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ACTIVITY 7

More Steps for Sketching
Wave Functions

Goal
We now consider wave functions for situations where the total energy is
less than the potential energy.  We will learn that these wave functions have
a property that is significantly different from ones we have discussed so
far.

In the previous activity we considered electrons which entered a TV screen and had
enough energy to go on through.  However, the probability interpretation indicates that
not all electrons just keep going.  If they did, the probability on each side of the boundary
would be identical.  Some of the electrons bounce back, but most go on through.

In many situations electrons arrive at a metal where they do not have sufficient energy to
go through.  The potential energy results from a repulsion and is larger than the total
energy of the incoming electrons.  Such a situation is shown in Figure 7-1.
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Figure 7-1: Potential & Total Energy of an electron approaching a sample.
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For this situation, describe the motion that you would expect for the electrons.

Calculate the kinetic energy and wavelength of the electrons in empty space.

Calculate the kinetic energy of the electron inside the metal.

You have just uncovered a problem.  The kinetic energy that you calculated is negative.
But, only positive quantities — mass and speed squared — are involved in kinetic energy.
It must be a positive number.

Our first conclusion could be that electrons cannot be in the metal.  That works if we only
consider energy, but we must also consider the wave behavior of the electrons.  Remem-
ber that the probability interpretation requires a smooth connection at the boundary.
Wave functions such as the one in Figure 7-2 give zero probability inside the metal but
fail the smoothness test.  (Another candidate for a big X.)

Edge of Metal

Figure 7-2:  This wave function is not smooth at the boundary.
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While the wave properties are important, energy conservation must also be taken into
account.  Suppose electrons interact with a large region where they do not have enough
energy to go.  If we go far into that region, we do not expect to find electrons (Figure 7-3).

Figure 7-3:  Energy considerations tell us that electrons will not be found on the
far right for this situation.

So, the wave function in the metal must satisfy two independent criteria:
(i) It must be consistent with a zero probability of finding the electron far into the

metal (energy).
(ii) It must connect smoothly to the wave function on the left (wave behavior).

A clue to dealing with both of these criteria is given by the behavior of light waves.  In
special circumstances, light can exist where we think it should not be — but only for a
very short distance.  When light penetrates into these regions, it is no longer an oscillat-
ing wave.  Instead, the light’s magnitude decreases rapidly.  It connects smoothly with
the oscillating wave but rapidly decreases its value to essentially zero.  Figure 7-4 shows
such a situation.

MetalEmpty space

Figure 7-4:  The wave function of the electron in empty space and the metal, when
the electron’s total energy is less than its potential energy in the metal.

The graph in Figure 7-4  also meets our criteria for the electrons. The wave functions in
the metal and empty space connect smoothly. It decreases to zero to insure a zero prob-
ability of finding the electron in that region.
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Generalizing from the wave function in empty space and the metal, as sketched in Figure
7-4 we can arrive at the following recipe for sketching the wave function:
• If the total energy of the electron is greater than its potential energy (i.e. Kinetic

Energy is positive), then the wave function is an oscillating wave (as in the empty
space in Figure 7-4).

• If the total energy of the electron is less than its potential energy (i.e. Kinetic
Energy is negative), then the wave function is decreasing.

A decreasing wave function does not necessarily have to decrease from a positive value
to zero, it could also “decrease” from a negative value toward zero.  For instance, another
valid wave function corresponding to the above physical situation is shown in Figure 7-5.

MetalEmpty space

Figure 7-5: Another possible wave function for an electron that enters a metal
where its potential energy is greater than its total energy

Sketch the probability densities for the wave functions in Figure 7-4 and 7-5.
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How are the probability densities similar?

We have come to the shape of this wave function by logic and analogy.  If we were using
heavy-duty mathematics, we could get the same result using Schrödinger’s Equation.
Solving the equation also tells us the dependence of the rate of decrease of the wave
function on the difference between the total energy and potential energy.  But, you can
use logic and a little intuition to get the general idea.

Consider the two situations in Figure 7-6:

    CASE A         CASE B

                                          Potential Energy = 3 eV

         Total Energy = 2 eV

          VACUUM                               METAL

                                        Potential Energy = 3 eV

      Total Energy = 1 eV

     VACUUM                                METAL

Figure 7-6: In which situation will the rate of decrease on the right be greater?

? In which of the two cases in Figure 7-6 will the wave function in the metal decrease
more rapidly?

? Explain your answer.

Your intuition probably served you well.  The larger the difference between the potential
and total energies, the more rapidly the wave function decreases.
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Using Schrödinger’s Equation we can make the conclusion quantitative.  We define a
decrease length as a distance from the boundary to where the wave function has
dropped by a specified fraction.  The decrease length is
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In a distance equal to the decrease length the value of the wave function drops to about
0.4 of its value at the boundary  (See Figure 7-7).  In two times the decrease length the
value is (0.4) x (0.4) = .16 of its value at the boundary, and so forth.
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Decrease Length

MetalEmpty space

Figure 7-7: The Decrease Length is the distance in which a wave function
decreases to about 36% of its initial value.

This equation works for any object.  It states that any object has a probability of being in
areas where it does not have the energy to be.  The physics of large objects tell us that
this cannot happen, but wave nature of matter says that it must.

To see how we can reconcile the physics of Newton with that of Schrödinger, consider
the gnat discussed in Activity 4.  It has a mass of .001 kg and a speed of 0.10 m/s.  Sup-
pose that it hits a wall with a potential energy of 1 Joule.  (Planck’s constant = 6.63 x 10-34

J·s)

? What is the decrease length for the gnat?  (An approximate answer is good
enough.)

? Would you expect a gnat to be found on the inside of a wall?

As you can see, the length is so small that Newton would never have noticed.  Even with
today’s technology we could not measure such a small distance.
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The equation on the previous page can be used for other objects.  As with the de Broglie
wavelength the magnitude only becomes useful when the mass is very small.  For elec-
trons the decrease length becomes
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The energies must be in electron volts and the result is in nanometers.

Calculate the decrease length of an electron for Cases A and B in Figure 7-6.

Sketch approximately the wave function and probability density for each case.

The decrease length is an option in the Wave Function Sketcher.  Set up a situation
similar to Figure 7-1 which is repeated as Figure 7-8 below.

                                                                                                                                                     4 eV

                                                                                                                                                     3 eV

0 eV

Figure 7-8: A repeat of Figure 7-1.
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Using the decreasing options, sketch a wave function that is acceptable for this situation.

Sketch below the wave function as displayed by the program.

Now we must modify the steps for sketching wave function to include both oscillating
and decreasing shapes.  The shape of a wave function depends upon the Total Energy and
Potential Energy.  If the potential energy is less than the total energy, the wave function is
oscillating.  If the potential energy is greater than the total energy, we get a decreasing
wave function.  Step 2 must be modified to include both possibilities.  Below is a list of
the steps that will work for all cases.

Creating and Interpreting Wave Functions

1. Use the physical situation to draw the energy diagram and determine the bound-
aries.

2. Use the total and potential energies to determine if the wave function is oscillating
or decreasing, then follow A or B below.
A. Oscillating: Determine the wavelength for the oscillations.
B. Decreasing: Determine the decrease length.
Then, sketch the wave function.

3. Adjust the phases and amplitudes until the wave function is smooth across all
boundaries.

4. Interpret the probability density and discuss the probability of finding the object at
various locations.

Application
Now you can use the steps to sketch wave functions for an electron in a transmission
electron microscope.  Consider an electron that has a total energy of 1eV, and it is ap-
proaching a metal sample in which its potential energy due to repulsion from other
electrons is 3eV. (Figure 7-9)
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Electron approaching the
sample

EMPTY SPACE

Figure 7-9: An electron passing through a sample in a transmission electron
microscope.

? Establish the regions.  Then, draw the potential energy diagram of the electron
indicating its potential and total energies inside the metal sample as well as in the
empty space on either side.

? With the steps that you have learned, use the Wave Function Sketcher program
to sketch the wave functions for the electrons in each region.  Draw the wave
function  below.

? Write a brief interpretation of the wave function by concentrating on the probabil-
ity of an electron being in each region.

? Sketch the probability densities.

In this case some of the electrons may be found on the right side of the metal.  Conserva-
tion of energy would say that none of them should be there.  This effect of electrons
being where they should not be is called quantum tunneling.  It is observed in nature.
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Summary

We must include the wave behavior of small objects.  We found that matter can penetrate
into regions where they are not allowed by conservation of energy.  To account for this
behavior we modified the steps for sketching wave functions.  The result is that small
objects are sometimes found where they would not be allowed by conservation of en-
ergy.  The wave nature of matter forced this conclusion on us.  And, experiments have
confirmed that it does happen.
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