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Einstein’s Reputation

Einstein: ‘Genius Among 
Geniuses’  (CNN, PBS)

Einstein’s Brain May 
Provide Clues To His 
Genius, Study Says  
(Huffington Post)

Einstein in 1916



Ironically…

Einstein’s genius was his ability to make 
relativity (both SR and GR) simple
There was a time when the newspapers said that only twelve 
men understood the theory of relativity. I do not believe there 
ever was such a time. There might have been a time when only 
one man did, because he was the only guy who caught on, 
before he wrote his paper. But after people read the paper a lot 
of people understood the theory of relativity in some way or 
other, certainly more than twelve. On the other hand, I think I 
can safely say that nobody understands quantum mechanics.

— Feynman, The Character of Physical Law



Problem and Opportunity

The cultural context makes relativity both 
daunting and intriguing to students

The good news is that undergraduates can 
successfully understand SR and GR (which is 
an empowering experience!)

The keys are (1) sufficient time, (2) the right 
tools, and (3) “teaching tasks”



Special Relativity:  Time

Many introductory courses (if they discuss 
special relativity at all) spend three class 
sessions or less

In our introductory course, we spend nine 
class sessions (3 full weeks)

This provides sufficient time for students to 
process the new ideas



Special Relativity: Tools
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Special Relativity: Tools
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Scherr, Schaffer, & Vokos, 

AJP, 70, 12 (2002), pp. 1245-6.

After tutorials: 51%
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Special Relativity: Teaching Tasks

(Example in-class worksheet)



The Simplicity of GR
The Geodesic Hypothesis: Free objects follow geodesics in spacetime. 
Consequences:

Free-float frames are inertial
The Equivalence Principle
Inertial mass = gravitational mass

Matter Curves Spacetime
Observe tidal effects in a falling frame:
Initially parallel lines curve toward each  
other, so  geometry is non-Euclidean!

t

x

(See http://pages.pomona.edu/~tmoore/
grw/Resources/GRWC1.pdf  for details)

http://pages.pomona.edu/~tmoore/grw/Resources/GRWC1.pdf


GR’s Real Difficulty:  The Math

For undergraduates, tensor calculus is both 
unfamiliar and highly abstract

Can we do without it?
Hartle, Gravity
Taylor and Wheeler: Exploring Black Holes

My experience: students feel rootless

Teaching requires time, tools, teaching tasks



General Relativity: Time

My experience: a decent introduction to the 
Einstein equation and basic consequences for 
juniors and seniors requires one full semester

One also should spread out the math
Two weeks on index notation and tensors in 2D  
and SR contexts
Three weeks exploring the geodesic equation
Only then talk about absolute derivatives, the 
Riemann tensor, and the Einstein equation
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21. THE EINSTEIN EQUATION

INTRODUCTION

The Universe Observed

A Metric for the Cosmos

Evolution of the Universe

Cosmic Implications

The Early Universe

CMB Fluctuations & Inflation

COSMOLOGY

Gravitomagnetism

The Kerr Metric

Kerr Particle Orbits

Ergoregion and Horizon

Negative-Energy Orbits

SPINNING
BLACK HOLES

Gauge Freedom

Detecting Gravitational Waves

Gravitational Wave Energy

Generating Gravitational Waves

Gravitational Wave Astronomy

this depends on this

GRAVITATIONAL
WAVES

The Absolute Gradient

Geodesic Deviation

The Riemann Tensor

THE CALCULUS
OF CURVATURE

The Stress-Energy Tensor

The Einstein Equation

Interpreting the Equation

The Schwarzschild Solution

THE EINSTEIN
EQUATION

Review of Special Relativity

Four-Vectors

Index Notation

FLAT SPACETIME

Arbitrary Coordinates

Tensor Equations

Maxwell’s Equations

Geodesics

TENSORS

The Schwarzschild Metric

Particle Orbits

Precession of the Perihelion

Photon Orbits

Deflection of Light

Event Horizon

Alternative Coordinates

Black Hole Thermodynamics

SCHWARZSCHILD
BLACK HOLES



General Relativity: Tools

Work with component notation 
(because of connection to vectors)

Drill students on index notation

Use lots of 2D examples in the beginning
Polar coordinates
Funny flat-space coordinates
Longitude-latitude and other coordinates on 
the surface of a sphere



General Relativity: Tools

Dot-Product Method for transforming to a 
Locally Orthonormal Frame (LOF)

 
 
 
 
Credit:  Hartle
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General Relativity: Tools

Diagonal Metric Worksheet for the metric

Off-Diagonal Metric Worksheet for the metric

See Moore, AJP 84, 360  (2016) 
(original idea: Rindler)

( ) ( ) ( ) ( )ds A dx B dx C dx D dx2 0 2 1 2 2 2 3 2= - + + +

( ) ( ) ( ) ( )ds A dx Fdx dx B dx C dx D dx2 0 2 0 1 1 2 2 2 3 2= - + + + +





General Relativity: Teaching Tasks

Class Structure
Book has overview/exercise structure
Students do all the exercises before class
During class, students present their work  
(using a document projector) for the hardest
If time remains (about half the time), we work 
on some example problems
I collect 2 books at the end of class to review
Weekly homework on applications
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If we plug R R 0tt rr= =  into equation 23.7, we find that
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You can then plug this result into equation 23.6c to eliminate the references to A, solve 
the resulting equation for /B r2 2 , and integrate. Since B is independent of t, the result 
(see box 23.3) is

 B r
C1

1= +  (23.10)

where C is a constant of integration.
Since /B t 02 2 =  by equation 23.8, the right side of 23.9 is independent of time. The 

left side must therefore be as well. This will be true only if any time dependence in A 
has the form ( , )A t r = ( ) ( )f t a r , because in that case,
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(note that I am using /dB dr  and /da dr  instead of /B r2 2  and /a r2 2  because I know that 
B and a depend only on r). Since we know what B(r) is, we can solve equation 23.11 for 
a(r): the result (see box 23.4) is

 a B
K

K r
C

1= = +b l (23.12)

where K is another constant of integration. Therefore, the empty-space Einstein equa-
tion implies that the metric has the form
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with K, f(t), and C unspecified. However, note that ( )Kf t  must be positive, because if it 
were negative, we would either have no time coordinate (if 1 + C/r is positive) or two 
time coordinates (if 1 + C/r is negative), neither of which is acceptable for a spacetime. 
But this means that we can redefine the t-coordinate so that

 ( )dt dt Kf tnew old=  (23.14)

Therefore, the empty-space Einstein equation and our remaining freedom to choose 
the time coordinate implies that we can always put the metric in the vacuum spacetime 
outside a spherically symmetric object in the time-independent form
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even if the source of this gravitational field is not time-independent (e.g., even if it is 
expanding or contracting violently). The important statement that the spacetime sur-
rounding a spherically symmetric time-dependent object is time-independent is called 
Birkhoff’s theorem.

Note that the choice of time coordinate specified by equation 23.14 implies that 
t corresponds to the time measured by an observer at infinity.

The Schwarzschild Solution. To complete the derivation of the Schwarzschild metric, 
we need to determine the value of C. We can do this by considering the acceleration of 
an object that is initially at rest in this spacetime and making this consistent at large r 
with the expected Newtonian result.

The spatial components of the four-momentum u of an object at rest are zero. The 
condition 1 u u:- =  then requires that ( )u g /t

tt
1 2= - - . The geodesic equation then 

implies that the acceleration of such an object is
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(An example of exercise references in the text)
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BOX 23.3 Solving for B

Equation 23.9 (repeated here) tells us that
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According to equation 23.6c, the condition that R 0=ii  implies that
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If you use equation 23.9 to eliminate the factors of A from equation 23.23, you 
should find that the latter reduces to
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Exercise 23.3.1. Show that equation 23.24 is correct.

You can easily integrate this to show that

 B r
C1

1= +  (23.25)

where C is an unknown constant of integration.

Exercise 23.3.2. Show the steps that lead from equation 23.24 to equation 
23.25. Remember that we have seen earlier that B is time-independent, so the 
partial derivative in equation 23.24 is the same as an ordinary r-derivative.

(An example of an exercise box in the text)



Does it work?

My students cover more and perform better 
on HW and exams than before

Many distant users have told me how 
valuable they have found the book

Problems:  Students can find the work 
relentless. I also need a better way to deal 
with algebraically intensive boxes.



Does it work?



Summary

With the appropriate time, tools, and teaching tasks, 
undergraduates at all levels can genuinely 
understand Einstein’s theories

They thereby come to better understand 
Einstein’s true genius in seeing what is simple 
behind what seems superficially complex.

This helps them more deeply appreciate current 
discoveries and celebrate that after 100 years,



Ich bin der 
Mann!

Einstein
is still 

da man!



Thank you!
More about Six Ideas That Shaped Physics:

www.physics.pomona.edu/sixideas/

More about A General Relativity Workbook:
pages.pomona.edu/~tmoore/grw/

In particular, the 1st chapter (which provides an 
overview of GR suitable for physics majors) is at

http://pages.pomona.edu/~tmoore/grw/
Resources/GRWC1.pdf

http://www.physics.pomona.edu/sixideas/
http://pages.pomona.edu/~tmoore/grw/
http://pages.pomona.edu/~tmoore/grw/Resources/GRWC1.pdf

