Exploring Black Holes at a Liberal Arts College

Thomas Baumgarte

Bowdoin College
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Exploring Black Holes at a Liberal Arts College Topics

e Numerical Relativity
o Why does the formulation of the equations matter?
o Why do “trumpet” coordinates help black-hole simulations?

e Research with undergraduate students
o What is a suitable project?
o What background do students need?

e Teaching GR at an undergraduate institution
o How does course affect research opportunities?
o How does research affect teaching?
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Exploring Black Holes at a Liberal Arts College

Numerical Relativity

Numerical Relativity

Solve Einstein's equations
Gaﬁ == 87TTQ5

on the computer!

Thomas Baumgarte, Bowdoin College

4/30



Exploring Black Holes at a Liberal Arts College

Numerical Relativity

Solve Einstein's equations

Gaﬁ — 87TT045

on the computer!

Start with scalar wave equation
—04) + V3 = 4mp

Define kK = —0;%) to write as pair

aﬂﬂ = —K
5)75/{ — —V2¢+47Tp

e can integrate numerically without any problems
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

e Consider 1D grid with z; = 1Az

e Represent 1(x,t) on grid: ;(t) = ¥(x;,t) v

e “Finite-difference” first derivative
0| i~
oz Azx

i+1/2

e Second derivative: first derivative of first

N Y,
02|, - Az \ Oz i+1/2 Ox i—1/2
_ VYit1 — 2¢; + i & -
ACBQ Xi_1 X Xit1 'X

e insert into wave equation
Oy = —K;
Orki = —xoa(Vir1 — 2bi + i) + 4mp;
—> Turned PDE for ¥ and k into system of coupled ODEs for ¢; and &;

e Solve with Runge-Kutta (“Method of lines”), or finite-difference in time as well
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

Solve Einstein's equations
Gaﬁ =S 87TTa5

on the computer!

Start with scalar wave equation
—04) + V3 = 4mp

Define kK = —0;%) to write as pair

875@0 = —K
Ok = —V* +4dmp

e can integrate numerically without any problems
e equations symmetric hyperbolic
—> problem “well-posed”

—> can prove that solutions are “well-behaved”: don't grow faster than exponentially
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Exploring Black Holes at a Liberal Arts College Electromagnetism (E&M)

Maxwell's equations

V-E = 4np OE = V x B — 4r7j
Rewrite in terms of vector potential A
B=VxA

Then

e constraint V - B = 0 satisfied automatically

e curl of B becomes VxB=VXxVxA=V(V-A)-V?A
e Also: 0,V x A = —V X E implies

0;A = —E + (some vector whose curl vanishes) = —E — V¢

—> evolution equations:

HGA = —E — Vo
GE = —V?A + V(V - A) — 4]
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Exploring Black Holes at a Liberal Arts College Electromagnetism (E&M)

Op = —k BA = —E — V¢
O = =V + dmp BE = —V2A +V(V - A) — 4rj

e new gauge variable ¢: can choose arbitrarily — not determined by Maxwell’s egs.

e new second term involving second spatial derivatives:
—V2A+V(V-A)=-V'V, A4+ V,V, A

Laplace operator plus “offending term”
—> in general, this spoils symmetric hyperbolicity (not wave equation for A;)
—> cannot prove well-posedness

e could choose Coulomb gauge V - A = 0 (<=V?¢ = —4mp) to restore hyper-
bolicity, but this uses up gauge freedom
e Also have one constraint in E&M,

V- -E=A4np
(has to be satisfied by initial data)
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Exploring Black Holes at a Liberal Arts College General Relativity

e spacetime metric g,3 measures proper distances in spacetime

e can ‘foliate” 4D spacetime into stack of spatial slices: “3+1 decomposition”

By 1+dt

ds? = gopdzdx’ = —aPdt® + v;;(dx’ + B'dt)(dz’ + B dt)
e spatial metric -y;; measures proper distance within spatial slice of constant ¢

e Lapse o and shift vector 3' encode coordinate freedom

e Can choose o and 3 freely — not determined by Einstein's equations

Thomas Baumgarte, Bowdoin College 10/30



Exploring Black Holes at a Liberal Arts College General Relativity

Einstein's equations
Gaﬁ — 87TTQ5

form 10 equations for 10 independent components of spacetime metric g,
e but can freely choose 4 of them (coordinate freedom)

— 4 of the 10 equations must be redundant

Einstein's equations split into

Constraint equations Evolution equations

o constrain 7;; within each slice o evolve 7y;; from one slice to next
o solve to construct initial data o solve to study evolution

o like “div" equations in E&M o like “curl” equations in E&M

—> “"ADM"” formulation [Arnowitt, Deser & Misner, 1962; York 1979]
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Exploring Black Holes at a Liberal Arts College General Relativity

Evolution equations have very similar structure again:

Oryij = —2aK;;+ V0

O {;; = all;; — 8maM;; + non-linear terms + gauge terms

where

e K;; is extrinsic curvature; measures time derivative of spatial metric
e R;; is Ricci tensor; measures curvature, contains spatial derivatives of «;;

[
R;; = —57/{1(3/@-31%3' + 0i0jvk — 0:01k; — OkOjyit) + ...

Laplace-operator term plus “offending” mixed second derivatives
e M;; are matter terms
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Exploring Black Holes at a Liberal Arts College General Relativity

8t¢ — —kK

Scalar Wave:
calar Wave Bk = —V% +dmp

OA, = —F; — V¢

E&M:
8tEZ' = —vkvaZ + VZV]‘“Ak — 47T]z

Oryij = —20K;; + ViBj

O {;; = all;; — 8maM;; + non-linear terms + gauge terms

GR:

Scalar Wave | E&M | GR
variables rank 0 rank 1|rank 2
gauge variables no rank 0 | rank 1
constraints no rank O |rank 1
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Exploring Black Holes at a Liberal Arts College

General Relativity

...and terrible things will happen!

e for example, consider small-amplitude wave

e adopt simple coordinate condition

(Here: “harmonic slicing” )

e code crashes after short time

e adding black holes doesn't make it easier...

—> Consider formulation of the evolution equations...

Thomas Baumgarte, Bowdoin College
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

Can reformulate evolution equations by
e introducing new auxiliary variables

e adding constraints to evolution equations

How can this affect numerical behavior???

e mathematical properties:
o constraints contain as high derivatives as evolution equations
o adding constraints to evolution equations affects principle operators
—> affects hyperbolicity
— affects well-posedness...

e for heuristic argument, consider constraint violations:
o exact solutions must satisfy all reformulations of evolution equations,
o but constraint violations may behave very differently
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

Recall Maxwell's evolution equations
A = —E -V
OE = —V*A+V(V-A)— 47j
with constraint equation
V- E = 4mp.

Define constraint violation

C=V-E—A4np

Exercise 1

Show that the constraint violations C satisfy

0,C = 0.
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

Introduce auxiliary variable: “divergence of green variable”
'=V-A

Then
oA = —E—-VO

@E — —VQA + VI — 47Tj
— "offending” second derivatives absorbed in VI’

Use constraint V - E = 4mp in new evolution equation for I'

Ol =0,V-A=-V -E—-Vd=—4drp— VO

Exercise 2

Show that the constraint violations C now
satisfy the wave equation

(—02 +VHC =0.
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

e Evolve both formulations of Maxwell's equations numerically

e Compare constraint violations

System System I
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[Knapp et.al., 2002]

— formulation of equations affects behavior of error
—> affect stability of numerical implementations
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

e Undergraduate research project with Andrew Knapp '03 and Eric Walker '03
[PRD 65, 064031 (2002)]

e Well suited as undergraduate project because ...

O ...

independent project

o ... limited in scope
o ...
O

accessible given students’ background

. interesting, but not too interesting...

e This project did not even require GR
o AAPT Workshop Teaching GR to Undergraduates (Syracuse, July 2006)
o started offering GR course in 2007 (includes differential geometry)
o prepares students for research
o can now assign GR projects
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein’s equations

Reformulations of Einstein's equations

Can use very similar manipulations to reformulate ADM equations...

For example... 0.05 T T T T
e perform conformal transformation I = I
4_ . 0 =71 |

% = ¥ L e

e introduce “conformal connection functions” T |
i _ Y SR 0.05 FrT T T A

= — 057 - - 1

i 0L 1

(“divergence of green variable") 005 - R

e these absorb “offending” second derivatives I M et d

e Use constraint in evolution equation for I : 0= 4 6810

0 <00 400 600
L] Ll - Jt
— much improved numerical behavior

—— “BSSN" formulation [Baumgarte & Shapiro, 1998]
[Nakamura et.al., 1987; Shibata & Nakamura,
1995; Baumgarte & Shapiro; 1998]
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Exploring Black Holes at a Liberal Arts College Reformulating Einstein's equations

Successful reformulations of Einstein's equations

e “BSSN" formulation
[Nakamura et.al., 1987; Shibata & Nakamura, 1995; Baumgarte & Shapiro;
1998]

e Generalized harmonic formulation

[Friedrich, 1985; Garfinkle, 2002; Pretorius, 2005; Lindblom et.al., 2006]

e /4 formulation
[Bona et.al., 2003; Bernuzzi & Hilditch, 2010]

e Fully Constrained Formulation
[Bonazzolla et.al., 2004; Cordero-Carrién et.al., 2011]

All involve I'-like quantities that absorb mixed second derivatives of metric
[De Donder, 1921; Lanczos, 1922]

Thomas Baumgarte, Bowdoin College 21/30



Exploring Black Holes at a Liberal Arts College Treating the black hole singularity

Treating the black hole singularity

e Black hole excision:
o no information can propagate from inside black hole to outside
—> excise black hole interior from numerical grid
[Unruh, 1984; Seidel & Suen, 1992; Alcubierre & Briigmann, 2001; Pretorius,

2005]

[Caltech /Cornell group, Scheel et.al.]
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Exploring Black Holes at a Liberal Arts College Treating the black hole singularity

Moving-puncture method

Can achieve similar effect with coordinate condition
[Campanelli et.al., 2006; Baker et.al., 2006]

Choose...
e ... 1+log slicing for lapse « 5
0y — B'0))a = —2aK
[Bona et.al., 1995] oo
e ... ["-driver condition for shift /3 ) N
[ ~ constant
[Alcubierre et.al., 2003] sl

x/M

[Campanelli et.al., 2006]
. and all works fine!?!
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Exploring Black Holes at a Liberal Arts College Trumpet geometries

Trumpet geometries

Evolve Schwarzschild with moving-puncture coordinates [Hannam et.al., 2006]
e induces coordinate transition

e settles down to slice with interesting properties:
o “puncture” at r = 0: conformal factor v diverges
o lapse vanishes at r = 0
o sphere of radius r = 0 has non-zero proper area
o points at r = 0 have infinite proper distance from r = ¢

—> “trumpet geometry”

e Exact form depends on version of moving-

puncture condition
[Hannam et.al., 2007]

e For some can obtain analytical expressions
[Baumgarte & Naculich, 2007]
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Exploring Black Holes at a Liberal Arts College

Trumpet geometries

Treasure chest of undergraduate projects...

Jason Immerman '10:
Trumpet-puncture initial data for black holes

[PRD 80, R061501 (2009)]

John Wendell "11:
Trumpet slices of the Schwarzschild-

Tangherlini spacetime
[PRD 82, 124057 (2010)]

Alexa Staley '11:
Oppenheimer-Snyder collapse in moving-
puncture coordinates

[CQG 29, 015003 (2012)]

August Miller '16:
Bondi accretion in trumpet geometries

Thomas Baumgarte, Bowdoin College
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Exploring Black Holes at a Liberal Arts College Analytical trumpet geometries

Perform coordinate transformation from Schwarzschild coordinates T', R to new co-
ordinates ¢, r in two steps:

e new time coordinate
I’=R-R0
t =T+ h(R) N
. . . . . t=T+h(R) A
e new radial coordinate inside new slice
h(R)
r=r(R)
Here: choose T
r=R-—-M
and make spatial metric isentropic: v;; = ¢4772-j
R

—> find remarkably simple metric

— M OM M\ >
4 dt® + ——dtdr + (1 + —) (alfr2 + TQdQQ)

ds® = —

r+ M r r
[Dennison & Baumgarte, 2014]
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Exploring Black Holes at a Liberal Arts College Analytical trumpet geometries

—M oM M\?
ds? = —~ dt* + ——dtdr + <1 + —) (d”r2 + r2d6?* 4 r* sin? 8dg02)
r+ M r r
or 1
r rM M
py T py py ]_ e
YT I M B (r + M)? ¥ ( o )

Horizon at r = M (recall r = R — M)
e regular on horizon at r = M (“horizon-penetrating coordinates” )
e lapse o vanishes at r = 0 = slice covers R > M only

e proper length of circle in equatorial plane

2m 2T
f = / (Y)Y 2dip = / Virdp =2r(r + M) = 2nR
0 0

—> finite as r — 0
e proper distance fromr =0tor =€

ﬁzf(vrr)l/er:/ der%M/ @:M[ln’r]g%oo
0 0 o T

—> new coordinates represent trumpet geometry
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Exploring Black Holes at a Liberal Arts College Analytical trumpet geometries

Properties of trumpet geometries

e don't reach spacetime curvature singularity at R = 0
e connect spatial infinity with future timelike infinity

e feature coordinate singularity at puncture r = 0, but infinite proper distance from
all other points
e codes can handle this, as long as no grid-point at puncture
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Exploring Black Holes at a Liberal Arts College Analytical trumpet geometries

e example of simple coordinate transformation
e regular on horizon

e explore features of trumpet geometries

e important insights for numerical relativity

e can be generalized for Kerr black holes

—> formalism for characterizing trumpet geometries in non-spherical spacetimes
[Dennison et.al., 2014]

2 The Schwarzschild metric is

ds* = — fodt® + fy 'dR* + R*dQ?, (2)
where we have abbreviated oM R— oM
=1- = 3
fo 7 7 3)
(a) Consider a coordinate transformation to a new time coordinate ¢ that satisfies
dt = dt + 1 dR (4)
- foR—M "~

Express the line element (2) in terms of the coordinates ¢ and R (as well as the angular coordinates, of
course). (Hint: You should find a non-zero “off-diagonal” term that involves the product dtdR.)
(b) Now consider a new (isotropic) radial coordinate r = R — M, and show that you can express the line
element (2) in the form

ds? = — Adt* 4+ 2Bdtdr + ¢*(dr® + r2dQ?). (5)

Find the coefficients A, B and v as functions for r only. (Check: If all goes well, you should find
B=M/r.)
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Exploring Black Holes at a Liberal Arts College Summary

e Some key ingredients in numerical relativity simulations
o formulation of equations
o handling of black hole singularities: trumpet geometries

e Undergraduate research projects
o provide valuable research experience for student
o provide useful and interesting results
o require training: GR course

e Teaching
o GR course at Bowdoin prepares students for research projects
o Research interests affect topics covered in class
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