Comparing The Use Of Multimedia Animations And Written Solutions In Facilitating Problem Solving

Examine the extent to which multimedia animation compared to written worksheet solutions improve students' ability to appropriately set up and compute integrals in physics problems.

RESEARCH QUESTIONS

> Does viewing multimedia animations improve students' ability to set up the integral? > Does viewing multimedia animations improve

- students' ability to compute the integral? > How do multimedia animations compare with
- written solutions in these regards?

FIGURE 1. Research design for each task used in the study

	Brief description of each task	
	1	Calculating electric field at the center
		of semicircular arch with constant
		linear charge density
	2	Calculating the resistance of
		rectangular-shaped resistance with
		non-uniform resistivity
	3	Calculating the magnetic field at a
		certain point around a current carrying
		wire with non-uniform current density
	4	Calculating the magnetic flux through
		rectangular wire loop due to current ir
		an infinitely long wire placed at a
		distance from the wire loop

Neelam Khan¹, Dong-Hai Nguyen², Zhongzhou Chen³, and N. Sanjay Rebello⁴

¹School of Science and Technology, Georgia Gwinnett College ²Department of Physics, Ho Chi Minh City University of Pedagogy ³Department of Physics, University of Illinois Urbana-Champaign ⁴Department of Physics, Kansas State University Supported in part by NSF grant 0816207

MOTIVATION

A semi-circular arch of radius R₁ and charge density λ_1 (+ive constant) is placed concentrically with another semicircular arch of radius R₂ and charge density λ_2 (+ive constant). Find the magnitude and direction of the electric field due to these two arches at O. You are standing at

point O under an arch,

radius R, electrically

ground, as shown in

the figure. The arch is

insulated from the

charged with a

constant positive

charge density λ .

Worksheet Problem on Task 1

CONCLUSION

Students in both groups demonstrated difficulties in setting up the integral, specifically with recognizing the variable of integration and constructing the integrant on both pre-test and worksheet problems. Both the 'animation' and 'written' solution were equally effective in improving students' scores in setting up and computing an integral. However, there was no significant interaction between the two treatments.

ANALYSIS

- Repeated measures ANOVA shows. \succ Statistically significant (p < α = 0.05) main effect for setting up mean scores on all four tasks and computing on three of four of the tasks.
- >No significant interaction with treatment for any of the tasks for either setting up or computing.