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Gravitational Waves!

[Abbott et.al., Feb. 11, 2016]
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Exploring Black Holes at a Liberal Arts College Topics

Topics

• Numerical Relativity
◦Why does the formulation of the equations matter?
◦Why do “trumpet” coordinates help black-hole simulations?

• Research with undergraduate students
◦What is a suitable project?
◦What background do students need?

• Teaching GR at an undergraduate institution
◦ How does course affect research opportunities?
◦ How does research affect teaching?
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

Numerical Relativity

Solve Einstein’s equations

Gαβ = 8πTαβ

on the computer!
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

Numerical Relativity

Solve Einstein’s equations

Gαβ = 8πTαβ

on the computer!

Start with scalar wave equation

−∂2
tψ +∇2ψ = 4πρ

Define κ ≡ −∂tψ to write as pair

∂tψ = −κ
∂tκ = −∇2ψ + 4πρ

• can integrate numerically without any problems
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

Computational Interlude: “Finite-differencing”

• Consider 1D grid with xi = i∆x
• Represent ψ(x, t) on grid: ψi(t) = ψ(xi, t)
• “Finite-difference” first derivative
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• Second derivative: first derivative of first
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• insert into wave equation

∂tψi = −κi
∂tκi = − 1

∆x2(ψi+1 − 2ψi + ψi+1) + 4πρi

=⇒ Turned PDE for ψ and κ into system of coupled ODEs for ψi and κi

• Solve with Runge-Kutta (“Method of lines”), or finite-difference in time as well
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Exploring Black Holes at a Liberal Arts College Numerical Relativity

Numerical Relativity

Solve Einstein’s equations

Gαβ = 8πTαβ

on the computer!

Start with scalar wave equation

−∂2
tψ +∇2ψ = 4πρ

Define κ ≡ −∂tψ to write as pair

∂tψ = −κ
∂tκ = −∇2ψ + 4πρ

• can integrate numerically without any problems

• equations symmetric hyperbolic

=⇒ problem “well-posed”

=⇒ can prove that solutions are “well-behaved”: don’t grow faster than exponentially
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Electromagnetism (E&M)

Maxwell’s equations

∇ · E = 4πρ ∂tE = ∇×B− 4πj

∇ ·B = 0 ∂tB = −∇× E

Rewrite in terms of vector potential A

B = ∇×A

Then

• constraint ∇ ·B = 0 satisfied automatically

• curl of B becomes ∇×B = ∇×∇×A = ∇(∇ ·A)−∇2A

• Also: ∂t∇×A = −∇× E implies

∂tA = −E + (some vector whose curl vanishes) = −E−∇φ

=⇒ evolution equations:

∂tA = −E−∇φ
∂tE = −∇2A +∇(∇ ·A)− 4πj

Thomas Baumgarte, Bowdoin College 8/30



Exploring Black Holes at a Liberal Arts College Electromagnetism (E&M)

Let’s compare...

∂tψ = −κ
∂tκ = −∇2ψ + 4πρ

∂tA = −E−∇φ
∂tE = −∇2A +∇(∇ ·A)− 4πj

• new gauge variable φ: can choose arbitrarily – not determined by Maxwell’s eqs.

• new second term involving second spatial derivatives:

−∇2A +∇(∇ ·A) = −∇k∇kAi +∇i∇kA
k

Laplace operator plus “offending term”
=⇒ in general, this spoils symmetric hyperbolicity (not wave equation for Ai)
=⇒ cannot prove well-posedness

• could choose Coulomb gauge ∇ ·A = 0 (⇐⇒∇2φ = −4πρ) to restore hyper-
bolicity, but this uses up gauge freedom
• Also have one constraint in E&M,

∇ · E = 4πρ

(has to be satisfied by initial data)
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Exploring Black Holes at a Liberal Arts College General Relativity

General Relativity

• spacetime metric gαβ measures proper distances in spacetime

• can “foliate” 4D spacetime into stack of spatial slices: “3+1 decomposition”

ds2 = gαβdx
αdxβ = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt)

• spatial metric γij measures proper distance within spatial slice of constant t

• Lapse α and shift vector βi encode coordinate freedom

• Can choose α and βi freely – not determined by Einstein’s equations
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Exploring Black Holes at a Liberal Arts College General Relativity

The 3+1 decomposition of Einstein’s equations

Einstein’s equations
Gαβ = 8πTαβ

form 10 equations for 10 independent components of spacetime metric gµν

• but can freely choose 4 of them (coordinate freedom)

=⇒ 4 of the 10 equations must be redundant

Einstein’s equations split into

Constraint equations
◦ constrain γij within each slice
◦ solve to construct initial data
◦ like “div” equations in E&M

Evolution equations
◦ evolve γij from one slice to next
◦ solve to study evolution
◦ like “curl” equations in E&M

=⇒ “ADM” formulation [Arnowitt, Deser & Misner, 1962; York 1979]
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Exploring Black Holes at a Liberal Arts College General Relativity

The ADM equations

Evolution equations have very similar structure again:

∂tγij = −2αKij +∇(iβj)

∂tKij = αRij − 8παMij + non-linear terms + gauge terms

where

• Kij is extrinsic curvature; measures time derivative of spatial metric

• Rij is Ricci tensor; measures curvature, contains spatial derivatives of γij

Rij = −1

2
γkl(∂k∂lγij + ∂i∂jγkl − ∂i∂lγkj − ∂k∂jγil) + ...

Laplace-operator term plus “offending” mixed second derivatives
• Mij are matter terms

Thomas Baumgarte, Bowdoin College 12/30



Exploring Black Holes at a Liberal Arts College General Relativity

Let’s compare again...

Scalar Wave:
∂tψ = −κ
∂tκ = −∇2ψ + 4πρ

E&M:
∂tAi = −Ei −∇iφ

∂tEi = −∇k∇kAi +∇i∇kAk − 4πji

GR:
∂tγij = −2αKij +∇(iβj)

∂tKij = αRij − 8παMij + non-linear terms + gauge terms

Scalar Wave E&M GR

variables rank 0 rank 1 rank 2
gauge variables no rank 0 rank 1

constraints no rank 0 rank 1
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Integrate ADM equations numerically...

...and terrible things will happen!

• for example, consider small-amplitude wave

• adopt simple coordinate condition
(Here: “harmonic slicing”)

• code crashes after short time

• adding black holes doesn’t make it easier...

=⇒ Consider formulation of the evolution equations...
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Reformulating Einstein’s equations

Can reformulate evolution equations by

• introducing new auxiliary variables

• adding constraints to evolution equations

How can this affect numerical behavior???

• mathematical properties:
◦ constraints contain as high derivatives as evolution equations
◦ adding constraints to evolution equations affects principle operators
=⇒ affects hyperbolicity
=⇒ affects well-posedness...

• for heuristic argument, consider constraint violations:
◦ exact solutions must satisfy all reformulations of evolution equations,
◦ but constraint violations may behave very differently
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Evolution of constraint violations in electromagnetism

Recall Maxwell’s evolution equations

∂tA = −E−∇Φ

∂tE = −∇2A +∇(∇ ·A)− 4πj

with constraint equation
∇ · E = 4πρ.

Define constraint violation
C ≡ ∇ · E− 4πρ

Exercise 1

Show that the constraint violations C satisfy

∂tC = 0.
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Reformulating Maxwell’s equations

Introduce auxiliary variable: “divergence of green variable”

Γ ≡ ∇ ·A
Then

∂tA = −E−∇Φ

∂tE = −∇2A +∇Γ− 4πj

=⇒ “offending” second derivatives absorbed in ∇Γ

Use constraint ∇ · E = 4πρ in new evolution equation for Γ

∂tΓ = ∂t∇ ·A = −∇ · E−∇2Φ = −4πρ−∇2Φ

Exercise 2

Show that the constraint violations C now
satisfy the wave equation

(−∂2
t +∇2) C = 0.
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Numerical Exploration

• Evolve both formulations of Maxwell’s equations numerically

• Compare constraint violations

[Knapp et.al., 2002]

=⇒ formulation of equations affects behavior of error
=⇒ affect stability of numerical implementations
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Undergraduate Research

• Undergraduate research project with Andrew Knapp ’03 and Eric Walker ’03
[PRD 65, 064031 (2002)]

• Well suited as undergraduate project because ...
◦ ... independent project
◦ ... limited in scope
◦ ... accessible given students’ background
◦ ... interesting, but not too interesting...

• This project did not even require GR
◦ AAPT Workshop Teaching GR to Undergraduates (Syracuse, July 2006)
◦ started offering GR course in 2007 (includes differential geometry)
◦ prepares students for research
◦ can now assign GR projects
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Reformulations of Einstein’s equations

Can use very similar manipulations to reformulate ADM equations...

For example...
• perform conformal transformation

γij = ψ4γ̄ij

• introduce “conformal connection functions”

Γ̄i = −∂jγ̄ij

(“divergence of green variable”)
• these absorb “offending” second derivatives
• Use constraint in evolution equation for Γ̄i

=⇒ much improved numerical behavior
=⇒ “BSSN” formulation
[Nakamura et.al., 1987; Shibata & Nakamura,
1995; Baumgarte & Shapiro; 1998]

[Baumgarte & Shapiro, 1998]
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Successful reformulations of Einstein’s equations

• “BSSN” formulation
[Nakamura et.al., 1987; Shibata & Nakamura, 1995; Baumgarte & Shapiro;
1998]

• Generalized harmonic formulation
[Friedrich, 1985; Garfinkle, 2002; Pretorius, 2005; Lindblom et.al., 2006]

• Z4 formulation
[Bona et.al., 2003; Bernuzzi & Hilditch, 2010]

• Fully Constrained Formulation
[Bonazzolla et.al., 2004; Cordero-Carrión et.al., 2011]

All involve Γ-like quantities that absorb mixed second derivatives of metric

[De Donder, 1921; Lanczos, 1922]
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Treating the black hole singularity

• Black hole excision:
◦ no information can propagate from inside black hole to outside
=⇒ excise black hole interior from numerical grid
[Unruh, 1984; Seidel & Suen, 1992; Alcubierre & Brügmann, 2001; Pretorius,
2005]

[Caltech/Cornell group, Scheel et.al.]

Thomas Baumgarte, Bowdoin College 22/30



Exploring Black Holes at a Liberal Arts College Treating the black hole singularity

Moving-puncture method

Can achieve similar effect with coordinate condition

[Campanelli et.al., 2006; Baker et.al., 2006]

Choose...

• ... 1+log slicing for lapse α

(∂t − βi∂i)α = −2αK

[Bona et.al., 1995]

• ... Γ̄i-driver condition for shift βi

Γ̄i ∼ constant

[Alcubierre et.al., 2003]

the trajectory of the punctures for the h ! M=21 run. A
common horizon forms just before the punctures complete
half of an orbit. The punctures continue to orbit throughout
the evolution.

We use the ZORRO thorn [8,12] to calculate  4 and
decompose it into (‘;m) modes. Figure 2 shows the real
and imaginary parts of the (‘ ! 2, m ! 2) mode of  4 at
r ! 15M (we choose this small observer radius to delay
outer boundary effects) for resolutions of h ! M=15;
M=21;M=27, as well as a convergence plot of these data.
The lower plot shows that the waveforms are fourth-order
convergent. The radiated energy (as measured from the
M=27 run) is 2:8%" 0:2% in excellent agreement with the
final horizon mass (see below), and the radiated angular
momentum is Jz ! #0:12M2 " 0:01M2 [computed using
Eqs. (22)–(24) of Ref. [21]]. Our largest run (h ! M=27)
used 2882 $ 576 grid points (64 GB) and ran on 16 nodes
(dual 3.2 GHz Xeon processors) for 2 weeks.

We use Thornburg’s AHFINDERDIRECT thorn [22] to find
apparent horizons. We first detect a common apparent
horizon at t ! 18:8M. The common horizon has an irre-
ducible mass of 0:9056M, and the ratio of polar to equa-
torial circumferences asymptotes to 0:900" 0:002. One
can show analytically [9] that, for a Kerr black hole, the
ratio of the polar and equatorial horizon circumferences
Cr ! Cp=Ce is given by

Cr !
1%

!!!!!!!!!!!!!!
1# ~a2
p

!
E
"
# ~a2

&1%
!!!!!!!!!!!!!!
1# ~a2
p

'2
#
; (11)

where ~a ! a=MH and E&x' is the complete elliptic inte-
gral of the second kind. In the case of a perturbed black
hole produced by a merger, this ratio shows quasinormal

ringing behavior before damping to the expected Kerr
value. The horizon mass is related to the spin and irreduc-

ible mass byMH ! &Mirr=~a'
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2&1#

!!!!!!!!!!!!!!
1# ~a2
p

'
q

. Hence, the
irreducible horizon mass and circumference ratio that we
measure correspond to a spin of ~a ! 0:677" 0:006 and a
horizon mass of 0:972M" 0:002M. The horizon mass
reduction is in excellent agreement with the calculated
radiated energy of 0:028M" 0:002M.

Table I summarizes the main results of our full numeri-
cal evolution of binary black holes from the ISCO down to
the final Kerr black-hole remnant. Waveforms, as de-
scribed in terms of the Weyl scalar  4, are dominated by
the modes ‘ ! 2, m ! "2 and show a strong circular
polarization as seen along the axis of orbital symmetry.
These results are in good agreement with the results calcu-
lated by the Lazarus approach [6,7]. The agreement is
especially remarkable considering the vastly different ap-
proaches used.
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x/M
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y/
M

FIG. 1 (color online). The trajectories of the punctures along
with the first common horizon and the individual horizons at t !
0, 10M, and 18:8M. The solid circles correspond to the centroids
of the apparent horizons every 2:5M. The common horizon
forms at 18:8M, just before the puncture complete a half orbit.
The punctures continue to orbit throughout the evolution.
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FIG. 2 (color online). QC0 waveforms. The top plot shows the
real part (thinner lines) and imaginary part (thicker lines) of the
(‘ ! 2, m ! 2) mode of  4 at r ! 15M for resolutions of h !
M=15, M=21, and M=27. Note the !=2 phase lag in the real part.
The bottom plot shows the differences between imaginary wave-
forms for h ! M=15 and h ! M=21 as well as the difference
between waveforms for h ! M=21 and h ! M=27. The latter
difference has been rescaled by 4.48 to demonstrate fourth-order
convergence. The real part of the waveforms exhibits similar
fourth-order convergence. Errors in the M=27 run are smaller
than 1=200 of the amplitude, as inferred by Richardson extrapo-
lation, up to t ! 75M.

TABLE I. Results of the evolution.

Method Erad=M Jrad=M2 tmerger=M a=MH

This Letter 2:8" 0:2 15" 1% TCAH ( 18:8 0:677" 0:006
Lazarusa 2:5" 0:2 13" 2% TTran ( 10 0:70" 0:02

aErrors quoted in the Lazarus runs are only those from the
differences among transition times; hence, they represent only
a lower bound to the total errors.

PRL 96, 111101 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006

111101-3

[Campanelli et.al., 2006]

... and all works fine!?!
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Trumpet geometries

Evolve Schwarzschild with moving-puncture coordinates [Hannam et.al., 2006]

• induces coordinate transition

• settles down to slice with interesting properties:
◦ “puncture” at r = 0: conformal factor ψ diverges
◦ lapse vanishes at r = 0
◦ sphere of radius r = 0 has non-zero proper area
◦ points at r = 0 have infinite proper distance from r = ε

=⇒ “trumpet geometry”

• Exact form depends on version of moving-
puncture condition
[Hannam et.al., 2007]

• For some can obtain analytical expressions
[Baumgarte & Naculich, 2007]
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Treasure chest of undergraduate projects...

Jason Immerman ’10:
Trumpet-puncture initial data for black holes
[PRD 80, R061501 (2009)]

John Wendell ’11:
Trumpet slices of the Schwarzschild-
Tangherlini spacetime
[PRD 82, 124057 (2010)]

Alexa Staley ’11:
Oppenheimer-Snyder collapse in moving-
puncture coordinates
[CQG 29, 015003 (2012)]

August Miller ’16:
Bondi accretion in trumpet geometries

[Immerman & Baumgarte, 2009]
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[Miller & Baumgarte, in prep]
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Analytical trumpet geometries

Perform coordinate transformation from Schwarzschild coordinates T,R to new co-
ordinates t, r in two steps:

• new time coordinate

t = T + h(R)

• new radial coordinate inside new slice

r = r(R)

Here: choose
r = R−M

and make spatial metric isentropic: γij = ψ4ηij

R

T

t=T+h(R)

h(R)

r=R-R0

=⇒ find remarkably simple metric

ds2 = −r −M
r + M

dt2 +
2M

r
dtdr +

(
1 +

M

r

)2 (
dr2 + r2dΩ2

)

[Dennison & Baumgarte, 2014]

Thomas Baumgarte, Bowdoin College 26/30



Exploring Black Holes at a Liberal Arts College Analytical trumpet geometries

Let’s explore...

ds2 = −r −M
r + M

dt2 +
2M

r
dtdr +

(
1 +

M

r

)2 (
dr2 + r2dθ2 + r2 sin2 θdϕ2

)

or

α =
r

r + M
βr =

rM

(r + M)2
ψ =

(
1 +

M

r

)1/2

Horizon at r = M (recall r = R−M)

• regular on horizon at r = M (“horizon-penetrating coordinates”)

• lapse α vanishes at r = 0 =⇒ slice covers R ≥M only

• proper length of circle in equatorial plane

` =

∫ 2π

0

(γϕϕ)1/2dϕ =

∫ 2π

0

ψ2rdϕ = 2π(r + M) = 2πR

=⇒ finite as r → 0
• proper distance from r = 0 to r = ε

` =

∫ ε

0

(γrr)
1/2dr =

∫ ε

0

ψ2dr ≈M

∫ ε

0

dr

r
= M [ln r]ε0 →∞

=⇒ new coordinates represent trumpet geometry
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Properties of trumpet geometries

• don’t reach spacetime curvature singularity at R = 0

• connect spatial infinity with future timelike infinity

• feature coordinate singularity at puncture r = 0, but infinite proper distance from
all other points
• codes can handle this, as long as no grid-point at puncture
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Great material for GR course

• example of simple coordinate transformation

• regular on horizon

• explore features of trumpet geometries

• important insights for numerical relativity

• can be generalized for Kerr black holes
=⇒ formalism for characterizing trumpet geometries in non-spherical spacetimes
[Dennison et.al., 2014]

Physics 3500 – General Relativity – Midterm

March 1, 2015

This exam consists of three questions, equally weighted. Clearly explain your reasoning in each problem.

1 Recall the Faraday tensor

Fµ⌫ =

0
BBB@

0 Ex Ey Ez

�Ex 0 Bz �By

�Ey �Bz 0 Bx

�Ez By �Bx 0

1
CCCA or Fµ⌫ =

0
BBB@

0 �Ex �Ey �Ez

Ex 0 Bz �By

Ey �Bz 0 Bx

Ez By �Bx 0

1
CCCA . (1)

In the homework, you considered the determinant of the Faraday tensor to show that ~E · ~B is a scalar.
As it turns out, there is only one other invariant combination of the electromagnetic fields.
(a) Evaluate the most obvious candidate, the trace F ⌘ Fµ

µ = gµ⌫F
µ⌫ , to show that this is not a

particularly interesting scalar.
(b) Find a scalar that is quadratic in the Faraday tensor, and express this scalar in terms of the electric
and magnetic fields.

2 The Schwarzschild metric is
ds2 = �f0dt2 + f�1

0 dR2 + R2d⌦2, (2)

where we have abbreviated

f0 = 1 � 2M

R
=

R � 2M

R
. (3)

(a) Consider a coordinate transformation to a new time coordinate t̄ that satisfies

dt̄ = dt +
1

f0

M

R � M
dR. (4)

Express the line element (2) in terms of the coordinates t̄ and R (as well as the angular coordinates, of
course). (Hint: You should find a non-zero “o↵-diagonal” term that involves the product dt̄dR.)
(b) Now consider a new (isotropic) radial coordinate r = R�M , and show that you can express the line
element (2) in the form

ds2 = �Adt̄2 + 2Bdt̄dr +  4(dr2 + r2d⌦2). (5)

Find the coe�cients A, B and  as functions for r only. (Check: If all goes well, you should find
B = M/r.)

3 Recall that geodesics in the Schwarzschild spacetime satisfy the equation

Ẽ ⌘ 1

2
(e2 � 1) =

1

2

✓
dr

d⌧

◆2

� M

r
+

`2

2r2
� M`2

r3
, (6)

where e = �ut is the test particle’s energy per unit mass and ` = u� is its angular momentum per unit
mass. Now consider an unfortunate astronaut who falls into the black hole, starting from rest at infinity.
(a) What are the values of e and ` for such an astronaut?
(b) How much time (in units of M) will the astronaut’s clock register between passing the radii r = 6M
and r = 2M? (Note: if you did not bring a calculator, you do not need to evaluate terms like 63/2.)
(c) Estimate this time in seconds for a solar-mass black hole (recall that the mass of the Sun is 1M� ⇡ 1.5
km).
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Summary

• Some key ingredients in numerical relativity simulations
◦ formulation of equations
◦ handling of black hole singularities: trumpet geometries

• Undergraduate research projects
◦ provide valuable research experience for student
◦ provide useful and interesting results
◦ require training: GR course

• Teaching
◦ GR course at Bowdoin prepares students for research projects
◦ Research interests affect topics covered in class
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