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GoalGoalGoalGoalGoal
We now consider wave functions for situations where the total energy is
less than the potential energy.  We will learn that these wave functions have
a property that is significantly different from ones we have discussed so
far.

A.  PA.  PA.  PA.  PA.  Potential Energy > otential Energy > otential Energy > otential Energy > otential Energy > TTTTTotal Energyotal Energyotal Energyotal Energyotal Energy

Previously  we considered electrons which entered a TV screen and had enough energy to
go on through.  However, the probability interpretation indicates that not all electrons
just keep going.  If they did, the probability on each side of the boundary would be identi-
cal.  Some of the electrons bounce back, but most go on through.

In many situations electrons arrive at a metal where they do not have sufficient energy to
go through.  The potential energy results from a repulsion and is larger than the total
energy of the incoming electrons.  Such a situation is shown in Figure 1.

Figure 1: PFigure 1: PFigure 1: PFigure 1: PFigure 1: Potential & otential & otential & otential & otential & TTTTTotal Energy of an electron approacotal Energy of an electron approacotal Energy of an electron approacotal Energy of an electron approacotal Energy of an electron approaching a sample.hing a sample.hing a sample.hing a sample.hing a sample.
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A-1. For this situation, describe the motion that you would expect for the electrons and
explain why.

A-2. Calculate the kinetic energy, momentum  and wavelength of the electrons in
empty space.

A-3. Calculate the kinetic energy of the electron inside the metal.

You have just uncovered a problem.  The kinetic energy that you calculated is negative.
But, only positive quantities — mass and speed squared — are involved in kinetic energy.
It must be a positive number.

B.  FB.  FB.  FB.  FB.  Form of orm of orm of orm of orm of This This This This This WWWWWave Fave Fave Fave Fave Functionunctionunctionunctionunction

Our first conclusion could be that electrons cannot be in the metal.  That works if we only
consider energy, but we must also consider the wave behavior of the electrons.  Remem-
ber that the probability interpretation requires continuity at the boundary.  Wave func-
tions such as the one in Figure 2 give zero probability inside the metal but  fail the conti-
nuity test.  (Another candidate for a big X.)

Figure 2:  Figure 2:  Figure 2:  Figure 2:  Figure 2:  This wThis wThis wThis wThis wave function and its firave function and its firave function and its firave function and its firave function and its first derist derist derist derist derivativativativativative are not continuous at theve are not continuous at theve are not continuous at theve are not continuous at theve are not continuous at the
boundaryboundaryboundaryboundaryboundary.....
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While the wave properties are important, energy conservation must also be taken into
account.  Suppose electrons interact with a large region where they do not have enough
energy to go.  If we go far into that region, we do not expect to find electrons (Figure 3).

Figure 3:  Energy considerations tell us that electrons will not be found on the farFigure 3:  Energy considerations tell us that electrons will not be found on the farFigure 3:  Energy considerations tell us that electrons will not be found on the farFigure 3:  Energy considerations tell us that electrons will not be found on the farFigure 3:  Energy considerations tell us that electrons will not be found on the far
right for this situation.right for this situation.right for this situation.right for this situation.right for this situation.

So, the wave function in the metal must satisfy two independent criteria:
(i) It must be consistent with a zero probability of finding the electron far into the

metal (energy).
(ii) It must meet the continuity requirement at the boundary (wave behavior).

A clue to dealing with both of these criteria is given by the behavior of electromagnetic
waves.  In special circumstances, light can exist where we think it should not be — but
only for a very short distance.  When light penetrates into these regions, it is no longer a
sinusoidal wave.  Instead, the light’s magnitude decreases exponentially.  It connects
continuously with the sinusoidal wave but exponentially decreases its value to essentially
zero.  Figure 4 shows such a function.

Figure 4:  Figure 4:  Figure 4:  Figure 4:  Figure 4:  The wThe wThe wThe wThe wave function of the electron in empty space and the metal, whenave function of the electron in empty space and the metal, whenave function of the electron in empty space and the metal, whenave function of the electron in empty space and the metal, whenave function of the electron in empty space and the metal, when
the electronthe electronthe electronthe electronthe electron’’’’’s total energy is less than its potential energy in the metal.s total energy is less than its potential energy in the metal.s total energy is less than its potential energy in the metal.s total energy is less than its potential energy in the metal.s total energy is less than its potential energy in the metal.

The graph in Figure 4  also meets our criteria for the electrons. The wave function is
contuous across the metal and vacuum boundary. It decreases to zero to insure a zero
probability of finding the electron far into that region.
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Generalizing from the wave function in empty space and the metal, as sketched in Figure
4 we can arrive at the following recipe for sketching the wave function:
• If the total energy of the electron is greater than its potential energy (i.e. Kinetic

Energy is positive), then the wave function is a sinusoidal wave (as in the empty
space in Figure 4).

(1)
(2)

• If the total energy of the electron is less than its potential energy, then the wave
function decreases exponentially.

A decreasing wave function does not necessarily have to decrease from a positive value
to zero, it could also “decrease” from a negative value toward zero.  For instance, another
valid wave function corresponding to the above physical situation is shown in Figure 5.

Figure 5: Figure 5: Figure 5: Figure 5: Figure 5: Another possible wAnother possible wAnother possible wAnother possible wAnother possible wave function for an electron that enterave function for an electron that enterave function for an electron that enterave function for an electron that enterave function for an electron that enters a metals a metals a metals a metals a metal
where its potential energy is greater than its total energywhere its potential energy is greater than its total energywhere its potential energy is greater than its total energywhere its potential energy is greater than its total energywhere its potential energy is greater than its total energy

B-1. Sketch the probability densities for the wave functions in Figure 4 and 5.
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B-2. How are the probability densities similar?

C.  Rate of DecreaseC.  Rate of DecreaseC.  Rate of DecreaseC.  Rate of DecreaseC.  Rate of Decrease

We have come to the shape of this wave function by logic and analogy.  If we were using
heavy-duty mathematics, we could get the same result using Schrödinger’s Equation.
(See your textbook and the “Shape of the Wave Function” activity.)  Solving the equation
also tells us the dependence of the rate of decrease of the wave function on the differ-
ence between the total energy and potential energy.  But, you can use logic and a little
intuition to get the general idea.

Consider the two situations in Figure 6:

Figure 6: In whicFigure 6: In whicFigure 6: In whicFigure 6: In whicFigure 6: In which situation will the rate of decrease on the right be greater?h situation will the rate of decrease on the right be greater?h situation will the rate of decrease on the right be greater?h situation will the rate of decrease on the right be greater?h situation will the rate of decrease on the right be greater?

C-1. In which of the two cases in Figure 6 will the wave function in the metal decrease
more rapidly?

C-2. Explain your answer.

Your intuition probably served you well.  The larger the difference between the potential
and total energies, the more rapid the rate of decrease of the wave function.
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D.  D.  D.  D.  D.  WWWWWave Fave Fave Fave Fave Functions & Large Objectsunctions & Large Objectsunctions & Large Objectsunctions & Large Objectsunctions & Large Objects

This logic works for any object.  It states that any object has a probability of being in
areas where it does not have the energy to be.  The physics of large objects tell us that
this cannot happen, but wave nature of matter says that it must.

To see how we can reconcile the physics of Newton with that of Schrödinger, consider
the gnat discussed in the “Matter Waves” activity.  It has a mass of .001 kg and a speed of
0.10 m/s.  Suppose that it hits a wall with a potential energy of 1 Joule.  (Planck’s constant
= 6.63 x 10-34 J·s)

D-1. What is the decrease length for the gnat?  (An approximate answer is good
enough.)

D-2. Would you expect a gnat to be found on the inside of a wall?

As you can see, the length is so small that Newton would never have noticed.  Even with
today’s technology we could not measure such a small distance.  (We will see in another
activity that quantum mechanics prohibits the measurement with any technology.)

E.  Decreasing E.  Decreasing E.  Decreasing E.  Decreasing E.  Decreasing WWWWWave Fave Fave Fave Fave Functions for Electronsunctions for Electronsunctions for Electronsunctions for Electronsunctions for Electrons

E-1. Calculate the decrease length of an electron for Cases A and B in Figure 7-6.

For a wave function of the form

(3)

(4)

Thus, the rate of exponential decrease becomes larger as the difference between the
potential energy (V) and total energy (E) becomes larger.
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E-2. Sketch approximately the wave function and probability density for each case.

FFFFF.  Using .  Using .  Using .  Using .  Using WWWWWave Fave Fave Fave Fave Function Skunction Skunction Skunction Skunction Sketcetcetcetcetcherherherherher

Wave Function Sketcher was written for students who were not familiar with the expo-
nential function.  To convery the idea we defined the “decrease length” as the distance
where the wavefunction has a value of 1/e of its initial value.  Figure 7 shows this defini-
tion.

Figure 7: Figure 7: Figure 7: Figure 7: Figure 7: The Decrease LThe Decrease LThe Decrease LThe Decrease LThe Decrease Length is the distance in whicength is the distance in whicength is the distance in whicength is the distance in whicength is the distance in which a wh a wh a wh a wh a wave function decreasesave function decreasesave function decreasesave function decreasesave function decreases
to about 36% of its initial value.to about 36% of its initial value.to about 36% of its initial value.to about 36% of its initial value.to about 36% of its initial value.

Using equations (3) and (4) we obtain



WF2-8

F-1. The decrease length is an option in the WWWWWave Fave Fave Fave Fave Function Skunction Skunction Skunction Skunction Sketcetcetcetcetcherherherherher.  Set up a
situation similar to Figure 1 which is repeated as Figure 8 below.

Figure 8: Figure 8: Figure 8: Figure 8: Figure 8: A repeat of Figure 1A repeat of Figure 1A repeat of Figure 1A repeat of Figure 1A repeat of Figure 1.....

F-2. Using the decreasing options, sketch a wave function that is acceptable for this
situation.

F-3. Sketch below the wave function as displayed by the program.

Now we must modify the steps for sketching wave function to include both sinusoidal
and exponentially decreasing shapes.  The shape of a wave function depends upon the
Total Energy and Potential Energy.  If the potential energy is less than the total energy, the
wave function is sinusoidal.  If the potential energy is greater than the total energy, we
get a decreasing wave function.  Step 2 must be modified to include both possibilities.
Below is a list of the steps that will work for all cases.
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Creating and Interpreting Creating and Interpreting Creating and Interpreting Creating and Interpreting Creating and Interpreting WWWWWave Fave Fave Fave Fave Functionsunctionsunctionsunctionsunctions

1. Use the physical situation to draw the energy diagram and determine the bound-
aries.

2. Use the total and potential energies to determine if the wave function is sinusoidal
or exponentially decreasing, then follow A or B below.
A.  Sinusoidal: Determine the wavelength.
B.  Decreasing: Determine the rate of decrease.
Then, sketch the wave function.

3. Adjust the phases and amplitudes until the wave function and its derivative is
continuous across all boundaries.

4. Interpret the probability density and discuss the probability of finding the object at
various locations.

G.  G.  G.  G.  G.  ApplicationApplicationApplicationApplicationApplication
Now you can use the steps to sketch wave functions for an electron in a transmission
electron microscope.  Consider an electron that has a total energy of 1eV, and it is ap-
proaching a metal sample in which its potential energy due to repulsion from other
electrons is 3eV. (Figure 9)

Figure 9: Figure 9: Figure 9: Figure 9: Figure 9: An electron passing through a sample in a transmission electronAn electron passing through a sample in a transmission electronAn electron passing through a sample in a transmission electronAn electron passing through a sample in a transmission electronAn electron passing through a sample in a transmission electron
microscope.microscope.microscope.microscope.microscope.

G-1. Establish the regions.  Then, draw the potential energy diagram of the electron
indicating its potential and total energies inside the metal sample as well as in the
vacuum on either side.
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G-2. With the steps that you have learned, use the WWWWWave Fave Fave Fave Fave Function Skunction Skunction Skunction Skunction Sketcetcetcetcetcherherherherher program
to sketch the wave functions for the electrons in each region.  Draw the wave
function  below.

G-3. Write a brief interpretation of the wave function by concentrating on the probabil-
ity of an electron being in each region.

G-4. Sketch the probability densities.

In this case some of the electrons may be found on the right side of the metal.  Conserva-
tion of energy would say that none of them should be there.  This effect of electrons
being where they should not be is called quantum tunneling.  It is observed in nature and
is the subject of another activity in this series.

H.  SummaryH.  SummaryH.  SummaryH.  SummaryH.  Summary

Utilizing the wave behavior of small objects, we found that matter can penetrate into
regions where they are not allowed by conservation of energy.  To account for this behav-
ior we modified the steps for sketching wave functions.  The result is that small objects
are sometimes found where they would not be allowed by conservation of energy.  The
wave nature of matter forced this conclusion on us.  And, experiments have confirmed
that it does happen.


