work we choose γ1 = γ2 = γ3 = −3.03 eV, |R1| =
|R2| = |R3| = 1.42 Å, and � = 1 eV for the gapped
graphene.

By inserting the Bloch wave functions into Eq. (4), an
analytical expression for the TDM is obtained:

Dcv(k) = − |g(k)|
2Ec(k)

∇kα(k) + i
�

4E2
c (k)

∇k|g(k)|. (24)

More explicitly, the TDM for the graphene is

Dx,cv(k) = a

2
√

3

1 + cos
(

aky

2

)[
cos

(
3akx

2
√

3

)
− 2 cos

(
aky

2

)]
1 + 4 cos

(
aky

2

)[
cos

(
3akx

2
√

3

)
+ cos

(
aky

2

)] ,

(25)

Dy,cv(k) = a

2

sin
(

aky

2

)
sin

(√
3akx

2

)
1 + 4 cos

(
aky

2

)[
cos

(
3akx

2
√

3

)
+ cos

(
aky

2

)] ,

(26)

and for the gapped graphene is

Dx,cv(k) =
aγ

[
cos

(
3akx

2
√

3

)
cos

(
aky

2

)
− cos

(
aky

)]
2
√

3Ec(k)|f (k)|

+i
a�γ

[√
3 sin

(
3akx

2
√

3

)
cos

(
aky

2

)]
4E2

c (k)|f (k)| , (27)

Dy,cv(k) = aγ

2Ec(k)|f (k)| sin

(√
3akx

2

)
sin

(
aky

2

)

+i
a�γ

[
cos

(√
3aky

2

)
sin

(
aky

2

)
+ sin

(
aky

)]
4E2

c (k)|f (k)| ,

(28)

where a = |a1| = |a2| = 2.46 Å; see Fig. 1(a).
As expected, for graphene with inversion symmetry, Dcv(k)

is a real and even function with respect to k, and the TDP is
zero. On the other hand, the expression of the transition dipole
for the gapped graphene is a complex quantity and it only
satisfies Eq. (11) in general. We take the 
-M direction as the
x axis, and the y axis is taken along the 
-K direction, as
shown in Fig. 1.

If the laser is polarized along the x direction, the energy
bands of graphene and gapped graphene are shown along the

-M direction is shown in Fig. 1(c). Note that the 
 point
is always the k = (0,0) point, but in all of the figures in this
paper we put the +M (−M) point at the center where the
minimum band gap is located. The energy bands between the
two materials are nearly the same. Along the 
-M direction,
the amplitude and phase of the dipole transition moment are
shown in Figs. 1(e) and 1(d), respectively. The magnitude of
the dipole moment for the two materials are also very close to
each other. On the other hand, there is a clear difference in the
TDP. The TDP for graphene is zero, but for gapped graphene
there is a small but non-negligible value. This nonzero TDP
will be responsible for the generation of even harmonics. Also
note that the energy gap, shown in Fig. 1(c), is smallest near the
M point, and the transition dipole amplitude is also narrowly
peaked at the M point, thus the harmonics are expected to be
dominated by this portion of the Brillouin zone. The TDP is
taken from Eq. (27) for polarization along the x direction.

If the laser is polarized along the y direction, D‖,cv(k) =
Dy,cv(kŷ), Eq. (28) implies that the TDM for gapped graphene
becomes an odd and pure imaginary function of k, which is a
trivial constant phase that can be ignored. This is not surprising
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FIG. 1. (a) Hexagonal lattice structure of 2D graphene or gapped
graphene. ai is the unit vector in real space. The unit cell contains two
atoms labeled “A” and “B.” If both of these two sites are occupied with
carbon, the system is graphene. If these two sites are inequivalent,
the system becomes gapped graphene. The x and y axes are also
indicated. (b) The first Brillouin zone of graphene or gapped graphene.
gi is the reciprocal-lattice vector. High symmetry points, 
, M, and
K, are labeled. (c) Energy bands of graphene (black solid lines) and
gapped graphene (red dashed lines) along the direction of 
-M. The
band structures for graphene and gapped graphene are nearly the
same. Note that the band structure was presented by using the M point
at the center. (d) Transition dipole phases (TDPs) of graphene (black
solid line) and gapped graphene (red dashed line) in the direction of

-M. The TDP of graphene is zero for all crystal momentum due to
the inversion symmetry. In contrast, there exists a nonzero TDP for
gapped graphene along the x axis. (e) Absolute values of transition
dipole moments along the 
-M direction for graphene (black solid
line) and gapped graphene (red dashed line). The behavior of the
band structure and transition dipole along the y axis is explained in
the text.

because gapped graphene has reflection symmetry with respect
to the x-z plane, with ŷ being its normal direction. The energy
band along the 
-K direction, with (+/−) K at the center, has
a similar shape as in Figs. 1(c) except that the energy gap is
only about 1 eV. While the constant phase of Dy,cv(kŷ) can be
ignored, the magnitude of this dipole diverges at the (+/−) K
point. This can be seen by rewriting f (k) as

f (k) = e
i akx√

3 + 2e
−i akx

2
√

3 cos

(
aky

2

)
(29)

by setting each |Ri | to a/
√

3 in Eq. (23). Along the y axis
where akx = 0, f (k) goes to zero when aky = 4π/3, which
corresponds to the (+/−) K point. The existence of such a

FIG. 2. Calculated HHG spectra for graphene with laser polarized
along the x direction (black dash-dotted line), gapped graphene with
laser polarized along the x direction (red solid line), and gapped
graphene with laser polarized along the y direction (dashed blue
line). Laser parameters are 10 fs FWHM, 800 nm in wavelength, and
2 × 1012 W/cm2 in peak intensity.

singular point in the transition dipole will make the HHG
calculation along the y axis less accurate.

High-order harmonic spectra from graphene and gapped
graphene are calculated by SBEs and presented in Fig. 2.
Here the laser parameters are 10 fs duration full width
at half maximum (FWHM), 800 nm in wavelength, and
2 × 1012 W/cm2 in peak intensity. For graphene, only odd
harmonics are observed. For gapped graphene, with the laser
polarized along the y direction, only odd harmonics appear.
In contrast, even harmonics come into appearance when the
laser is polarized along the x direction because the symmetry is
broken. The even harmonics are closely related to the TDP that
reflects the symmetry of the system. This has been confirmed
by our numerical calculation. Once we remove the phase of the
transition dipole in the gapped graphene, the even harmonics
disappear in the calculated HHG spectra.

In Fig. 2 the harmonic yields for the gapped graphene
in the y direction is much larger than in the x direction. A
normalization factor of 200 was used to match the intensity of
the first harmonic. The resulting curve for the y harmonics
drop down much slower than the x harmonics. However,
as pointed out earlier, the dipole amplitude along the y

axis has singularity at the +/− K points. The numerical
calculations under this circumstance may be less accurate.
This is a topic that will require further investigation in the
future.

From Fig. 2 it is obvious that the intensity of even harmonics
is much lower than that of the odd harmonics. We now explore
what factors influence the strength of even harmonics. We
define a parameter Pi for the efficiency of the generation
of different harmonics from the second to the fifth order,
we show its dependence on laser intensity and wavelength
in Fig. 3. We note that even harmonics are always lower
by three orders between the second and third harmonics,
and by one order between the fourth and fifth harmonics. It
appears that for the second and third harmonics their ratios are
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FIG. 3. Dependence of the efficiency of the second to fifth
harmonic from gapped graphene on laser parameters. The laser is
polarized along the x direction (without symmetry). In panels (a) and
(b), the laser wavelength is fixed to be 800 nm while the intensity is
tuned from 1 × 1012 to 3 × 1013 W/cm2. In panels (c) and (d), the
laser intensity is fixed to be 2 × 1012 W/cm2 while the wavelength is
tuned from 800 to 2000 nm.

nearly independent of the intensity and the wavelength. For
the fourth and fifth harmonics, the dependence on the laser
intensity is less smooth. The wavelength dependence does
appear to have a minimum near 1300 nm. Such dependence as
presented here is to serve a first-order estimate only because it
is expected that, at higher laser intensities, a multiband model
will be needed. Further extension of the present model to
multiband calculations will be needed to draw more accurate
conclusions.

IV. RELATIONSHIP BETWEEN THE EFFICIENCY
OF EVEN HARMONICS AND THE TRANSITION

DIPOLE PHASE

To find out why even harmonics are much weaker than
odd harmonics, it is instructive to simplify the SBEs model
and follow the Keldysh’s approach as presented in Ref. [37].
In general, both intraband and interband transitions will
contribute to the harmonic generation from solids. In Keldysh’s
approach these two components are treated separately. Assum-
ing ρv(k,t) − ρc(k,t) = 1, i.e., excitation to the conduction
band is small, then the interband and intraband components
can be calculated respectively by

J‖,inter(ω) = −iω

∫
BZ

dkε̂ · D∗
cv(k)

∫ ∞

−∞
dte−iωt

∫ t

−∞
dt ′F (t ′)ε̂

·Dcv[k + A(t) − A(t ′)]e−iS(k,t,t ′)e− t−t ′
T2 + c.c.,

(30)

J‖,intra(ω) =
∑
λ=c,v

∫
BZ

vλ(k)ε̂
∫ ∞

−∞
dte−iωt

×
∫ t

−∞
dt ′F (t ′)ε̂ · D∗

cv[k + A(t) − A(t ′)]

×
∫ t ′

−∞
dt ′′F (t ′′)ε̂ · Dcv[k + A(t) − A(t ′′)]

×e−iS(k,t ′,t ′′)e
− t ′−t ′′

T2 + c.c., (31)

where ω is the frequency of the generated harmonic,
S(k,t,t ′) = ∫ t

t ′ Eg(kτ )dτ with kτ = k + A(t) − A(τ ) is the
action, and A(t) = −ε̂

∫ t

−∞ F (t ′)dt ′ is the vector potential of
the laser field.

First, we focus on the interband component. Based on
saddle-point analysis in Ref. [37], we can write J‖,inter(ω)
as a coherent sum of contributions from a set of quantum
orbits that are labeled by (ks ,ts,t

′
s). To simplify the discussion,

consider the saddle-point solution of the crystal momentum ks

to be along the ε̂ direction, then all the vectors are reduced to
scalars. The interband current due to a single quantum orbit is
proportional to

D∗
‖,cv(ks)D‖,cv(k′

s)F (t ′s)e
−iωts−iS(ks ,ts ,t

′
s )− ts−t ′s

T2 , (32)

with D‖,cv(k) = ε̂ · Dcv(kε̂), as given before. The quantum
orbit can be interpreted as follows: the electron is excited
from the valence band to the conduction band at time t ′s with
crystal momentum k′

s = ks + A(ts) − A(t ′s), then it is driven
by the laser field in the conduction band and acquires a phase
e−iS(ks ,ts ,t

′
s ). Finally it recombines back to the valence band

at time ts with crystal momentum ks , accompanied by the
emission of a photon. More detail about the semiclassical
analysis can be found in Refs. [38,39].

For a multicycle electric field F (t) with an optical period
T , due to the periodicity of the electric field, the quantum
orbit corresponding to (−ks,ts + T/2,t ′s + T/2) results in the
same harmonic energy as the quantum orbit corresponding to
(ks,ts,t

′
s). Using F (t + T/2) = −F (t), the coherent sum of the

interband current resulting from such a pair of orbits that is
separated by one-half optical period is proportional to[

D∗
‖,cv(ks)D‖,cv(k′

s) − D∗
‖,cv(−ks)D‖,cv(−k′

s)e
−iω T

2
]

×F (t ′s)e
−iωts e−iS(ks ,ts ,t

′
s )e

− ts−t ′s
T2 . (33)

Therefore the yield of the N th harmonic is proportional to
|�N |2 where the factor �N is given by

�N = D∗
‖,cv(ks)D‖,cv(k′

s) − D∗
‖,cv(−ks)D‖,cv(−k′

s)e
−iNπ .

(34)

If the system has symmetry such that Eq. (18) holds,
then �N = D∗

‖,cv(ks)D‖,cv(k′
s)(1 − e−iNπ ). Clearly �N = 0

for even harmonics, therefore the harmonic spectrum consists
of odd harmonics only. This situation is similar to HHG in
atoms. On the other hand, with broken symmetry we only
have Eqs. (17) and (19), then

�N = |D‖,cv(ks)||D‖,cv(k′
s)|

×{ei[θ(k′
s )−θ(ks )] − e−i[θ(k′

s )−θ(ks )]e−iNπ }. (35)

One can deduce that for odd harmonics |�N |2 ∝ cos2[θ (k′
s) −

θ (ks)], and for even harmonics |�N |2 ∝ sin2[θ (k′
s) − θ (ks)].

Because the laser field is strong, in reciprocal space the
recombination could occur with a crystal momentum far from
where the electron was excited into the conduction band.
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FIG. 4. (a) Time-frequency analysis of HHG from gapped
graphene with laser polarized along the x direction. The HHG
intensities are depicted on a logarithmic scale. (b) The black solid
line is the electric field, and the red solid line is the vector potential of
the laser field; each is relatively normalized. The two arrows indicate
two symmetric electron orbits K1 and K2; see Eq. (30). Electrons are
excited into the conduction band at the starting point of the arrow
and recombine to the valence band at the ending point of the arrow
with a photon emitted. (c) The time-dependent electron density in
the conduction band ρc(k,t). 
 and ±M points are indicated on the
right-hand vertical axis. The density is on a linear scale shown along
the vertical axis on the left. (d) The k-dependent TDP is along the

-M direction (x direction). The largest difference in the TDP (�θ )
that an electron orbit can yield is about 0.07π . The laser parameters
are 2000 nm in wavelength, 25 fs FWHM, and 2 × 1012 W/cm2 in
intensity.

Thus in general there will be even harmonics if the crystal
does not have inversion symmetry or does not have reflection
symmetry with respect to the plane perpendicular to the laser
polarization direction. The strength of even harmonics depends
on the difference in the transition dipole phase at the subcycle
ionization time and return time: �θ = |θ (k′

s) − θ (ks)|. The
even harmonics are much weaker than the the odd harmonics
when �θ is close to nπ , and the opposite happens when �θ

is close to π/2 + nπ .
A similar analysis for an intraband transition is more

difficult since Eq. (31) is a four-dimensional integral. There is
no analytical expression like Eq. (35) available for intraband
transitions. Qualitatively, however, one can still draw the same
conclusion that efficient generation of even harmonics relies
on the TDP; see Appendix B.

In Fig. 4, we present the time-frequency analysis of the
harmonic spectrum for gapped graphene [Fig. 4(a)], the elec-
tric field and vector potential [Fig. 4(b)], the time-dependent
electron density in the conduction band [Fig. 4(c)], as well as
the k-dependent TDP [Fig. 4(d)]. From Fig. 4 we can see that
electrons are excited mostly at time t ′ when A(t ′) = 0. Then
the electrons are driven by the electric field in the conduction
band. During the motion in the conduction band, there are some
probabilities to make the transition from the conduction band
to the valence band accompanied by the emission of a photon.
The labels K1 and K2 indicate a pair of electron orbits that
are separated by one-half optical period. As discussed above,
these two quantum orbits will add coherently. The strength of
even harmonics is limited by the difference in the TDP (�θ )

FIG. 5. (a) The real-space structure of a deformed gapped
graphene with |R1| = 0.71 Å and |R2| = |R3| = 1.42 Å. (b) The re-
ciprocal space of the deformed gapped graphene. gi is the reciprocal-
lattice vector. High symmetry points, 
, M, and K, are labeled.
(c) Comparison between the TDP for normal gapped graphene
(|R1| = 1.42 Å) and deformed gapped graphene (|R1| = 0.71 Å).

that a quantum orbit can accumulate. For gapped graphene, as
shown in Fig. 4(d), the k-dependent TDP is very flat such that
�θ does not exceed 0.07π . This explains why the efficiency
of even harmonics is much lower than that of odd harmonics,
as shown in Fig. 3.

V. STUDY OF EVEN HARMONICS VERSUS LATTICE
DISPLACEMENT

In the previous sections the even harmonics for the gapped
graphene, due to its small TDP, are relatively weak. From
Eqs. (20)–(22), the TDP can be seen to be closely related
to g(k) and f (k), which in turn are determined by the spatial
structure of the crystal. Can the even harmonics be enhanced by
changing the lattice separation? If the answer is yes, then even
harmonics may provide a simple means for probing the strain
of a gapped graphene. In particular, due to the femtosecond na-
ture of the driving lasers, HHG may be used to probe the lattice
dynamics at femtosecond timescales. In this exploratory study,
we calculated the generation of even harmonics by changing
the bond length |R1| of the gapped graphene, while |R2|
and |R3| are kept fixed. Consider a highly deformed gapped
graphene with |R1| = 0.71 Å, and |R2| = |R3| = 1.42 Å,
its real space and reciprocal space structure are shown in
Figs. 5(a) and 5(b). The most important difference between the
normal and the deformed gapped graphene lies in their TDPs,
which are presented in Fig. 5(c), and from which one can see
that the maximum �θ that an electron orbit can accumulate
between ionization and recombination and is increased to
about 0.15π . Based on the earlier analysis, the increase of
�θ would result in an enhancement of even harmonics. In
Fig. 6, the harmonic spectrum from the deformed gapped
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FIG. 6. The black (dark) dashed line is the harmonic spectrum
from the normal gapped graphene. The red (gray) solid line is the
harmonic spectrum from the deformed gapped graphene. The blue
(short dashed) line is the harmonic spectrum from deformed gapped
graphene, but the TDP is kept unchanged. The laser is polarized along
the 
-M direction (x direction). Laser parameters are 10 fs FWHM,
800 nm in wavelength, and 2 × 1012 W/cm2 in intensity.

graphene (red solid line) is compared with the spectrum from
the normal one (black dashed line). As expected, the efficiency
of even harmonics is greatly increased in the deformed gapped
graphene. To emphasize the role of TDP, we also calculated
the harmonic spectrum from the deformed gapped graphene
but kept the TDP unchanged (i.e., the TDP corresponding
to |R1| = 1.42 Å). As shown in the blue short dashed lines in
Fig. 6, when the TDP is fixed, the efficiency of even harmonics
cannot be increased.

The change of lattice separation in the example above is
quite large. The example was used to demonstrate that even
harmonics may become as strong as the odd harmonics when
symmetry is broken. In Fig. 7(a) we show the TDPs vs small
increments of the bond length |R1| with the other two fixed. We
can see that the TDP is very sensitive to |R1| and the maximum
�θ is shown to increase rapidly as |R1| is decreased from 1.42
to 0.71 Å, resulting in higher efficiency in the generation of
even harmonics, as shown in Fig. 7(b). For smaller lattice
change, we examine the growth of even harmonics when |R1|
is compressed gradually until about 20% smaller. In Fig. 7(c),
we observe that the second and fourth harmonics are only
gradually enhanced within a change of |R1| of less than 10%.
Only for a change of above 10% do the even harmonics begin
to increase more rapidly. Without extensive investigations
on more systems, it is difficult to draw conclusions about
whether the even harmonics would rise rapidly when the lattice
constants are compressed or stretched from their equilibrium
position. If they do, measuring the change of the growth of even
harmonics would certainly serve a great deal for probing the
deformation of lattice constants in a crystal with femtosecond
temporal resolution of the lasers. We note that in many solids
the strain can be about 2% in experiments [40–42], but for a
dynamic system larger strains can be expected. A number of

FIG. 7. (a) Dependence of the TDP from 
-M on |R1|. (b) High-
order harmonic spectra from deformed gapped graphene by varying
|R1| from 1.42 to 1.14 Å. The 1.14 Å corresponds to about 20% strain.
(c) An overview of the change of harmonic spectra with different bond
length. The laser is polarized along the 
-M direction, with laser
parameters: 800 nm in wavelength, 2 × 1012 W/cm2 in intensity, and
10 fs FWHM.

theoretical papers have studied strains reaching 30% recently
[36,43–45].

VI. SUMMARY

In this work we established the important role of the
transition dipole phase (TDP) in high-order-harmonic gener-
ation from solids. The TDP has been disregarded in almost
all previous theoretical studies. We showed that TDP can
be ignored and only odd harmonics will appear if the
crystal possesses inversion symmetry. This property can be
generalized to systems with reflection symmetry. If the crystal
has reflection symmetry with respect to the plane perpendicular
to the laser polarization direction, then the TDP of the parallel
component of the transition dipole can also be ignored and
only odd harmonics will appear in the parallel polarization.
Without the aforementioned spatial symmetry, the TDP cannot
be ignored and even and odd harmonics are expected to appear
simultaneously. In the present study, even harmonics reflect the
symmetry property of the crystal, rather than by the effect
of contributions from multiple energy bands as purported
previously. While the HHG spectra from graphene and gapped
graphene are calculated theoretically under the tight-binding
approximation in the two-band model, we believe that more
extensive calculations would improve but not negate the
conclusion presented above. We have also shown that the
strength of even harmonics depends on the variation of TDP
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from excitation to recombination. As the bond length is tuned
the TDP is varied. This leads to the dependence of the ratio
of the strength of even over odd harmonics on the geometry
and size of the unit cell of a crystal. Further quantitative
investigations of these observations would shed new light on
probing the structure information of crystals using the HHG
spectroscopy.
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APPENDIX A

In this Appendix we derive the semiconductor Bloch
equations (SBEs) from TDSE in the length gauge. If the
velocity gauge is used it would lead to divergence when the
frequency of the laser approaches zero. Within the single-
electron approximation the TDSE is

i
∂

∂t
ψ(r,t) =

(
p2

2
+ V (r) + r · F(t)

)
ψ(r,t). (A1)

By using the field-free Bloch functions as the basis set, the
wave function ψ(r,t) can be expanded as

ψ(r,t) =
∑
m

∫
BZ

dkam(k,t)φm,k(r), (A2)

with φm,k(r) = 1√
N

um,k(r)eik·r. Here umk(r) is the periodical
part of the Bloch function. N is the number of unit cells in
the crystal. The wave functions φm,k(r) form a complete and
orthonormal basis set∫

crystal
φ∗

m,k(r)φm′k′(r)dr = δm,m′δk,k′ . (A3)

By inserting Eq. (A2) into Eq. (A1), multiplying by
φ∗

m′,k′ (r), and integrating this equation over real space,
Eq. (A1) becomes

i
∂

∂t
am(k,t) = Em(k)am(k,t) + F(t)·

×
∑
m′

∫
BZ

dk′am′ (k′,t)ξ (m,m′,k,k′), (A4)

where

ξ (m,m′,k,k′) = 1

N

∫
crystal

u∗
m,k(r)rum′,k′(r)ei(k′−k)·rdr. (A5)

The most troublesome object is the transition dipole term
ξ (m,m′,k,k′). To deal with this integral, in the first approach
one would break the integration in Eq. (A5) to a sum of

integrals over each unit cell

ξ (m,m′,k,k′) = δk,k′

∫
cell

u∗
m,k(r)rum′,k′(r)dr

+ 1

N

N−1∑
n=0

nRein(k′−k)·R

×
∫

cell
u∗

m,k(r)um′,k′(r)ei(k′−k)·rdr. (A6)

The first term on the right-hand side depends on the choice of
the unit cell. Thus, this is not an effective method.

The second approach to the infinite integration in Eq. (A5) is
to translate the real space into reciprocal space representation.
Because

∇k[um,k(r)eik·r] = eik·r∇kum,k(r) + irum,k(r)eik·r, (A7)

we can get

rum,k(r)eik·r = −i∇k[um,k(r)eik·r] + ieik·r∇kum,k(r). (A8)

Using the relationship Eq. (A8) we can rewrite Eq. (A5) as

ξ (m,m′,k,k′) = − iδm,m′∇k′δk,k′

+ i
1

N

∫
crystal

u∗
m,k(r)ei(k′−k)·r∇k′um′,k′ (r)dr.

(A9)

The second term on the right-hand side of Eq. (A9) still
contains an integration over the whole crystal. We can
constrain this integration within the unit cell

1

N

∫
crystal

u∗
m,k(r)ei(k′−k)·r∇k′um′,k′(r)dr

=
N−1∑
n=0

1

N
ein(k′−k)·R

∫
cell

u∗
m,k(r)ei(k′−k)·r∇k′um′,k′(r)dr.

(A10)

Because
∑N−1

n=0
1
N

ein(k′−k)·R = δk,k′ , the expression (A10) is
equivalent to

δk,k′

∫
cell

u∗
m,k(r)∇kum′,k(r)dr. (A11)

Using Eq. (A11), Eq. (A9) can be rewritten as

ξ (m,m′,k,k′) = −iδm,m′∇k′δk,k′

+iδk,k′

∫
cell

u∗
m,k(r)∇kum′,k(r)dr. (A12)

Then, by inserting Eq. (A12) into Eq. (A4), we can get

i
∂

∂t
am(k,t) = Em(k)am(k,t)

−iF(t) ·
∫

BZ
am(k′,t)∇k′δk,k′dk′

+F(t) ·
∑
m′

∫
BZ

am′ (k,t)D(m,m′,k)dk, (A13)

where D(m,m′,k) = i
∫

cell u
∗
m,k(r)∇kum′,k(r)dr.
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According to the Gauss theorem,∫
BZ

am(k′,t)∇k′δk,k′dk′ =
∫

S

am(k′,t)δk,k′ σ̂ dS ′

−
∫

BZ
δk,k′∇k′am(k′,t)dk′. (A14)

The first term on the right-hand side of Eq. (A14) is a surface
integral over the surface of the Brillouin zone. σ̂ is the normal
unit vector of the surface. Since there is no discontinuous
points in the Brillouin zone, this term can be dropped. Equation
(A13) then becomes

∂

∂t
am(k,t) = − iEm(k)am(k,t) + F(t) · ∇kam(k,t)

− iF(t) ·
∑
m′

am′(k,t)D(m,m′,k). (A15)

Introducing the micropolarization pmn(k,t) =
am(k,t)a∗

n(k,t) and the electron density ρm(k,t) = |am(k,t)|2,
for the two bands consisting of a conduction band and a
valence band, Eq. (A15) then leads to the SBEs:

∂

∂t
pcv(k,t) = −i[Ec(k) − Ev(k)]pcv(k,t) + F(t) · ∇kpcv(k,t)

+iF(t) · Dcv(k)[ρc(k,t) − ρv(k,t)], (A16)

∂

∂t
ρv(k,t) = −2Im[F(t) · Dcv(k)pcv(k,t)]

+F(t) · ∇kρv(k,t), (A17)

∂

∂t
ρc(k,t) = 2Im[F(t) · Dcv(k)pcv(k,t)]

+F(t) · ∇kρc(k,t). (A18)

APPENDIX B

In this Appendix, we analyze the influence of TDP on the
intraband harmonics. For the intraband transitions, it is not as

straightforward to obtain an obvious relationship between the
TDP and the efficiency of N th-order harmonics like Eq. (35)
for interband transitions. Because of the fourfold integrations
in Eq. (31), there is no quantum orbits for intraband HHG
process. Nevertheless we can still find a relationship between
intraband harmonics and the TDPs. From Eq. (31), a saddle-
point approximation can be applied to the integration for k, t ′,
t ′′, and t . Similar to the interband case, there always exist two
events, (ks,ts,t

′
s ,t

′′
s ) and (−ks,ts + T/2,t ′s + T/2,t ′′s + T/2)

over one optical cycle. What one should be warned about
is that the word “event” is used here instead of “trajectory”
because there is no quantum orbit for intraband process.
If we define Dcv(ks,t

′
s ,ts) = Dcv(ks + A(ts) − A(t

′
s)), under

the conditions of v(k) = −v(−k), F (t) = −F (t + T/2), and
A(t) = −A(t + T/2), the contribution from these two events
to the N th-order harmonic is proportional to

�N =
∑
λ=c,v

vλ(ks)F (t
′
s)F (t

′′
s )

×{e−iNω0ts D∗
cv(ks,t

′
s ,ts)Dcv(ks,t

′′
s ,ts)

−e−iNω0ts−iNπDcv(ks,t
′
s ,ts)D

∗
cv(ks,t

′′
s ,ts)}. (B1)

Then, one can get

�N ∼ ei{θ(ks ,t
′′
s ,ts )−θ(ks ,t

′
s ,ts )} − e−i{θ(ks ,t

′′
s ,ts )−θ(ks ,t

′
s ,ts )}e−iNπ ,

(B2)

which is similar to Eq. (35). This means that the relationship
between the efficiency of even harmonics from the intraband
component and the TDP behaves just like the interband case.
If the system possesses symmetry such that Eq. (18) holds,
then �N is proportional to (1 − e−iNπ ), which is similar to
the interband components. As a result, there are no even
harmonics. Once the symmetry is broken, even harmonics
come into appearance.
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