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ACTIVITY 1

Exploring Light from Gases

Goal
We will view the colors of light which are emitted by different gases.  From
these patterns of light we gain information about energies in atoms.

The importance of light as a form of energy is apparent in our everyday lives.  In addition
to enabling us to see and plants to grow the energy of light has provided important clues
in understanding the structure of matter.  By looking carefully at light scientists have
made surprising (at the time) discoveries about atoms and molecules.  The explanations
of these observations have led to a new level of understanding about all types of matter.
This understanding has provided an entirely different view of atoms, molecules and,
even, what we can know.

In this unit we will explore and learn about some of the important discoveries in the 20th

Century.  These observations and theories have helped scientists reach their present level
of knowledge about very small objects such as electrons, atoms and molecules.  Our
investigations will begin with observations of light coming from atoms.

We begin by considering objects that emit their own light.  Think about how you could get
an object to emit light.  What would you do to get light from objects?

If you look at your answer and all of your classmates, you will probably have several
ways that light is produced.  All involve providing some type of energy to the object.  In
everyday life providing electricity or heat is the most common way to create light.  Some-
times light from electricity produces a large amount of heat.  For example, a light bulb or
a toaster produces both light and heat.  In other cases, such as a fluorescent tube, the
amount of heat is rather small.  The relatively large and small amounts of heat indicate
different processes for creating light.  We will concentrate on processes similar to those
occurring inside a fluorescent tube.
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Gas tubes contain atoms of one element.  When supplied with electrical energy, the
atoms emit light.  You will use a spectroscope to break this light into its component
colors.  The display of colors is called a spectrum.

Caution: (1)  Some power supplies for gas tubes have exposed metal contacts.
Because the gas lamp is a high voltage light source, do not touch the
metal contacts that connect the gas tube to the power supply.
(2)  Never look at the sun or a tanning lamp with a spectro-
scope.  Eye damage may occur from brightness and from high
energy ultraviolet photons.

On the following scales, draw the pattern of emitted light observed with the spectro-
scope for three gas lamps.H int  Use colored pencils or markers to indicate the position of
color(s).  Add a written description to record which colors seem bright or dim.

Light Patterns Emitted by Gas Lamps

Hydrogen or __________________:

Color of the light without spectroscope___________

Hint To ensure that the light patterns are clearly visible, position the vertical slit of the spectrometer (found on the
end with a screen) so that it is directly facing the light source and, if possible, hold the spectrometer less than a foot
away from the light source.  Dim the lights of the room so that the light patterns may be seen.  The room, however,
should be lighted enough for the energy scale to be seen.

Helium or ____________________:

Color of the light without spectroscope___________
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Mercury or ___________________:

Color of the light without spectroscope___________

As you can see, different elements emit different colors.  These colors can be described
quantitatively in terms of wavelength which is the nanometer (nm) scale above.  A na-
nometer is .000000001 meters, so the wavelength of light is very small.  Alternately we
can describe the colors in terms of energy.  The electron-volt (eV) scale provides an
energy associated with the light.  An electron volt is also very small — 1.6 x 10-19 Joules.

In our investigations we will be particularly interested in the energy of the light emitted
by the gas.  Two factors — brightness and color — contribute in very different ways to the
energy of a light.

When we think about the definition of energy, the brightness makes sense.  A bright light
has more energy in it than a dim light.

The color connection is not quite so obvious.  Atoms emit light in small packets of en-
ergy.  These packets are called photons.  Each individual photon contains an amount of
energy that is related to its color.  So, if we wish to discuss the energy of one of these
photons, we need to know its color.

For light that we can see the energy ranges from red at the low energy to violet at the
high-energy end.  Not visible but still a form of light are infrared photons with an energy
lower than red and ultraviolet photons which have energies higher than violet.  The order
of energies for the various colors of photons is shown below.

Infrared
Low energy visible photons: Red

Orange
Yellow
Green
Blue

High energy visible photons: Violet
Ultraviolet
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Each time an atom produces light, it emits a photon.  In our investigations we will be
primarily interested in the energy of individual photons.  As we will see, this energy will
tell us something about the atoms of a material.  Thus, the color of a light will be an
important variable.

Each photon of visible light carries a very small amount of energy.  This energy ranges
from about 2.56 x 10-19 Joules for red light to 4.97 x 10-19  Joules for violet.  Using these
very small numbers is inconvenient, so we will use different units – the electron volt (eV).
In these units, visible light energies range from about 1.6 eV (red) to 3.1 eV (violet) –
much easier numbers to deal with.

The brightness of the light is related to the number of photons emitted.  A dim light will
emit fewer photons than a bright light.  Thus, we have two measures of energy — bright-
ness and color.  Because color is related to the light from each individual atom, we will
concentrate on it.

In the table below record the color of light emitted by each gas lamp that is related to the
greatest and least energy per photon.

? How can you tell which particular color of light emitted by each gas lamp results in
the greatest number of photons emitted?

In the table below record the color(s) of light for which the greatest numbers of photons
are emitted by each gas lamp.

Gas Greatest Energy Least Energy

Hydrogen

Helium

Mercury
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? What are the similarities among the light patterns observed for the various gases?

? What are the differences?

Atoms have a nucleus and electrons.  These components are attracted to each other.  The
attraction between the electrons and nucleus means that energy in the form of electrical
potential energy is stored in the atom.  In addition the electron’s motion contributes
kinetic energy.  So, each electron has a total energy that is equal to its kinetic energy plus
its electrical potential energy.

Electrical potential energy occurs for attraction (opposite charges) and repulsion (same
charges).  To distinguish these two situations we use positive and negative numbers.  The
positive numbers indicate potential energy associated with repulsion, while negative
numbers go with attraction.  Because we will work with attraction, we will be using
negative potential energies.

To get the total energy we add kinetic energy (a positive number) and potential energy (a
negative number).  For an electron in an atom the result for the total energy will always
be negative.  The idea of a negative energy may seem strange at first.  To get an idea of its
meaning consider an electron which is not attached to an atom, not near any other electri-
cal charges, and is not moving.  It is interacting with nothing and not moving, so it has zero
potential energy, zero kinetic energy and zero total energy.

Gas Greatest Number of Photons

Hydrogen

Helium

Mercury
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If this electron is attached to an atom, its energy becomes negative.  The magnitude of the
energy must be added to the electron to get it back to zero energy — to get it to be no
longer attached to an atom and not moving.

For example, suppose we know that an electron has an energy of -13.6 eV.  From this
information we know that

• the electron is attached to an atom, and
• to get the electron completely free from that atom we must give it 13.6 eV

of energy.

Thus, the negative total energy can convey some valuable information about the elec-
trons.  The questions below will help you check your understanding of these ideas.

A. Which energies below indicate that the electron is attached to an atom?

-1 eV 0 eV 18 eV -8.6 eV

B. For each of the energies below indicate how much energy you must add to get the
electron free from the atom.

           -3.4 eV           -54.4 eV -11.5 eV

C. An electron has an energy of -4.6 eV.  An interaction occurs and it loses 5.1 eV of
energy.  What is its new energy?

D. Is it still attached to the atom?  Explain your answer.

E. An electron is attached to an atom and has a total energy of -8.9 eV.  An interaction
adds 12.0 eV to this atom.  What will be the electron’s new energy?

F. Will it be moving away from the atom?  Explain your answer.
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A useful way to describe the energy of electrons in an atom is to use an energy diagram.
The diagram plots the electron’s energy on the vertical axis of a graph.  We simply draw a
line at the energy of the electron.  As an example the diagram in Figure 1-4 represents an
energy of -3.4 eV.

                                                                                                      0 eV

                                                                                                     -1 eV

                                                                                                     -2 eV

                                               electron                                         -3 eV
                                               energy
                                                                                                     -4 eV

Figure 1-4:  An energy diagram for an electron with -3.4 eV of energy.

In this scheme the horizontal axis has no particular meaning.  We are only dealing with
one variable — the electron’s energy.  We could just draw dots on the energy axis, but
lines are easier to see.

In our studies we will always be interested in electrons that are attached to atoms.  So,
we place zero energy at the top of the diagram and do not include positive energies.

Changing Energies — Transitions

To emit light an electron must change its energy.  This statement reflects conservation of
energy.

Electron energy before = Electron energy after + Light (photon) energy

Each time an electron decreases its energy it emits one photon.  Thus, by looking at the
energy of photons we can learn about what is happening in an atom.  From what we can
see (light) we infer about what we cannot see (the atom).  This process allows us to build
models of the atom.

We will use energy diagrams to indicate the changes in the electron’s energy.  The pro-
cess is shown in Figure 1.5
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 0 eV

-1 eV

-2 eV

-3 eV

-4 eV

                                                      0 eV                       0 eV

                                                     -1 eV -1 eV               Photon with Energy
          of 2.55 eV (green)

                                                     -2 eV      -2 eV

          -3 eV -3 eV

                                                     -4 eV -4 eV

(a) (b)

Figure 1-5 (a) Before the emission (b) After the emission of light the
of light the electron has an electron has an energy of -3.40 eV
energy of -0.85 eV. and a photon of 2.55 eV has been

emitted.

The diagrams show the before and after pictures for the electron’s energy and indicate
that a photon was emitted.  To simplify our drawings we generally combine all of the
information onto one graph as in Figure 1-6.

Figure 1-6  The interaction that was shown in the previous figure but combined
onto one graph.
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The arrow in Figure 1-6 indicates that electron changed from an energy of -0.85 eV to an
energy of -3.40 eV.  The sketch above the energy diagram represents what we would see
in a spectroscope when the photon is emitted.  (One photon is too few to see but it is
representative of the energy.)

The process during which an electron changes energy is called a transition.  Thus, Figure
1-6 represents a transition from -.85 eV to -3.40 eV.

Draw an energy diagram which represents a transition from -2.3 eV to -4.6 eV.

  0 eV

-2 eV

-4 eV

-6 eV

-8 eV

-10 eV

The energy diagram below has four possible energies for the electron.  Indicate all transi-
tions that could occur.

  0 eV

-2 eV

-4 eV

-6 eV

-8 eV

-10 eV
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Determine the energies of the photons for each transition.

Another type of transition involves the electron gaining energy rather than losing it.
Sketch a diagram which indicates that an electron changed from -3.47 eV to -1.1 eV.

Speculate about what type of process could cause such a transition.  Explain your an-
swer.

An Energy Model for the Atom

The energy diagram provides us with a way to understand some of the processes in the
atom.  One of these processes is the emission of light.  As we apply energy diagrams to
light emission you will learn why the spectra of incandescent lamps, LEDs, and gas
lamps are different from each other.  You will also learn how gas lamps and LEDs can
emit certain colors even though they are not covered with colored glass.  The next step is
to build an energy model of an individual atom.  That model is the subject of Activity 2.

  0 eV

-2 eV

-4 eV

-6 eV

-8 eV

-10 eV
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ACTIVITY 2

Understanding the Spectra Emitted by Gas Lamps

Goal
You will use your observations of gas spectra to build a model of energies
in an atom.

In the last activity, we learned that light is emitted when atoms change energies.  An
electron in an atom loses energy.  The energy lost by the electron appears in the form of
light.  The energy difference determines the energy and, thus, the color of light emitted by
the atom.

We will now use Spectroscopy Lab Suite to see how the spectra of light emitted by gases
can help us understand more about the energies in an atom.

In Spectroscopy Lab Suite, select Emission under Gas Lamps.  Figure 2-1 shows the
screen that appears.  In this program, we can
• Select a gas tube and drag it to the socket that is just above the lamps.  Some of

the light in the spectra for that gas will appear at the top of the screen.
• Add energy levels for an electron in a potential energy diagram by using the Add

Energy Level button.
• Move the energy levels by selecting them at the left of the vertical energy scale

and dragging them to the desired position.
• Create transitions (represented by vertical arrows) by selecting, the electron’s

initial energy on the right of the energy scale. (It turns green.) Drag the transition
arrow to the electron’s final energy.  When you reach the final energy, it will turn
green.

• This process will enable you to create an energy level model of the light emitting
process in an atom.  From the results you will be able to learn about energy levels
in atoms.  A colored spectral line on the screen above the potential energy dia-
gram will indicate the light emitted by the transition.  If the light is not in the
visible region of the spectrum, it will not appear on the screen.
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• Move any of the energy levels after you have created a transition.

Figure 2-1:  Gas Lamp Spectroscopy Computer Program

Begin with hydrogen.  Follow the procedure on the previous page to place the hydrogen
gas tube in the socket.  Some of the spectral lines for hydrogen will appear in the top
spectrum.

Create energy levels and a transition that will match one of the spectral lines of hydrogen.
The spectrum that you create appears on the lower spectrum.

? How many energy levels are needed to create one spectral line?

? What is the energy of the spectral line as indicated by the eV scale?
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? List the energies of the levels that you created.

? What is the difference in energy between the electron’s initial total energy and its
final total energy?

? How is this energy difference related to the energy of the light emitted by the
atom?

Move both of the energy levels but keep the difference in energy between them un-
changed.

? Why does the spectral line end up at the same energy?

Now create and move energy levels until the bottom spectrum matches the spectrum of
hydrogen as shown in the top spectrum.

Sketch the resulting energy level diagram for hydrogen in the space below.

? How many energy levels are needed to create these three spectral lines?

? How many electron transitions are needed to create these three spectral lines?
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Compare your energy diagram with the diagrams created by other students.

? How are they similar?

? How are they different?

At this time none of the energy diagrams is more right or wrong than the others.  We do
not have enough information to distinguish exactly what transitions or initial and final
energies occur in nature.  Our model is limited by the knowledge that we have.  Thus, all
sets of energies and transitions that reproduce the spectrum are equally correct.  (Scien-
tists have more information to help distinguish the various possibilities, but that is not
needed for our purposes.)

We can create energy diagrams that provide all of the spectral lines rather easily.  We
need only a few energies to have sufficient transitions for all of the visible light.  From
this construction we conclude that an electron in an atom can have only a few energies.
Otherwise we would see light of many more colors.  This conclusion is somewhat sur-
prising.  When an electron moves in an atom, it might seem that the electron could have
any one of many energies.  But, nature does not behave that way.  Instead electrons in
atoms are limited to a very few discrete energies.  We call them the allowable energies.

Repeat the steps to determine the energy levels and transitions necessary to produce the
spectral lines emitted by another gas that is assigned by your instructor.

? What other, if any, possible electron transitions can take place with the energy
levels illustrated on your screen?
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? How is the energy level diagram for the helium gas similar to the diagram for
hydrogen?

? How are they different?

Up to this point, we have learned that light is produced when electrons make transitions
in atoms.  If they have high energy, they naturally lose it in the form of light as they move
to a lower energy level.  In a normal situation the electrons will be in a low energy level.
They must first be given energy to attain high energies so that it can naturally lose that
energy.  An external energy source, such as electricity must supply that energy.  This
process is illustrated in Figure 2-2.

Sketch the resulting energy level diagram for the helium gas in the space below.



2-6

Figure 2-2: Gain and Loss of Energy by Electrons in an Atom

         (a) (b)      (c)
Electron in Electron Changes        Electron Emits
Low Energy to a High Energy        energy as light

External
Energy
Supplied

Light
Emitted

? What external energy source was necessary for the hydrogen and helium gas
lamps to emit light?

The larger the external energy provided, the greater the number of electrons that will
obtain higher energies.  For example, suppose the energy difference between two al-
lowed energies is 2.55 eV.  See Figure 2-3.
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Figure 2-3:   Screen capture from the Gas Lamps program.

In other words, 2.55 eV must be supplied by the external source for a single electron to
change from a low energy to a higher one.  If 5.10 eV of energy is supplied by an external
source, two electrons can have the highest energy.  Supplying a larger amount of exter-
nal energy does not change the allowed energies, but it can change the number of elec-
trons with the higher energy.  Recall that the allowed energies for an electron bound to an
atom depend on the type of gas atoms found in the lamp.  Supplying a larger amount of
external energy causes a larger number of electrons to possess the highest allowed
energies.  Thus, more electrons will make transitions from higher allowed energies to
lower allowed energies that result in the greater emission of photons and brighter light.

A different situation occurs if the energy supplied to the atom is not equal to the differ-
ence between energy levels.  For the example illustrated in Figure 2-3 no transition will
occur if we supply less than 2.55 eV.  If we provide the electron with 2.40 eV of energy, it
cannot use it.  No energy level exists for that transition to occur.  If we provide more than
2.55 eV but less than 5.10 eV of energy, only one electron can make the transition.  When
3.20 eV is available, the electron can use 2.55 eV and the remaining 0.65 eV will end up as
some other form of energy.
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In hydrogen and helium atoms, unlike the Gas Lamp Spectroscopy computer program,
the allowed energies for an electron cannot be changed because the type of atom
uniquely defines them. The values for the energies are determined by electrical interac-
tions between the nucleus and the electrons.

? What differences are there between hydrogen and helium atoms that might ac-
count for their electrons having different energies?

The electrical properties of an atom uniquely determine what energies its electrons are
allowed to have.  So, even though the Gas Lamp Spectroscopy computer program allows
you to adjust the energies available to the electrons, these energies are fixed at very
specific values by the electrical properties of the atom.

Because the atoms of each of the elements have a unique set of energies, the light given
off by a material can be used to determine the type of elements present.  This property is
used to learn about the composition of distance stars as well as substances on earth.

Homework Problem

1. Art historians are frequently faced with determining whether paintings are origi-
nals or forgeries. Suppose an art dealer who seems a little suspicious has a paint-
ing that she claims was painted in 1704.  Because of its age she says that it is very
expensive.  However, one of the colors looks remarkably like pigments from
cobalt blue.  As an art expert you know that blue paint that used the element
cobalt was not used by artists until 1804. How might you use the ideas presented
in this activity to determine whether the painting contains cobalt blue?1

1 Adapted from Jacqueline D. Spears and Dean Zollman, The Fascination of Physics, (The Benjamin /Cummings
Publishing Company, Inc., Menlo Park, CA 1985). Permission granted by the Authors.
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ACTIVITY 3

Light and Waves

Goal
We will look at a property of light and learn how scientists conclude that
light behaves as a wave.

The light from atoms indicates that only certain energy transitions occur in each atom.
We were able to explain these results using energy diagrams.  However, we have not yet
explained why only certain energies occur in each atom or why these energies are differ-
ent for different elements.  To get to the reasons will take us a little time.  We begin with a
short diversion about the nature of light.

Interference of Light: Young’s Experiment
Approximately 200 years ago, scientists (then called “natural philosophers”) argued
about the fundamental nature of light.  In his book Optiks, Isaac Newton assumed that
light consisted of a collection of minute particles.  With this model, he explained most of
the known optical experiments.  Others thought that light must take the form of a wave.
In 1801, Thomas Young completed an experiment that seemed to end this controversy.

In this activity, you will begin with an experiment very similar to one done by Young.
Place a laser about two (2) meters from a sheet of white paper taped to a wall. With the
room as dark as possible, aim the laser so that its beam is perpendicular to the paper.
Remember:  Never look directly into the beam coming from the laser.  Then
place a slide with two very small, closely spaced slits in the path of the laser beam, also
perpendicular to the beam as shown in Figure 3-1.

Figure 3-1:  Diagram for Young’s double-slit experiment.
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In the space below, sketch and describe the pattern created by the light where it hits the
screen.

We call such a pattern an interference pattern.

From these results Thomas Young concluded that light behaved like a wave and that
Newton’s particle model of light could not explain these observations.  Even though
Newton was an intellectual giant essentially everyone agreed with Young.  To see why, we
need to complete a couple of short experiments.

The first experiment involves a version of the two-slit experiment of Young.  We will use
something that we know is a wave.  It’s a wave drawn on a piece of plastic.  Along the
solid line mark with an X locations where the addition of the two waves is a maximum
(constructive interference).  Place zeros where the two waves cancel each other (destruc-
tive interference).  Taping one end of the plastic waves to a wooden block will hold that
location fixed and will serve as the two slits.  Place the block with waves on the paper so
that the two slits are approximately at the two dots below with the waves extending
toward the bottom of the page.

You may have to adjust the position and orientation of the slits so that the laser light
passes through both slits and forms a clear pattern on the wall.

• •

______________________________________________________________________________
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Try a similar experiment with some particles.  To simulate objects similar to Newton’s
particles of light you will use BBs.  Place a blank piece of paper in a shallow pan.  Over this
paper place a sheet of carbon paper with the carbon side down.

To simulate the two slit experiment place the BBs in a small box with two holes in it.
Over the carbon paper take your fingers off the holes and let the BBs drop.  A carbon
mark will appear where the BBs land.  [Hint:  A much better pattern appears if the carbon
paper is placed on a hard surface that is angled so that when the BB’s bounce they don’t
land back on the carbon paper.]

Describe the pattern of particle locations.

? You have now completed three two-slit experiments.  One each with light, waves
and particles.  Use the results of these experiments to describe why Young con-
cluded that light behaved as a wave.

Other groups used different amplitudes or wavelengths for this experiment.  Compare
your results with others in the class and answer the questions below.

How does the distance between zeros depend on

wavelength?

amplitude?

We will use this information soon.
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As you see with these experiments, interference — the pattern of light and dark for light —
only occurs for waves.  Particles can’t do it.

Now, you will complete a simulation of an experiment which at first thought seems
rather strange.  A double slit experiment using electrons.  This type of experiment can be
done, but the equipment is rather expensive.  Open the Double Slit program and click on
the source tube labeled Electrons on the left side of the screen. Click Start to see what
happens.  Describe the pattern below.

? Which pattern(s) — light, waves or BBs — does the pattern for electrons re-
semble?

? What can you conclude about the behavior of electrons in a Double Slit experi-
ment?

Similar experiments resulted in a conclusion that electrons behave as waves.  This result
was surprising but inescapable.  As we shall see, it is confirmed in many situations.

First, let us see how this pattern changes with the energy of the electron.  Keeping other
variables fixed try at least four different energies and record the distance between con-
secutive dark areas on the screen.

Electron Energy (eV) Distance between dark areas
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? How does the distance between dark areas change as the energy increases?

? For the plastic waves look at how the distance between zeros changed with wave-
length.  Use that information to describe below how the electron’s wavelength
changes as the energy increases.

In the next activity we will use all of the results from this one to connect the wave proper-
ties of electrons to other properties such as momentum and energy.
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ACTIVITY 4

MaMaMaMaMatter tter tter tter tter WWWWWaaaaavvvvveseseseses

Goal
We will use the results of the previous experiments and establish quantita-
tive concepts for electron waves.

.

In the previous activity, we saw that in certain experiments electrons produce patterns
attributed to waves.  From this observation, we concluded that electrons have wave-like
properties.  You also concluded that as the energy of electrons increases their wave-
length decreases.

Electrons are a form of matter, so these waves are called matter waves.  In this activity,
we will relate quantitative features of matter waves with familiar, measurable physical
quantities such as energy, mass, and momentum.  We will apply these relationships to
forms of matter other than electrons, and see how these results can be applied to the
electron microscope.

Louis de Broglie was the first person to establish an equation for the relationship be-
tween an electron’s momentum and its wavelength.  He concluded that:

Wavelength
Momentum

=
Planck' s  Constant

λ =
h
p

where h is a number called Planck’s constant (named after Max Planck) and is equal to
6.63 x 10-34  J × s or 4.14 x 10-15 eV × s.

When we observe electron diffraction, the electrons’ kinetic energy is easier to measure
than their momentum, so we write the de Broglie wavelength as

This equation is consistent with our results in the previous activity — as the energy
increases the wavelength decreases.

Wavelength =
× ×
(Planck' s  Constant)

2 Mass Kinetic Energy

2

or λ =
h

mKE

2

2
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While we have learned about this equation using electrons, it can be used for any type of
matter.  So, you might wonder why we do not see wave effects for large objects.

Start the Double Slit program.   To begin to understand and experiment with objects with
masses greater than that of an electron, run the simulation of the experiment for elec-
trons.  Throughout this experiment keep the same energy.

Next choose pions and repeat the process. Repeat for neutrons, and finally protons.  (A
pion has a mass 270 times that of the electron while the neutron and proton masses are
about 2,000 times that of the electron.)  After doing these experiments, feel free to vary
any of the parameters except the energy.  Then, answer the following questions.  Com-
pare the diffraction patterns made using the other types of matter with that of the elec-
tron.

? How do the distances between dark areas change with the mass?

? How does the de Broglie wavelength change?

? How do the patterns for protons compare to the patterns for neutrons?

? Use de Broglie’s hypothesis to explain this similarity or difference.

Now, investigate how the patterns change as the separation between slits changes.  Pick
one particle and one energy; change the slit separation to answer the following.

? How does the pattern change as the slit separation increases?
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For patterns to be formed, the separation between the slits must be comparable to the
wavelength of the waves passing through them.  Thus, as your separation became very
large, the pattern was not easy to see.

While wave behavior is exhibited by electrons, pions, neutrons and protons; we do not
observe similar behavior for large objects such as gnats or humans.  As an example, we
will consider why diffraction doesn’t cause a gnat to look like several gnats as it flies
through window blinds.  Suppose the gnat’s mass is .001 kg, and its speed is 0.10 m/s.

? What is the gnat’s momentum?

? What is the gnat’s de Broglie wavelength?

? Approximately what would the spacing between the window blinds have to be for
the gnat to create a pattern as it flew through?  Why?

? Is it necessary for a gnat to worry about creating a pattern as it flies through the
blinds?  Why?

? How would a human being’s de Broglie wavelength compare to that of a gnat?
Why?



4-4

Figure 4-1:  Schematic diagram of electron microscope.

Because we know the values of Planck’s Constant and the electron’s mass, we can use them
to simplify the equation to apply only to electrons as

where the kinetic energy has been measured in electron volts (eV).  The result, l, is the
electron’s wavelength in units of nanometers.  This equation works only for electrons,
so use it carefully.

? How does the relationship between energy and wavelength in this formula com-
pare with the relationship that you observed in Activity 3?

A valid question to ask is:  “What is waving with these matter waves?”  Unfortunately,
the answer is not an easy one.  We never observe a matter wave directly; we only see
results that can be explained by them.  The matter wave is an abstraction that allows us
to explain observations.  In the next activity, we will look at what information is contained
in waves of matter.  We will examine the features of matter waves that describe simple
properties such as the location of an object.

An Application

Because electrons behave as waves, they can be used to “illuminate” objects in a manner
similar to light.  An electron microscope is an instrument that takes advantage of this
situation.  Electrons are given energy by accelerating them in a manner similar to the way
a TV tube works.  Then, using magnetic fields, they are directed at an object of interest.
The electrons are focused to illuminate the object, and then to form the image of that
object.  A schematic diagram is shown in Figure 4-1.  This system can be used to look
closely at very small objects.

Wavelength
nm eV

KineticEnergy
=

⋅15 2.
    or [ELECTRONS ONLY]λ =

⋅15 2. nm eV
KE
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The wavelengths of the electrons are related to their kinetic energies.  In electron micro-
scopes, wavelengths as much as 100000 times smaller than those of visible light can be
achieved.  With such small wavelengths, electron microscopes can reveal features that
are as small as 0.000000001 meters (1 nm).   Below are some electron microscope
pictures.

Figure 4-2: Electron microscope images of: (a) the foot of a housefly; (b) a diatom;
and (c) pollen.

Homework

A situation where matter waves could become important is the Star Trek transporter.  We
are not sure how a transporter would really work, but for the purposes of this activity, let
us suppose that it decomposes a person into his or her component atoms.  Then, it
sends the atoms to a  new location where the person is reconstructed.

Consider transporting Captain Janeway of the Voyager by such a method.   She wishes to
reach her new location quickly, so her atoms are sent out of the ship at 10% of the speed
of light (3 x 107 m/s).  Assume that her atoms have a mass of 10-26 kg

? What is the de Broglie wavelength of each matter wave?

Each atom must be transmitted through the titanium hull of the starship.  The titanium
can be considered as a large number of slits separated by 1 nm.

? Must the designers of the transporter be concerned about diffraction effects as
the captain’s atoms are beamed through the hull of the Enterprise? Why or why
not?

? Would this effect make a good premise for a Star Trek movie?  Why or why not?
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ACTIVITY 5

InterInterInterInterInterprprprprpreting eting eting eting eting WWWWWaaaaavvvvve Functionse Functionse Functionse Functionse Functions

Goal
We will return to the two- slit experiment for electrons.  Using this experi-
ment we will see how matter waves are related to where electrons may be
located.

In the previous activities you saw that experimental evidence supports the theory that
matter, such as electrons and subatomic particles, exhibit wave behavior.  Wave behavior
is utilized by the electron microscope, which enables us to look at nanometer-sized
details in objects.  We must consider this wave behavior as we try to understand why
atoms have only certain allowed energies.  The next steps are to learn how to interpret
matter waves, to understand what information they carry, and how we can use that
information.

To continue we return to the Double Slit program.  Choose electrons.  Set the slit separa-
tion to 15 and the kinetic energy to 20 eV.  Click Start.  You will get a pattern similar to the
one shown in Figure 5-1.

Figure 5-1: Simulated electron interference pattern with your prediction for the
next electron’s position.

? Now, suppose you were to send just one more electron through the slits.  On the
diagram above, mark one spot on the screen where an electron is likely to strike?

Kansas State University

@2001, Physics Education Research Group, Kansas State University.  Visual Quantum Mechanics
is supported by the National Science Foundation under grants ESI 945782 and DUE 965288.
Opinions expressed are those of the authors and not necessarily of the Foundation.

 Visual Quantum MechanicsVisual Quantum MechanicsVisual Quantum MechanicsVisual Quantum MechanicsVisual Quantum Mechanicsof matter
  WAVES
Name: Class:



5-2

? How does your prediction compare with those of others in your class?

To test the predictions keep your present pattern by dragging the pattern to the right.
Then, start a new experiment.  In the new experiment you will experiment with a few
electrons at a time.  Move the Particles per Second slider to the left.  Press the Start
button.  When just a few electrons hit the screen, press the Stop button.

? How does the location of the dots match your earlier prediction?

In this experiment we restricted your predictions by limiting you to one location.  Now,
we will broaden your possibilities and have you make another prediction.  This time stop
the experiment when the # particles = indicates approximately 100 electrons have been
added to the experiment.  On the pattern below indicate any place where some electrons
are very likely to be.  Then indicate locations where you are not sure if electrons will appear
and places where you feel rather certain that there will be no electrons.

Figure 5-2:  Indicate places where electrons are very likely and very unlikely to
be.

Then do the experiment with a large number of particles and compare it to your predic-
tions.

As you see, we cannot state with certainty where the electrons will appear.  However, we
can discuss probabilities.  The next electron has a very high probability of appearing in
bright regions — locations of constructive interference.  Lower probabilities are associ-
ated with regions where the interference is between constructive and destructive.  The
probability of the electron appearing at regions of destructive interference is essentially
zero.



5-3

Thus, we cannot predict with certainty where each electron will go.  It is possible that
everybody could give a different prediction for the location where the next electron would
appear.  Yet, each of the predictions could be equally correct.  With electrons, we can
really only describe location in terms of probability.

Below is the same electron diffraction pattern you used to predict where an electron
would go.  On it, label where the probability of detecting an electron is highest, where it
is lowest, and then indicate at least two places that have identical probabilities.

Figure 5-3: Simulated electron diffraction pattern with your labels for highest
probability and lowest probability.

So far we have seen two results of the double slit experiment with electrons
1) Electrons behave as waves causing a pattern of light and dark regions to develop

on the screen.
2) It is not possible to predict where any one electron may appear on the screen

when it is sent through a double slit.  However, we can state the probability of it
appearing in various locations.

Now we will learn how results 1) and 2) are related to each other and develop a single
concept that is consistent with both results.

Because matter waves are abstract ideas used to describe results, they do not travel
through a medium, such as water.  In fact, a matter wave is not a physical entity at all.
So, scientists generally describe these waves in terms of mathematics or pictures.  (We
will use the pictures.)

Physicists call the pictures or equations wave functions.  A sample of a wave function
of an electron is shown in Figure 5-4 below.  The shape of the wave function is NOT the
path that the electron traverses.  It is a useful description related to the location of an
electron and can be used to predict the probability of finding the electron in any given
region of space.
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To understand how a wave function is related to probabilities we return (one more time)
to the electron interference pattern and to the plastic waves.  The places where electrons
are most likely to be correspond to places where the two waves on plastic added and the
amplitude was large.  The locations where the probability of finding the electrons is zero
correspond to locations where the waves on plastic amplitudes added to zero.  In turn
the plastic waves each represent part of an electron’s wave function.  Their addition is the
wave function at the screen.  A large amplitude is related to a large probability while a
small amplitude goes with a small probability.

We have a slight complication.  Waves can have amplitudes that are either positive or
negative; probabilities can only be positive numbers.  The solution is to square the wave
function.  A square number is always positive.  (See Figure 5-5.)
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Figure 5-5: The square of the wave function shown in Figure 5-4.
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Figure 5-4: Example of a wave function for an electron.
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When we square the wave function, we obtain the probability density.  This graph is
related to the probability of finding the electron at each point in space.  However, we
measure over regions in space.  Fortunately, a little math can convert a probability density
in a region into a number representing the probability of finding the object in that region.
All of this is likely to seem somewhat abstract.  We can make it more concrete with the
Probability Illustrator program.

Click and drag the pencil that appears in the top frame to “sketch” the wave function
similar to the one in Figure 5-4.  You need not sketch the wave function accurately.  Any-
thing that looks similar is acceptable for our purpose.  The program sketches a graph of
the probability density in the lower frame.

? Does the probability density graph drawn by the program seem to be the square of
the wave function that you sketched?

Now do the same for a wave function that is an approximate reflection (about the x-axis)
of the previous one.  (Something like Figure 5-6.)
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Figure 5-6: Wave function that is the exact inverse of Figure 5-4.

? How do the probability density graphs in the two cases, compare with each other?
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? Is this result what you would expect?  Why or why not?

In the Probability Illustrator the value of the wave function is displayed next to an arrow
that is just below the wave function graph. A similar arrow below the probability density
graph displays the value of the probability density at that point.  You can move these
arrows.

The lower graph displays the probability density of finding the electron at each point in
space. To determine the probability of finding the electron in a region, move the two
arrows at the bottom left of the probability density graph to any two locations.  The
probability of finding the two electrons between these two locations is displayed at the
bottom left corner of the graph.

The probabilities are given as numbers between 0 and 1.  A probability equal to 0 means
that the electron will never be found in that region.  A probability of 1 says that you will
definitely always find the electron in that region.  To see how these probabilities work
record the probabilities of finding the electron in

a) About one-fourth of the screen on the left side.  ____________
b) About one-fourth of the screen on the right side.  _____________
c) The left half of the screen.  ____________
d) The right half of the screen.  ____________
e) The entire screen.  _____________

? Do the numbers for (a) and (b) or (c) and (d) differ?  If so, use the wave function to
explore why?

? Is the probability for the entire screen what you expect?  Why or why not?
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Summary
Wave functions give results that are quite different from measurements we obtain for the
location of more familiar, macroscopic objects.  We can never be sure about where
exactly an electron is at a given instant of time; rather we can only predict the probability
of finding the electron in a given region of space at a given instant of time.  The wave
function of an electron enables us to determine that probability.   To obtain the probability
density we calculate the square of the wave function.

Probabilities of finding the object within a certain region are determined from the prob-
ability densities.  An important conclusion is that we cannot state with certainty the
location of an electron, only the probability of finding it at each of many locations.

The following essay describes some of the differences between our knowledge of large
objects and our knowledge of the very small.

Interlude:  From Newtonian to Quantum Views of Nature
Adapted from The Fascination of Physics by Jacqueline D. Spears and Dean Zollman © 1986,1996.
Reprinted with permission of the authors.

More than 50 years have passed since the wave and particle models merged to become a new
model of the physical world.  In the early days of this century, physicists voiced strong arguments
for and against the wave function and its interpretations.  Now, the arguments have become less
emotional; the concepts less unsettling.  Passing years and new generations of physicists have a
way of turning a revolutionary thought into a tradition; the new physics into the old physics.  In the
midst of this settled acceptance of modern physics, we must realize the enormous impact quantum
mechanics and wave functions have upon a physicist’s view of “reality.”  We pause briefly to exam-
ine the remarkable transformation from the physics of Newton to that of the modern quantum
physicist.

When Isaac Newton introduced his three laws of motion, he provided a structure within which we
could understand all motion – from the falling apple to the orbiting planet.  Once we knew all the
forces acting on an object, we could predict all future motions with complete accuracy.  By placing
certainty squarely within the grasp of human intelligence, Newton created an enormously comfort-
ing view of our universe.  This feeling of certainty was stated well by the French mathematician
Pierre LaPlace:

An intelligence which at a given instant knew all the forces acting in nature and the position of every
object in the universe – if endowed with a brain sufficiently vast to make all necessary calculations
– could describe with a single formula the motions of the largest astronomical bodies and those of
the smallest atoms.  To such an intelligence, nothing would be uncertain; the future, like the past,
would be an open book.

Newton’s model created an image of a rational world proceeding in a rational way – a world view
eagerly embraced by philosophers, theologians, and physicists alike.

Beneath this world view lie two very important assumptions.  The first is that all events are ordered,
not random.  To Newton and his contemporaries, all motion was completely determined by whom-
ever or whatever started the universe.  These motions obeyed and would continue to obey a series
of orderly rules that could be discovered by the careful observer.  The second assumption was that
the physicist acts as an objective observer of events.  Newton and his contemporaries believed that
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During the eighteenth and nineteenth centuries, when Newton’s laws were applied to objects as
small as molecules, this world view prevailed.  In principle, physicists believed, once they knew the
momentum and position of each molecule, they could predict all future motions of all molecules.
Completing these measurements and calculations for a gram of water, let alone the entirety of the
universe, was not humanly possible, so statistical or probabilistic descriptions were adopted.
Consistent with Newton’s world view, probabilities were needed only to compensate for an informa-
tion overload, not because of the inherent unknowability of nature.

What does the new world view have to say to us about our knowledge?  Implicit in the probabilistic
interpretation now given to matter waves is the assumption that, on the microscopic level, events
are random.  Wave descriptions provide us with information about the probabilities associated with
this random behavior; particle measurements convert these probabilities into brief certainties.
Further, objective observers have become active participants in the world that they are trying to
describe.  Physicists now acknowledge that the types of measurements they undertake affect the
observations and models they subsequently construct.  Words like particle, position, and path have
no meaning apart from the way in which the experimenter measures them.  These words describe
our way of ordering the events we see, not a true underlying structure of nature.  Newton’s view of
an orderly nature that exists independent of how we observe it exists no more.

For many physicists the radical departure from more traditional ideas was difficult to accept.  Erwin
Schrödinger, whose equations were the Newton’s laws of quantum mechanics, remained uncomfort-
able with the probabilistic interpretation given to matter waves.  Albert Einstein, whose quantum
explanation of the photoelectric effect won a Nobel Prize, also remained unconvinced.  He felt that
quantum theory was only a stepping stone to a more complete understanding of matter.  In this
view, probabilities do not represent nature but rather, people’s limited ability to comprehend nature.
In a letter to Max Born in 1926, Einstein summarized his and perhaps many others’ feelings:

Quantum theory is certainly imposing.  But an inner voice tells me that it is not
yet the real thing.  The theory says a lot, but does not really bring us closer to the
secrets of the “old” one.  I, at any rate, am convinced He is not playing at dice.

Only time will tell whether Einstein’s inner voice was the voice of wisdom or the voice of a past,
unwilling to give way to the future.

In the next activity, we will learn more about wave functions and how they can be deter-
mined from the energies of electrons.

while the measurer does have some impact on the events he or she measures, this impact is
minimal and predictable.  Events continue, according to a system of ordered rules, with an
existence independent of the observer.  All that remained was for science to discover the rules.



6-1

ACTIVITY 6

Creating Wave Functions

Goal
To make wave functions useful we must be able to create them for physical
situations.  We will start with electrons moving through space and materi-
als and learn to sketch wave functions.

When physicists wish to describe or predict the motion of large objects, they work with
some basic concepts such as Newton’s Laws.  They consider the forces or energies
involved, then write equations, draw graphs and predict changes as the object moves
through time and space.

Predicting probabilities for small objects is somewhat similar.  The basic concept is
Schrödinger’s Equation, named for Erwin Schrödinger who first wrote it.  This equation
describes the changes in wave functions over space and time.  It is based on the wave
behavior of small objects and conservation of energy.

The mathematical form of Schrödinger’s Equation is a little complex, so we will not write
it down.  Instead we will introduce a series of steps based on the equation.  These rules
will enable you to sketch wave functions for several situations, then interpret the results
in terms of probabilities.

As electrons move, they interact with other objects.  For example, an electron in an atom
interacts with the nucleus.  In an electron microscope, the electrons interact with mag-
netic fields as they move toward the sample.  As we develop wave functions, we must
include these interactions as we learn about representing electrons with wave functions.

Because Schrödinger’s Equation is based on energy, we will represent interactions with
potential energies.  Locations where the potential energy changes indicates places where
the interaction changes.  A potential energy of zero indicates that the electron is not
interacting with anything.  Positive values of potential energy will be used for interactions
in which the electron is repelled by other objects, while negative values will be used for
interactions in which the electrons are attracted by other objects.  To represent potential
energies, we will use graphs of the potential energy versus location — a potential energy
diagram.   One such diagram is shown in Figure 6-2.
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Figure 6-1: A beam of electrons approaches a TV screen

Figure 6-2: Potential & Total Energy of an electron approaching a TV screen.

? What is the Kinetic Energy of the electron in the empty space in Figure 6-1?

? What is the Kinetic Energy of the electron in the screen?

? Calculate its de Broglie wavelength  in each region.

Energy (eV)
3                                                                                                                                                    Total Energy

2                                                                                                                                 

1 Potential Energy

0
           Distance



6-3

As you can see from your calculations above, the de Broglie wavelength changes when
the potential energy changes.  Thus, we will divide the space into regions based on the
changes in potential energy.  Any location at which the potential energy changes is a
boundary between regions.

To help you draw wave functions, use the Wave Function Sketcher program.  The program
has a window for drawing wave functions and another the energies.  Generally, we will
establish the energy graph first.  This graph is based on the physical situation.  Our first
situation will be the one described in Figure 6-1.

The vertical dotted line marks the boundary between regions.  Move it to the location that
you wish to use for the change in potential energy.  Now we wish to set the values of the
potential energy.

Using the “Potential” tab at the bottom of the screen and adjust the “Height” and “Right
Level” both to 1eV.  Adjust the “Total Energy” to 3eV. The potential energy diagram should
look like Figure 6-3.

You have now completed step 1 in drawing wave functions:

Figure 6-3: The total energy line and potential energy diagram as shown by the
Wave Function Sketcher  computer program.

R 2R 1

M e t a lE m p t y  S p a c e

Step 1. Use the physical situation to draw the energy graph and determine the bound-
aries.
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From the wave function graph above, draw the probability density graph of the electron
in empty space only.

EMPTY SPACE METAL

Distance

Probability Density

The probability density
should be the square of the
wavelength.

Click the “Region II” tab, and adjust the “wavelength” of the wave function in Region II
(i.e. in the metal) to the value calculated above.  Click the “Check” button to verify if your
wavelength is correct.

Sketch the wave function of the electron in the metal and probability density on the right
sides of the graphs above.

This process is step 2.

Step 2. Determine the wavelength (if possible) in each region and sketch the wave
function.

(We will need to modify this step later and, then, explain the “if possible.”)

Now, create the wave function for each region.

Click the “Region I” tab, and adjust the “wavelength” of the wave function in Region I
(empty space) to the value calculated above. Click the “Check” button to verify if your
wavelength is correct.

Sketch the wave function of the electron in empty space, on the graph, as displayed by
the Wave Function Sketcher and indicate the de Broglie wavelength on your sketch.
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At the Boundary
For the next step we need to consider how to connect the wave function in region 1 to the
one in region 2.  We could imagine several different possibilities.  Two are shown in
Figure 6-4.

R e g i o n  I IR e g i o n  I

(a)

R e g i o n  I IR e g i o n  I

(b)

Figure 6-4: You must consider how to join segments to form a wave function.

In Figure 6-4a the wave functions connect smoothly, while in Figure 6-4b they do not
connect.  Most people immediately think that (a) looks better.  We will now discuss why
“looks better” is correct in terms of the physics.  To understand why, we need to look at
the probability interpretation of the wave function and how that interpretation affects the
wave function when the potential is changing.

? Can you determine the probability of finding the electron at the boundary in Figure
6-4(b)?



6-6

You should find this question difficult.  At the boundary the wave function has two differ-
ent values.  Thus, we cannot uniquely state the probability of an electron being detected
there.  Therefore, we must reject this type of wave function because we cannot use it for
determining probabilities.  (We recommend that you draw a big X through Figure 6-4(b).
Then, when you look back at it later, you will be reminded that it is not acceptable.)

Interpreting the wave function as a measure of the probability of finding an electron at a
particular location forces a condition on the wave function.  At boundaries where the
potential energy changes, the wave function must make a smooth connection between
its segments in the two regions.  If the segments did not meet at the boundary, then each
would give a different probability of detecting the electron there.  Since both values of the
wave function represent the electron at the same location, two different values for the
probability at the same point would be meaningless.

Another possibility which will give only one value for the boundary is shown in Figure 6-
5.  The wave function is not smooth, but it has only one value at the boundary.

R e g i o n  I IR e g i o n  I

Figure 6-5:  Wave functions with kinks are also not acceptable.

This type of wave function also gets a big X.  Schrödinger’s Equation can be used to
calculate the probabilities for the speeds of the electron.  A wave function such as the
one in Figure 6-5 will give two values for the speed probabilities at the boundary.  So we
must reject it.

The only acceptable wave functions are smoothly connected at all boundaries.  When
creating wave functions we must adjust parameters to create a smooth connection at all
boundaries.  However, we cannot mess with the wavelength; it is determined by the
kinetic energies.  We can change the amplitude and the phase.  Adjust these parameters
in your wave function until the shape at the boundary is acceptable.  Sketch your result
below.
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R 2R 1

M e t a lE m p t y  S p a c e

You have now completed the third step in creating a wave function.

Step 3. Adjust the phase and amplitude of each part of the wave function until it is
smooth across the boundary.

You have completed the steps in creating the wave function.  The next step is to interpret
it in terms of probability of the electron at various locations.

Step 4. Interpret the wave function and discuss the probability of finding the electron at
various locations.

Complete this step for your wave function.  Sketch the probability density below and
write a short paragraph about what you can learn from it.

We have now established a way to create a wave function when we know the physical
situation.  The four steps require that we set up energy diagrams; determine the electron
wavelength, adjust the wave function to be smooth across the boundary and interpret the
results.  From this process we can predict probabilities concerning where electrons will
be.  We will continue these procedures in the next activity.  We will consider a different
situation and come closer to understanding why atoms can have only certain energies.
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An Application

Now you will apply these steps to sketch wave functions for electrons in an electron
microscope.  Electron microscopes come in two basic varieties. The electrons in a scan-
ning electron microscope strike a sample and interact with the electrons of the atoms on
the surface of the sample.  By observing the results of these interactions an image is
created.  In a transmission electron microscope, the sample is made very thin, so that the
electrons pass through it.  These electrons are picked up by a detector on the other side,
and carry information about the material of the sample.  We will consider the latter type
here (See Figure  6-6).

Figure 6-6: Electrons in a transmission electron microscope passing through a
thin sample.

In this example the microscope gives the electrons a total energy of 3 eV.  They are ap-
proaching a sample in which the potential energy due to repulsion from other electrons is
1 eV.

Draw the potential energy diagram of the electrons indicating the potential and total
energies inside the sample as well as in the empty space on either side.

Use the Wave Function Sketcher and the steps listed above to create the wave func-
tions for the electrons in each region.  Sketch your result below.  (Be sure to indicate the
location of the boundaries.)
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Sketch the probability density and write a short interpretation.

? If the sample is 10 nm thick, how many wavelengths of the electron wave will have
to pass through the sample, before the electron emerges on the other side?
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ACTIVITY 7

More Steps for Sketching
Wave Functions

Goal
We now consider wave functions for situations where the total energy is
less than the potential energy.  We will learn that these wave functions have
a property that is significantly different from ones we have discussed so
far.

In the previous activity we considered electrons which entered a TV screen and had
enough energy to go on through.  However, the probability interpretation indicates that
not all electrons just keep going.  If they did, the probability on each side of the boundary
would be identical.  Some of the electrons bounce back, but most go on through.

In many situations electrons arrive at a metal where they do not have sufficient energy to
go through.  The potential energy results from a repulsion and is larger than the total
energy of the incoming electrons.  Such a situation is shown in Figure 7-1.

     Metal
   (Potential Energy = 4 eV)

    Direction of approach
     of electron (Energy = 3eV)                      

Vacuum
(Potential Energy = 0 eV)

      4 eV

      3 eV

0 eV

Figure 7-1: Potential & Total Energy of an electron approaching a sample.
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For this situation, describe the motion that you would expect for the electrons.

Calculate the kinetic energy and wavelength of the electrons in empty space.

Calculate the kinetic energy of the electron inside the metal.

You have just uncovered a problem.  The kinetic energy that you calculated is negative.
But, only positive quantities — mass and speed squared — are involved in kinetic energy.
It must be a positive number.

Our first conclusion could be that electrons cannot be in the metal.  That works if we only
consider energy, but we must also consider the wave behavior of the electrons.  Remem-
ber that the probability interpretation requires a smooth connection at the boundary.
Wave functions such as the one in Figure 7-2 give zero probability inside the metal but
fail the smoothness test.  (Another candidate for a big X.)

Edge of Metal

Figure 7-2:  This wave function is not smooth at the boundary.
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While the wave properties are important, energy conservation must also be taken into
account.  Suppose electrons interact with a large region where they do not have enough
energy to go.  If we go far into that region, we do not expect to find electrons (Figure 7-3).

Figure 7-3:  Energy considerations tell us that electrons will not be found on the
far right for this situation.

So, the wave function in the metal must satisfy two independent criteria:
(i) It must be consistent with a zero probability of finding the electron far into the

metal (energy).
(ii) It must connect smoothly to the wave function on the left (wave behavior).

A clue to dealing with both of these criteria is given by the behavior of light waves.  In
special circumstances, light can exist where we think it should not be — but only for a
very short distance.  When light penetrates into these regions, it is no longer an oscillat-
ing wave.  Instead, the light’s magnitude decreases rapidly.  It connects smoothly with
the oscillating wave but rapidly decreases its value to essentially zero.  Figure 7-4 shows
such a situation.

MetalEmpty space

Figure 7-4:  The wave function of the electron in empty space and the metal, when
the electron’s total energy is less than its potential energy in the metal.

The graph in Figure 7-4  also meets our criteria for the electrons. The wave functions in
the metal and empty space connect smoothly. It decreases to zero to insure a zero prob-
ability of finding the electron in that region.
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Generalizing from the wave function in empty space and the metal, as sketched in Figure
7-4 we can arrive at the following recipe for sketching the wave function:
• If the total energy of the electron is greater than its potential energy (i.e. Kinetic

Energy is positive), then the wave function is an oscillating wave (as in the empty
space in Figure 7-4).

• If the total energy of the electron is less than its potential energy (i.e. Kinetic
Energy is negative), then the wave function is decreasing.

A decreasing wave function does not necessarily have to decrease from a positive value
to zero, it could also “decrease” from a negative value toward zero.  For instance, another
valid wave function corresponding to the above physical situation is shown in Figure 7-5.

MetalEmpty space

Figure 7-5: Another possible wave function for an electron that enters a metal
where its potential energy is greater than its total energy

Sketch the probability densities for the wave functions in Figure 7-4 and 7-5.



7-5

How are the probability densities similar?

We have come to the shape of this wave function by logic and analogy.  If we were using
heavy-duty mathematics, we could get the same result using Schrödinger’s Equation.
Solving the equation also tells us the dependence of the rate of decrease of the wave
function on the difference between the total energy and potential energy.  But, you can
use logic and a little intuition to get the general idea.

Consider the two situations in Figure 7-6:

    CASE A         CASE B

                                          Potential Energy = 3 eV

         Total Energy = 2 eV

          VACUUM                               METAL

                                        Potential Energy = 3 eV

      Total Energy = 1 eV

     VACUUM                                METAL

Figure 7-6: In which situation will the rate of decrease on the right be greater?

? In which of the two cases in Figure 7-6 will the wave function in the metal decrease
more rapidly?

? Explain your answer.

Your intuition probably served you well.  The larger the difference between the potential
and total energies, the more rapidly the wave function decreases.
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Using Schrödinger’s Equation we can make the conclusion quantitative.  We define a
decrease length as a distance from the boundary to where the wave function has
dropped by a specified fraction.  The decrease length is

))((8
)sConstant(Planck'

length  decrease 2

2

EVmass −
=

π

In a distance equal to the decrease length the value of the wave function drops to about
0.4 of its value at the boundary  (See Figure 7-7).  In two times the decrease length the
value is (0.4) x (0.4) = .16 of its value at the boundary, and so forth.

100%

36%

--
-------------------------

Decrease Length

MetalEmpty space

Figure 7-7: The Decrease Length is the distance in which a wave function
decreases to about 36% of its initial value.

This equation works for any object.  It states that any object has a probability of being in
areas where it does not have the energy to be.  The physics of large objects tell us that
this cannot happen, but wave nature of matter says that it must.

To see how we can reconcile the physics of Newton with that of Schrödinger, consider
the gnat discussed in Activity 4.  It has a mass of .001 kg and a speed of 0.10 m/s.  Sup-
pose that it hits a wall with a potential energy of 1 Joule.  (Planck’s constant = 6.63 x 10-34

J·s)

? What is the decrease length for the gnat?  (An approximate answer is good
enough.)

? Would you expect a gnat to be found on the inside of a wall?

As you can see, the length is so small that Newton would never have noticed.  Even with
today’s technology we could not measure such a small distance.
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The equation on the previous page can be used for other objects.  As with the de Broglie
wavelength the magnitude only becomes useful when the mass is very small.  For elec-
trons the decrease length becomes

)(
04.0length  decrease

2

EnergyTotalEnergyPotential
eVnm

−
=

The energies must be in electron volts and the result is in nanometers.

Calculate the decrease length of an electron for Cases A and B in Figure 7-6.

Sketch approximately the wave function and probability density for each case.

The decrease length is an option in the Wave Function Sketcher.  Set up a situation
similar to Figure 7-1 which is repeated as Figure 7-8 below.

                                                                                                                                                     4 eV

                                                                                                                                                     3 eV

0 eV

Figure 7-8: A repeat of Figure 7-1.
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Using the decreasing options, sketch a wave function that is acceptable for this situation.

Sketch below the wave function as displayed by the program.

Now we must modify the steps for sketching wave function to include both oscillating
and decreasing shapes.  The shape of a wave function depends upon the Total Energy and
Potential Energy.  If the potential energy is less than the total energy, the wave function is
oscillating.  If the potential energy is greater than the total energy, we get a decreasing
wave function.  Step 2 must be modified to include both possibilities.  Below is a list of
the steps that will work for all cases.

Creating and Interpreting Wave Functions

1. Use the physical situation to draw the energy diagram and determine the bound-
aries.

2. Use the total and potential energies to determine if the wave function is oscillating
or decreasing, then follow A or B below.
A. Oscillating: Determine the wavelength for the oscillations.
B. Decreasing: Determine the decrease length.
Then, sketch the wave function.

3. Adjust the phases and amplitudes until the wave function is smooth across all
boundaries.

4. Interpret the probability density and discuss the probability of finding the object at
various locations.

Application
Now you can use the steps to sketch wave functions for an electron in a transmission
electron microscope.  Consider an electron that has a total energy of 1eV, and it is ap-
proaching a metal sample in which its potential energy due to repulsion from other
electrons is 3eV. (Figure 7-9)
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METAL

EMPTY SPACE

Electron approaching the
sample

EMPTY SPACE

Figure 7-9: An electron passing through a sample in a transmission electron
microscope.

? Establish the regions.  Then, draw the potential energy diagram of the electron
indicating its potential and total energies inside the metal sample as well as in the
empty space on either side.

? With the steps that you have learned, use the Wave Function Sketcher program
to sketch the wave functions for the electrons in each region.  Draw the wave
function  below.

? Write a brief interpretation of the wave function by concentrating on the probabil-
ity of an electron being in each region.

? Sketch the probability densities.

In this case some of the electrons may be found on the right side of the metal.  Conserva-
tion of energy would say that none of them should be there.  This effect of electrons
being where they should not be is called quantum tunneling.  It is observed in nature.
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Summary

We must include the wave behavior of small objects.  We found that matter can penetrate
into regions where they are not allowed by conservation of energy.  To account for this
behavior we modified the steps for sketching wave functions.  The result is that small
objects are sometimes found where they would not be allowed by conservation of en-
ergy.  The wave nature of matter forced this conclusion on us.  And, experiments have
confirmed that it does happen.
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ACTIVITY 8

Wave Functions for Electrons in Atoms

Goal
We apply the steps in creating wave functions to a model of the atom.
From the results we learn why only certain energies are allowed in atoms.

So far we have applied the wave behavior of small objects to beams of electrons.  While
such beams exist in television and computer monitors, they are not as common as other
small objects such as atoms.  In this activity we will explore the wave functions associ-
ated with electrons in atoms.  In the process we will begin to understand why the wave
behavior of electrons leads to the spectra of light from atoms.

To apply the steps for creating wave functions we must first establish a potential energy
for the electron in an atom.  That is:  we need to create a model for the atom.  We start by
noting that the attraction between electrons and the nuclei of atoms is electrical.  The
potential energy graph for an electron experiencing a one-dimensional electrical force is
shown in Figure 8-1a.  This graph looks relatively simple and could be the basis for a
model of the atom.  However, because the energy is constantly changing, we would have
trouble applying the steps to wave functions.  The graph in Figure 8-1b simplifies the
changing potential.  It could be used, but the version in Figure 8-1c is even simpler and
serves our purposes well.  We will use it for our potential energy of an electron in an
atom.

             (a)       (b)          (c)

Figure 8-1:  Three possibilities for a potential energy diagram of a one-
dimensional atom.
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The electron stays in the atom.  Thus, its total energy will be negative.  (See Activity 2.)
An energy diagram, such as Figure 8-2, represents both the electron’s total and potential
energies.
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-3

-2

-1

0
en
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distance (nm)

Potential Energy

Total Energy

Figure 8-2:  The potential and total energies for an electron in a model of an atom.

We will use this diagram to explore wave functions of electrons in atoms.  Start the Wave
Function Sketcher.  Create a potential energy diagram similar to Figure 8-2.  Follow the
steps to a wave function and attempt to create a wave function for all three regions.  Be
certain to calculate the wavelength using the de Broglie relationship and keep it fixed.

If you have difficulties sketching the wave function, describe the problems below.  Sketch
your best wave function below even if it is not quite smooth at both boundaries.

? Compare your results with others in the class.  How are they similar and different?
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? You probably found making smooth connections at both boundaries difficult.  Get
one right and the other one is messed up.  A few groups may have been able to
draw it.  If any group has been successful, compare their results to the unsuccess-
ful ones.  What differences can you detect?

? What would you need to change to create an acceptable wave function?

To see that we can draw wave functions for this situation, set up the following param-
eters.

 Potential Minimum = -4.32 eV Potential Width = 0.71 nm Total Energy = -1.32 eV

Sketch your wave function below.

You probably found this wave function much easier to draw.  That’s because the param-
eters are “just right.”  You can see by looking at the wave function how it fits nicely into
the available space.  Other similar examples are shown in Figure 8-3.

Figure 8-3:  Some wave functions which just fit in the potential energy with
minimum = -4.32 eV and width = 0.71 nm.
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Our conclusion is:  Only certain sets of parameters work to give an acceptable wave
function.  The potential energy minimum, its width and the electron’s total energy cannot
be any value.  They must have the right numbers.

As we discussed in previous activities the potential energy parameters are determined by
the physical situation.  For the atom the force of attraction between electron and nucleus
determines both the minimum value and the width.  For example, suppose we are con-
sidering hydrogen atoms.  Then the width and minimum will be set by the electrical
charge on an electron and a proton.  Thus, we have only one variable — the total energy
— which we can change.  We select the total energy so that the wavelengths just fit.  Then
we can create an acceptable wave function.

The wave function of an electron in an atom is restricted.  Its wavelength must be just
right to fit in that atom.  Wavelength is related to energy.  Thus, the energy can have only
certain values.  An electron in an atom has very limited possibilities for energy.  This
conclusion comes directly from the wave behavior of electrons.

In the next activity we will pursue this limitation on energies.  Then, we will have every-
thing we need to explain our observation in Activity 1:  Atoms emit only certain energies
of light.
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ACTIVITY 9

EnerEnerEnerEnerEnergies in gies in gies in gies in gies in AtomsAtomsAtomsAtomsAtoms

GoalGoalGoalGoalGoal
We will investigate wave functions of electrons in atoms.  By looking at
several possibilities we will see why different atoms have different spectra.

In the previous activity, you tried to create the wave functions for an electron in an atom.
It was possible to get an acceptable wave function for only a limited set of parameters.
This result led us to conclude that only “special” energies were possible for the electron
in an atom.  In this activity, we study more about the energies of electrons in atoms and
learn what makes certain energies special.

The process used in the previous activity is rather tedious.  So we will switch to a com-
puter program.  The program is programmed to follow a procedure similar to Activity 8.
It is faster than we are and does not get tired of doing the same thing many times.

Start the Bound States program (Figure 9-1).  It starts with a potential energy similar to
our model.  Select a total energy for the electron by clicking anywhere on the potential
energy diagram on the left side of the screen.  A red line appears on the potential energy
diagram that indicates the value of the total energy.  For any energy, the program can
determine two possible wave functions.  One of these wave functions has a zero in the
middle of the negative potential energy region, while the other has a maximum there.
Both wave functions are solutions for the Schrödinger equation.  Physicists label these
wave functions as symmetric and antisymmetric.  Those terms have little meaning for
our purpose, but we have to give them a name.  So we use symmetric (maximum in the
middle) and antisymmetric (zero in the middle).
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Figure 9-1:  Figure 9-1:  Figure 9-1:  Figure 9-1:  Figure 9-1:  Bound StatesBound StatesBound StatesBound StatesBound States program screen program screen program screen program screen program screen

In this mode Bound States is both smart and dumb.  It is smart because it can solve
Schrödinger’s Equation.  For any energy it creates a wave function with smooth connec-
tions at each boundary.  It is dumb because it pays no attention to physics.  The wave
function may not make sense.

To think about the physics consider the location of an electron in an atom.  Is that elec-
tron likely to be near the nucleus or very far away?

Now, look at the wave function in Figure 9-2.

Figure 9-2:  Figure 9-2:  Figure 9-2:  Figure 9-2:  Figure 9-2:  An unacceptable wAn unacceptable wAn unacceptable wAn unacceptable wAn unacceptable wave function.  ave function.  ave function.  ave function.  ave function.  The verThe verThe verThe verThe vertical marks on the axis aretical marks on the axis aretical marks on the axis aretical marks on the axis aretical marks on the axis are
the edge of the atom.the edge of the atom.the edge of the atom.the edge of the atom.the edge of the atom.
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We must reject this wave function.  It does not fit our steps.  Its value does not decrease to
zero when the potential energy is greater than the total energy.  Both ways say the same
thing.  Common sense tells us that an electron should probably be near the nucleus.  Wave
functions that say otherwise are no good.  In other words, we reject any wave functions
that predicts a high probability of the electron being very far from the nucleus.

So, the program can be dumb.  But, it can help us find acceptable wave functions.  Use the
up (↑) and down (↓) arrow keys on your keyboard to slowly change the energy level.  The
energy level will change by the Energy StepEnergy StepEnergy StepEnergy StepEnergy Step, (= 0.1 eV) each time you press an arrow key.
To increase or decrease the Energy StepEnergy StepEnergy StepEnergy StepEnergy Step, use the left (←) or right (→) arrow key on your
keyboard and change the Energy Step to 1.00eV or 0.01eV.  Change the energy level until
you notice that at least one of the wave functions is consistent with the requirement that
the wave function goes to zero outside the atom.

Sketch this wave function.

? Compare your wave functions with those of others in the class.  What are the
similarities?

? What are the differences?

? Press the Keep button on the right of the screen to store the wave function in one
of the windows.  Continue using the arrow keys and find another acceptable wave
function.  Sketch it below.
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? How does it differ from the previous acceptable wave function?

We could continue this process and find all acceptable wave functions and energies.
However, the computer can be made smarter.  It can complete the process automatically.
It can quickly try hundreds of wave functions, reject all that have high probability densi-
ties outside the atom and keep the rest.

Select Energies/SEnergies/SEnergies/SEnergies/SEnergies/Searcearcearcearcearch h h h h Allowed EnergiesAllowed EnergiesAllowed EnergiesAllowed EnergiesAllowed Energies from the pull-down menu.  Horizontal lines
corresponding to each of the allowed energies appear.

? Record the value for all allowed energies and the potential energy depth and
width.

The energies which are shown on the screen are obtained by solving Schrödinger’s
Equation for the potential energy on the screen.  In obtaining these energies we have
used

the wave behavior of electrons,
the probability interpretation of wave functions, and
a simplified potential energy for the atom.

With these assumptions we see that only certain well-specified energies are allowed for
the electrons.

From Activity 2 we know that changes from one energy to another causes light to be
emitted.  From the results here we see why only certain energies are allowed.  The wave
nature of the electron requires it.

Our present potential energy model is somewhat simplified.  Thus, we do not get the
correct values for the energies.  Really doing it right would require three dimensions and
a more accurate potential energy.  However, the basic conclusions would not change;
only the numbers would change.

You can view the wave function corresponding to any allowed energy.  Click on the total
energy outside the vertical potential energy lines.  The wave functions corresponding to
the energy level appears to the top right.  The program shows both wave functions.  Only
one is acceptable.  You must decide which one.
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Sketch the acceptable wave function for the lowest energy level.

“Keep” the wave function.  Now view the wave functions for the highest energy.

Sketch the acceptable wave function for the highest energy level.

? How are the wave functions of these two allowed energies that you have sketched
above similar to each other?

? How are they different?

We must address one final issue — the reason that different elements emit different
energies of light.  The electrical charge of the nucleus is different for each element.  In our
model that means that the potential energy is different for each element.  Let us see how
the allowed energies and wave functions depend upon the potential energy.

Use the PPPPPotential/Change Depthotential/Change Depthotential/Change Depthotential/Change Depthotential/Change Depth and PPPPPotential/Change otential/Change otential/Change otential/Change otential/Change WidthWidthWidthWidthWidth menus to create a
different potential energy.  Use EnergiesEnergiesEnergiesEnergiesEnergies/SSSSSearcearcearcearcearch h h h h Allowed EnergiesAllowed EnergiesAllowed EnergiesAllowed EnergiesAllowed Energies to determine the
allowed energies for this new atom.
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? Record the values of all allowed energies and the potential energy depth and
width.

? How do these allowed energies differ from the previous ones?

Other groups in the class will have changed their potential energy in ways different from
yours.  Collect information from other groups so that you can answer the following
questions.

? How does the number of allowed energies change as the potential energy depth is
increased?

? How does the energy difference between the allowed energy levels change when
the depth of the potential energy is increased?

? Can you use this information to describe why different elements have different
spectra?  If you can, do so.  If not, discuss it with your instructor.



9-7

SummarySummarySummarySummarySummary

We began this set of activities with the observation of the light emitted by atoms.  By
trying to understand light we have learned about the wave nature of matter and the
probabilistic nature of knowledge.  Along the way we have seen that small objects can
sometimes be where they would not be allowed by using only energy considerations,
that electrons can be used to see very small objects and that the spectra of elements is
explained by this wave nature.

The theory that incorporates the wave nature of matter is now called quantum mechan-
ics.  The explanation of spectra was an early triumph for quantum mechanics.  However,
the story does not end there.  Quantum mechanics was also needed to explain the way
atoms join to form molecules and the organization of the periodic table.  All types of
small solid devices, such as computer processors and memories are available today only
because the designers understood quantum mechanics.  Thus, a large fraction of our
daily lives are in some way dependent on quantum mechanics.  If scientists and engi-
neers did not understand its principles, our lives would be quite different.  The concepts
that you learned here are likely to increase in importance during the 21st Century.

Homework Homework Homework Homework Homework ApplicationApplicationApplicationApplicationApplication
Suppose you look at a gas lamp through a spectroscope and see the following spectrum.

Assume that the spectrum is created by transitions only between various upper energy
levels and the lowest energy level in an atom and that the lowest energy is -6.0 eV.

? Sketch the energy levels of the atom.
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ACTIVITY 10

Wave Functions for Lonely Electrons

Goal
We continue to refine the wave function we use to describe an electron.  We
will discover that the electron’s wave properties actually prevent us from
making exact measurements of its position and momentum simulta-
neously.  This result leads to philosophical issues related to the nature of
knowledge.

In our descriptions of electrons so far, we have been assuming that electrons move in the
beam and all of them have identical energies.  This situation has been useful, but it is
somewhat artificial.  For a real world we need to describe individual electrons as well as
beams.

First, let’s see why our present version has problems when dealing with an individual
electron.  Suppose we wish to use a wave function that travels straight across this line of
the page.  It moves from left to right without changing its speeds.  It interacts with noth-
ing.  So, the potential energy is zero.  One electron, no interactions, and no energy
changes.  Sounds like a simple situation.

The Wave Function Sketcher would give us the result in Figure 10-1.

Figure 10-1:  The Wave Function Sketcher result for the situation described above.

? Does this wave function match the description above?  Why or why not?  (If you
have difficulty with this question, think about the probability of finding the elec-
tron at various locations.)

 Visual Quantum Mechanicsof matter
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Name: Class:
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The difficulty is that the probability density is rather uniform across the page.  Also, it does
not change with time.  Let’s create a better wave function for a single electron.  In the
diagram below, sketch an approximate graph of probability density versus position for an
electron in the middle of the page.  The approximate shape of the wave function, not the
numerical value at any point, is the important feature.

? Explain why you drew the wave function as you did both near the location of the
electron, and far from it.

? How would you expect this wave function to change as the electron moved across
the page?

A possible representation for the electron moving across the screen is shown in Figure
10-2.  (Quantum Motion can show animations of this.)

(c)

(b)

(a)

Figure 10-2: Three snapshots of a wave function representing an electron
traveling across the page.
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This wave function has a probability different from zero only in a small region.  It moves as
the electron moves.  So, it fits the need for our purposes.

All measurements indicate that the electron is a very small object.  It is essentially a point in
space.   So, the “bumps” on the wave functions in Figure 10-2 indicate that the probability of
finding the electron is different from zero at several different locations.

Unfortunately, such a wave function does not just “pop out” as a solution to Schrödinger’s
Equation.  So we must learn to build it from other solutions.

The ability of waves to interfere both constructively and destructively enables us to combine
several different waves to create waveforms with useful shapes.  Because waves interfere
with one another both constructively and destructively at the same time but in different
locations, we can never create a wave function that is not zero at one location, but zero
everywhere else.  So, to represent a single electron, we must construct a wave function that,
when squared, gives a probability density with one maximum, decreases sharply away from
that maximum, and then is zero at relatively large distances for where we expect the elec-
tron.

Even simple waveforms like the disturbance on the rope can be constructed by adding
simple waves together.  Our goal will be to combine simple waves to produce a wave func-
tion that, when squared, gives a smooth probability density graph similar to Figure 10-3:

Figure 10-3: Typical shape for the probability density of a localized  electron.

To see how we might create such a wave look at the addition of waves shown in Figure
10-4.
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Figure 10-4: the three waves (a-c) on the left, gives the one on the right (e).
Adding even more waves can result in a wave form similar to Figure 10-3.

By adding hundreds of waves with carefully selected wavelengths and amplitudes we can
come very close to the form in Figure 10-3.

From the de Broglie relation we know that wavelength is related to momentum.  So,
when we add wave functions of different wavelengths, we are adding wave functions,
which represent objects with different momenta.

To create wave functions like this use the Wave Packet Explorer. This program allows us
to add wave functions of different momenta (wavelengths) rather easily.

Click in the upper left window (Amplitude vs. Momentum graph).
A vertical line appears representing a wave function whose amplitude is proportional to
the length of the line, and whose momentum is the value at the line on the horizontal
axis.  The wavelength is calculated from using the de Broglie relation.  The wave function
appears directly below.

Repeat this procedure by first clicking on the graph in the upper left window, at any value
of position and amplitude and creating a new wave function.  Each time, a simple wave
function is added to all the wave functions that were already present.  The individual
waves are shown on the graph on the bottom left while the sum of these waves is just
above these.
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? How does the resulting added wave function change as you increase the number
of simple wave functions?

Now, instead of adding just a few wave functions, add a large number of them.  Click
many times in a definite pattern to create a large number of wave functions. Sketch the
resulting wave functions below.

Compare your resulting wave functions with others in the class.  Find a couple that are
quite different from yours.  Describe how their momentum-amplitude graph is different
from yours.

Some of these patterns are probably similar to Figure 10-3.  Try an amplitude-momentum
distribution similar to the one in Figure 10-5.

To come even closer you can add a very large number of momenta.  Hold down the shift
key and the left mouse button and drag the cursor across the amplitude-momentum
graph.  This process adds together all of the wave functions with momenta and ampli-
tudes in the shaded region.
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Figure 10-5: An amplitude-momentum distribution that gives a wave function
similar to the one in Figure 10-3.

(You can look at any one wave function in all of the collection by moving the
mouse over the line in the momentum graph.  Both the momentum line and the
corresponding wave function in the bottom graph will turn green.

Sketch the position wave function below.

? What is the probability interpretation of the wave function?

? Does this wave function have a large or small range of momenta associated with
it?

Now try a wave function which has a very narrow range of momenta.  Create it by drag-
ging over a small range.

Sketch the position wave function below.

? How is the probability interpretation different from the previous wave function?

momentum

Amplitude
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Now, try to create

n a wave function that represents a high probability of the electron being in a very
small region of space, and

n a wave function that represents an electron that has equal probabilities of being in
many different regions.

? How do these wave functions (and the momenta represented by them) differ?

We can create a wave function that represents an electron in a small region of space.  To
do so we must add together many different simple waves.  Each simple wave has a
different wavelength.  Because wavelength is related to momentum, each simple wave
has a different momentum.

Thus, we need many different momenta to create a wave function for one electron.  We
interpret this result to mean that the electron may have any one of the momenta.  So,
instead of having just one momentum, these localized electrons have a probability of
having many different momenta.  The probability of each momentum is related to the
amplitude of the wave function with that momentum (Figure 10-6).

Low probability

Medium probability

High probability of this

Figure 10-6: The probability of each momentum depends on the amplitude on the
amplitude-momentum graph.
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We must make a similar statement about position.  Even when we add lots of waves with
lots of different momenta, we still get a wave function similar to Figure 10-7.

Low probability

Medium probability

High probability of finding an electron

Figure 10-7: The relative probability of finding the electron at various locations
for a localized wave function.

Summary
We can create a wave function that localizes the electron to  a small region of space.
However, not just to one point in space.  In doing this we increase the possible range of
momenta that the electron can have.  We must talk about probabilities for both the
electron’s location and its momentum.
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ACTIVITY 11

Moving Lonely Electrons

Goal
We look at wave functions for moving electrons and describe the probabili-
ties for its location.

We have now seen how to create a wave function for a single electron.  This wave func-
tion provides information about both the location and momentum of the object.  How-
ever, it cannot give us exact values for either quantity.  We say that the wave function
leaves us with an uncertainty in position and an uncertainty in momentum for the elec-
tron.

For the moment we will concentrate on the uncertainty in position.  Use the Quantum
Motion program to look at the wave function of an electron moving across the computer
screen.  We will use the same situation as in Activity 10:

n one electron,
n no interactions,
n no energy change

So, set the potential energy to zero everywhere.

The Quantum Motion program solves Schrödinger’s Equation for the situation.  It puts
solutions that change with time on the screen.  Thus, the wave functions represent a
moving electron.

Press Play and watch what happens.  Describe how the wave function changes.

Return to the starting position.  Sketch the wave function below and indicate locations of
high, medium and low probability of finding the electron.

Kansas State University
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Now, play the solution, but pause when the wave function reaches the middle of the
screen.  Again, sketch it and indicate locations of high, medium, and low probability.

Continue until the wave function is near to the right side.  Once again sketch it and indi-
cate locations of high, medium, and low probability.

? Compare the three wave functions that you sketched.  What changed as the elec-
tron moved?

? Other groups probably paused their wave functions at slightly different locations.
Compare your conclusions to theirs.  Are they similar?

You probably noticed that the locations of highest probability became small.  The range
of locations with medium and low probability became greater.  (See Figure 11-1).
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              High

  Medium

(a)       Low

            
      position

Medium

(b) Low

        position
      Medium

    Low
 (c)

        position

Figure 11-1: The wave function spreads out of time.  Thus, the range of probability
locations increases.

We can understand this result by returning to the momenta involved.  We start with a
wave function as in Figure 11-1(a).  The electron can have many different momenta.  (Re-
member we needed all those momenta to construct its wave function.)  Of course, it also
has a range of possible locations.  So, we don’t quite know where it is, and we don’t quite
know how fast it is moving — an uncertainty in position; an uncertainty in momentum.
(See Figure 11-2)

Figure 11-2: When we start, we have an uncertainty in both position and
momentum.

A short time later we look to see where the electron is.  We expect to still have an uncer-
tainty in position because there was such an uncertainty when we started. In addition, the
electron had an uncertainty in its momentum at the start.  This uncertainty means that we
do not know exactly how fast the electron is moving.  The location of an object at a later
time depends on both its starting point and its speed.  In the case of the electron both the
start and the momentum have uncertainties.  As time passes the initial uncertainty in
position is compounded by the uncertainty in momentum.  So, as an electron moves the
uncertainty in position increases.

Could be moving fast, medium or slow

   Position
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This change in uncertainty is represented in Quantum Motion by a change in the wave
function.  As time passes, the wave function spreads out.  This spreading indicates a
wider range of positions is probable as the electron moves.

The rate of the uncertainty in positions depends on the uncertainty at the start.  Two
possible starting wave functions are shown in Figure 11-3.  Wave function (a) is restricted
to a very small region of space.  Wave function (b) is not as restricted.

(a) (b)

Figure 11-3: Wave functions that (a) represent an object restricted to a very small
region of space and (b) not very restricted.

? Which one needs a larger number of momenta to create it?  Refer to your experi-
ences in Activity 10 to explain why.

? Use your answer above to determine which one will change the range of possible
locations more quickly.

A very small uncertainty at the beginning results in a very rapid change in the wave
function.  A greater uncertainty at the start means the change in uncertainty is not so
great.  How well we know the position at one location determines how well we can know
it later.

Summary
The uncertainty in position and momentum of a wave function results from restricting
the object to a small region of space.  The wave function changes as the object moves.
Because of the initial uncertainties, our knowledge of position decreases with time.
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ACTIVITY 12

It Was Probably Heisenberg

Goal
We look more carefully at the uncertainties in position and momentum.  We
will learn how the uncertainty in one variable is related to the other.  Finally,
we will speculate about the value of the Heisenberg Compensator in the
Star Trek Transporter.

In Activity 11 we saw that the uncertainty in momentum at one time affects our uncer-
tainty in position at a later time.  Now, we wish to investigate the relation between the
two variables at any one time.

To begin let’s use the Wave Packet Explorer to create wave functions with different uncer-
tainties in momentum.   Your instructor will select a different wave function from Figure
12-1 for each group to create.

       (a)              (b)                    (c)                              (d)                                   (e)

Figure 12-1:  Wave functions with different uncertainties in position.

? Compare the result of all groups.  Which one needed to include the largest number
of momenta?

? the smallest number of momenta?
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? How is the uncertainty in position related to the uncertainty in momentum?

This exercise indicates that as one of the uncertainties increases the other decreases.
This conclusion is built into the wave nature of matter.  It does not depend on our mea-
surement instruments.  (We have not discussed measurement here — only creating wave
functions.)

Heisenberg’s Uncertainty Principle
The mutual dependence of the uncertainty in position and the uncertainty in momentum
was first stated by Werner Heisenberg.  His statement is known as Heisenberg’s Uncer-
tainty Principle.  It says that the uncertainty in position and the uncertainty in momentum
are closely related.  If one decreases, the other increases by the same factor.  Mathemati-
cally, the Uncertainty Principle says:

(Uncertainty in position) x (Uncertainty in momentum) = constant

Or, if you like symbols for uncertainty in position (∆x) and uncertainty in momentum (∆p).

∆ ∆x p⋅ = constant

The constant is Planck’s constant (h) divided by 2π:

This principle states that we can never know both the exact position and the exact mo-
mentum of an electron at the same time.  The best we could do is that the uncertainties
are related by this equation.  We would get these results only with perfect measuring
instruments.  We can always do worse. For this reason, Heisenberg’s Uncertainty Prin-
ciple is usually stated as an inequality:

(Uncertainty in position) x (Uncertainty in momentum) is at least        .π2
h

∆ ∆x p
h

⋅ ≥
2π

? For example, suppose we establish the position of an electron precisely to within a
tenth of a nanometer (0.0000000001 m).  Using Dx = 10-10 m, what would be the
minimum uncertainty in the electron’s momentum (Dp)?  (The value of Planck’s
constant is h = 6.63 ́  10-34 J×s)
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? With this uncertainty in momentum, what would be the corresponding uncertainty
in the speed of the electron?  (The electron’s mass is 9.11 ́  10-31 kg.)  Recall that
momentum = mass x velocity.

? A reasonable speed for an electron might be around 106 m/s.  Is the uncertainty in
speed that you calculated significant when compared to this speed?  Explain.

The Heisenberg Uncertainty Principle is applied to all types of matter.  One of the “con-
troversies” in the early Star Trek series involved these uncertainties.  Some Trekkies
claimed that the Uncertainty Principle means that transporters would not be feasible.  The
uncertainties meant that the transporter would never be able to measure the location of
the matter in people well enough.  So they could not be beamed elsewhere.

Maybe these uncertainties are so small that they are unimportant in the transporter.
Suppose a gnat is flying around in the transporter room.  When it flies over the trans-
porter pad, we measure its position and momentum.  Then try to transport it to a location
near somebody’s compost pile.  We measure the gnat’s position only fairly accurately.
The uncertainty of its position is within one millimeter (10-3 m).  According to
Heisenberg’s Uncertainty Principle, what would be the minimum uncertainty in the gnat’s
momentum (∆p)?

So, the gnat’s uncertainty position and its momentum are rather small.  We could con-
clude that the Uncertainty Principle is not a problem.  But, the transporter does not
“work” by beaming whole objects.  Instead it measures the locations of all atoms (maybe
even all protons, neutrons, and electrons).  Then, it disassembles the object and reas-
sembles it elsewhere.  Look at the uncertainty calculation for an electron.  How likely is it
that the gnat can even be reassembled intact?  Explain.
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? How would the Uncertainty Principle affect our ability to transport objects even
larger than gnats?  (They will have many more atoms.)

The Star Trek  writers worked around this problem with a component they called a
“Heisenberg compensator.” This device somehow allows precise measurement of both
position and momentum.  They admit that they don’t know how such a device would
work.  However, they recognize that it is needed to overcome these limitations of quan-
tum physics.  Its failure also makes for interesting stories.  It should be noted that the
Star Trek writers have also been insightful and creative enough to invent “subspace.”  This
spatial continuum is hidden within our own, familiar three-dimensional space.  It allows
the transporter to “beam” people and objects instantaneously from one site to another
since, in subspace, travel is not restricted to speeds below the speed of light.  Fortu-
nately, fiction is not restricted by the concepts of physics.

Today we lack the technology to construct “Heisenberg compensators.”  But, we cannot
rule out the possibility that something similar may one day be developed.  Talk of trans-
porters may sound fantastic, but some current research indicates that “quantum
teleportation” (as it is known to scientists) may actually be possible with individual
atoms.  Researchers at IBM have shown that teleportation of one atom is theoretically
possible, but only if the original is destroyed.  One atom is far from a person (or even a
gnat) and many problems are involved in scaling up.  But, it is fun to think about it.

Perhaps the most important aspect of the Uncertainty Principle is its philosophical
implications.  It states that humans cannot know everything about an object.  Even if we
try to imagine the “perfect” measuring instruments, we cannot determine the exact
position and exact momentum simultaneously.  Such a device can never be built.  Thus,
the Uncertainty Principle places limitations on humankind’s knowledge of everything.

This limitation on our knowledge is inherent in nature.  We observe the spectra of atoms.
To explain them we conclude that matter behaves as waves.  If this description is effec-
tive, it must describe individual electrons.  This description leads to the Heisenberg
Uncertainty Principle.  Then, we find we cannot know everything precisely, even if we had
perfect measuring instruments.

This lack of ability to know is a major departure from the physics of Newton.  In 1787
Pierre Simon LaPlace, a mathematician, considered Newton’s Laws carefully.  If he knew
the initial position and velocity, and the forces on an object, he could measure these
variables for every object in the universe.  Then suppose he could calculate really fast.  He
could know all of the future because he knows Newton’s Laws.  The only thing stopping
him is good measurements and slow computers.



12-5

Quantum mechanics (particularly the Heisenberg Uncertainty Principle) says, “not true.”
Even with perfect measuring instruments we cannot know enough.  The nature of matter,
not of measurement limits our knowledge.

Homework

12-1. Suppose we determine the position of an electron to within 10 nanometers (10 x
10-9 m).  What will be the best possible measurement of its momentum?

12-2a. Suppose you are able to determine the speed of a 100 kg pole vaulter to within .04
m/s. Within what accuracy would you be able to determine her position?

12-2b. Based on your answer above, do you think that we need to worry about the Uncer-
tainty Principle in measurements that we make in our everyday lives?  Explain
your answer.

Nanotechnology is the science of building tiny machines by constructing them atom-by-
atom.  This construction concept is rapidly generating interest among scientists and
engineers.  Claims and promises are being made that this technology will revolutionize
our lives.  However, we need to think about what happens when the “machines” become
extremely small.  Perhaps the Uncertainty Principle will make nanotechnology difficult or
even impossible to use.  Explain why nanotechnologists may need to worry about the
limits imposed by the Uncertainty Principle.
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