Summer 2010 REU; Kansas State University

Alex Yeagle, Cornell College Cristian Gaidau, University of Minnesota

August 6th, 2010

Contents:

Background

- Neutrino Oscillations
- MicroBooNE
- Hand-Scanning
- Algorithmic Procedure
- Conclusions

Background

Neutrino Oscillations

• Experimental Evidence:

- MINOS
- KamLAND
- Super-Kamiokande
- SNO
- K2K
- Neutrino sources:

Atmospheric, reactor, accelerator, solar, geo

Neutrino Oscillations (cont.):

TH!

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$\left|\nu_{\mu}(t=0)\right\rangle \;=\; \left|\nu_{\mu}\right\rangle \;=\; -\sin\theta \left|\nu_{_{1}}\right\rangle \;+\; \cos\theta \left|\nu_{_{2}}\right\rangle$$

$$|\nu_{\mu}(t)\rangle \;=\; -\sin\theta \; |\nu_{1}\rangle \; e^{-i\frac{E_{1}t}{\hbar}} \;+\; \cos\theta \; |\nu_{2}\rangle \; e^{-i\frac{E_{2}t}{\hbar}}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2}$$
 M

$$P_{\nu_{\mu} \to \nu_{e}}(L, E) = \sin^{2} 2\theta \sin^{2} \left(1.27 \ \Delta m^{2} \frac{L}{E_{\nu}} \right)$$

Schrödinger's Equation!

Neutrino Oscillation (cont.):

$$U = \begin{array}{c} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{array} \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \\ \times \operatorname{diag}(e^{i\alpha_{1}/2}, \ e^{i\alpha_{2}/2}, \ 1) \ .$$

$$c_{ij} \equiv \cos \theta_{ij} \qquad \qquad s_{ij} \equiv \sin \theta_{ij}$$

MicroBooNE:

Hand-Scanning

Interactions:

- Neutral-Current (NC) vs. Charged Current (CC)
- Modes of Scattering:
 Quasi-Elastic (QE)
 - Resonant (RES)
 - Deep-Inelastic
 Scattering (DIS)

Algorithmic Procedure

- v_e and v_μ events expected
- Neutral-current (NC) interactions do not distinguish neutrino flavor
- Need to pick out small charged-current (CC) v_e signal

Step 1, Neutrino Interaction Vertex Identification:

- Point from which all primary tracks originate
- The vertex should have the same time location in both induction planes and the collection plane
- Frequently there is a large energy deposition at the vertex
- Events without a well contained primary vertex are intractable and should be discarded

t (ticks)

t (ticks)

Step 2, Electromagnetic Shower Identification:

- Any identifiable v_e event will contain a shower, so if absent the event may be discarded
- Defined by a high concentration of isolated spots of energy deposition
- Often have "branching" or "forking"

Step 2 (cont.):

Step 3, μ Identification:

- Distinctive long, straight, minimum ionizing track
- Long: spanning over 700 wires
- Minimum ionizing: average pulse height 35 ADC
 50 a good upper limit
- If the event contains a μ , it can be discarded

Step 4, Determination of Shower Origin:

- Candidates: π⁰, π[±], γ, e
- •γ:
 - Neutral particle
 - Gap spanning a couple wires
- π⁰ :
 - ${}^{\scriptscriptstyle \rm O} \ \pi^0 \rightarrow \gamma + \gamma$
 - Common origin
 - Typically lower energy

Step 4 (cont.):

- π±:
 - Rarer event
 - Typically lower energy
 - Most often will contain a short tail before actual shower

• e :

- Connected to primary interaction vertex in all planes
- Usually dense showers

Step 4 (cont.):

Algorithm Summary:

- Remove all non-fiducial events
- Remove all non-showering events
 NC QE, most v_µ events
- Remove all µ-track containing events
- Remove NC showering events
 NC RES, NC DIS

Conclusions

Results

- Efficiency of background rejection:
 - □ 96%
- Efficiency of signal retention:
 - All identified
 - · 6/1
 - · **7%**
- Breakdown of algorithm:
 - Efficiency of µ identification: 93%
 - Efficiency of π[±] shower identification: 70%
 - Efficiency of π^0 identification: 68%

Remaining Questions

- Looking quantitatively at particle energy and shower properties
 - Density of energy deposition
 - Could help differentiate π^0 and e
- Vertex gaps in electron events
 - Happens rarely
 - Loss of signal
- Look into higher mass particles
 - □ K[±], Σ⁺, Λ⁰

t (ticks)

t (ticks)

Acknowledgements:

- We'd like to thank the following for their help and guidance in this endeavor:
 - Tim Bolton
 - Glenn Horton-Smith
 - David McKee