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Abstract 

This research project investigates the difficulties students encounter when solving physics 

problems involving the integral and the area under the curve concepts and the strategies to 

facilitate students learning to solve those types of problems. The research contexts of this project 

are calculus-based physics courses covering mechanics and electromagnetism. 

In phase I of the project, individual teaching/learning interviews were conducted with 20 

students in mechanics and 15 students from the same cohort in electromagnetism. The students 

were asked to solve problems on several topics of mechanics and electromagnetism. These 

problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, 

electric resistance, electric current) by integrating or finding the area under the curve of functions 

of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). 

Verbal hints were provided when students made an error or were unable to proceed. A total 

number of 140 one-hour interviews were conducted in this phase, which provided insights into 

students’ difficulties when solving the problems involving the integral and the area under the 

curve concepts and the hints to help students overcome those difficulties. 

In phase II of the project, tutorials were created to facilitate students’ learning to solve 

physics problems involving the integral and the area under the curve concepts. Each tutorial 

consisted of a set of exercises and a protocol that incorporated the helpful hints to target the 

difficulties that students expressed in phase I of the project. Focus group learning interviews 

were conducted to test the effectiveness of the tutorials in comparison with standard learning 

materials (i.e. textbook problems and solutions). Overall results indicated that students learning 

with our tutorials outperformed students learning with standard materials in applying the integral 

and the area under the curve concepts to physics problems. 

The results of this project provide broader and deeper insights into students’ problem 

solving with the integral and the area under the curve concepts and suggest strategies to facilitate 

students’ learning to apply these concepts to physics problems. This study also has significant 

implications for further research, curriculum development and instruction. 
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Chapter 1 - Introduction 

 1.1 Motivation  

Mathematics has often been considered the language of physics and other natural 

sciences for several centuries, as Galileo said: “the book of nature is written in the language of 

mathematics.” A well-established mathematics background is the foremost condition for 

understanding and communicating physics ideas. Mathematics also provides a useful toolbox for 

solving physics problems. For these reasons, most physics courses have mathematics pre-

requisites. Despite this fact, students in introductory physics still struggle with applying their 

mathematics knowledge to physics problems. Significant research efforts have been devoted in 

diagnosing students’ difficulties in applying mathematics to physics and developing instructional 

strategies to help students overcome those difficulties. (J Tuminaro, 2004) 

Integration is among the mathematical concepts that are widely used in physics. Many 

physics problems require calculating a physical quantity from other non-constant quantities using 

integration. Unlike mathematics problems in which the integrals are provided and the students 

only have to compute the integrals, most physics problems do not have pre-determined integrals. 

Instead, students have to set up an integral from the physics situation described in the problem 

statement and compute it. This process could be broken up into four steps: 

• Step 1: recognize the need for an integral 

• Step 2: set up the expression for the infinitesimal quantity 

• Step 3: accumulate the infinitesimal quantities 

• Step 4: compute the integral 

An integral can be computed in several ways (e.g. by using integral techniques, 

evaluating a Riemann sum, calculating the area under the curve). The most common methods for 

calculating integrals in introductory physics problems are using integral techniques and 

calculating the area under the curve. Previous studies in physics education research have 

investigated students’ use and interpretation of the integral and the integral-area relation in 

physics (Cui, 2006; Manogue, Browne, Dray, & Edwards, 2006; L. C. McDermott, Rosenquist, 

& van Zee, 1986; Meredith & Marrongelle, 2008; Pollock, Thompson, & Mountcastle, 2007; 

Wallace & Chasteen, 2010). These studies investigate students’ conceptual understanding of the 

area under the curve (L. C. McDermott, et al., 1986), students’ application of the integral-area 
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relation (Pollock, et al., 2007), the resources students use to cue integration (Meredith & 

Marrongelle, 2008), students’ application and self-confidence in setting up the integrals in 

physics problems (Cui, Bennett, Fletcher, & Rebello, 2006), and students’ difficulties in 

interpreting and calculating the integral in Ampere’s law equation (Manogue, et al., 2006; 

Wallace & Chasteen, 2010). However, there is no study which investigates in detail the 

difficulties students encounter at each of the steps above, especially steps 2 and 3, and the 

difficulties students have with calculating an integral using the area under the curve. Moreover, 

despite the results of many studies that students have significant difficulties with integration in 

physics problem solving, there have been no instructional materials developed to facilitate 

students learning to apply integration in physics problems. As an effort to fill out these missing 

pieces of research, we conducted a research project which aimed at providing a complete 

description of the common difficulties students encounter at each of the steps above and creating 

tutorials to facilitate students’ learning to solve physics problems involving integration. 

 1.2 Context of the research 

The studies in this research project were conducted on students enrolled in the 

Engineering Physics course sequence at Kansas State University. This sequence consists of two 

courses of introductory calculus-based physics. At least one semester of calculus is the pre-

requisite for enrolling in the Engineering Physics 1 course, which covers mechanics and 

thermodynamics. At least two semesters of calculus are the pre-requisites for enrolling in the 

Engineering Physics 2 course, which covers electricity and magnetism, geometric and physical 

optics. The problems used in this research project are in mechanics and electricity. 

The courses are taught in the Studio format which includes two 50-minute lectures each 

week, and two two-hour long Studio sessions (Sorensen, Churukian, Maleki, & Zollman, 2006) 

in which students work on problems, go over homework and complete laboratory exercises.  The 

Studios are facilitated by a primary instructor, who is typically an advanced graduate student, 

faculty member or post-doc and a secondary instructor, who is typically a beginning graduate 

student or undergraduate student. 
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 1.3 Research questions 

In phase I of the project, we investigate students’ difficulties in applying the integral and 

the area under the curve concepts in physics problem solving. Specifically, we address the 

following research questions: 

• To what extent did students recognize the use of the integral in physics problems? 

• To what extent did students understand what quantity was being accumulated 

when calculating an integral? 

• What were the common difficulties that students encountered when setting up and 

computing an integral algebraically in a physics problem? 

• What verbal hints might help students overcome those difficulties? 

• To what extent did students recognize the use of the area under the curve in 

physics problems? 

• To what extent did students understand what quantity was being accumulated 

when calculating the area under the curve? 

• To what extent did students understand the relationship between a definite 

integral and the area under a curve? 

In phase II of the project, we created tutorials to facilitate students’ learning to apply the 

integral and the area under the curve concepts in physics problems on work-energy and 

electricity. The research questions in this phase of the project are: 

• To what extent did our tutorials on work-energy help students improve their 

ability to apply the integral and the area under the curve concepts in work – 

energy problems, compared to standard instruction (i.e. sample problems and 

solutions)? 

• To what extent did our tutorials on electricity help students improve their ability 

to apply the integral and the area under the curve concepts in electricity problems, 

compared to standard instruction (i.e. sample problems and solutions)? 

 1.4 Research strategies overview 

In phase I of the project, we investigated students’ application of the integral and the area 

under the curve concepts in physics problem solving. We were interested in not only the 

difficulties students encountered but also the hints that might help students overcome those 
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difficulties. So we conducted individual teaching/learning interviews with each of the 20 

students recruited from the course. The teaching/learning interview format allows us to not only 

probe students’ understanding but also facilitate students’ learning. (Engelhardt, Corpuz, 

Ozimek, & Rebello, 2003; Steffe, 1983; Steffe & Thompson, 2000) The difficulties students 

encountered and the hints provided by the interviewer during the interviews were recorded, and 

were studied to find the emergent themes. 

In phase II of the project, we created our tutorials based on the findings from phase I. The 

tutorials were implemented on students during the focus group learning interviews. In this 

interview, students worked in group of three to four on the worksheets provided by us. Students 

were asked to check in with the facilitator after they completed each exercise on the worksheet. 

The format of the focus group learning interviews, therefore, simulates the learning environment 

of a real recitation classroom. A pre-test and a post-test were implemented before and after the 

students received the treatments. Students’ worksheets on the pre-test, post-test and the 

treatments were collected. The pre-tests and post-tests were then graded and statistical tests were 

employed to test the significance of the difference in scores between the groups. 

 1.5 Road map of dissertation 

This dissertation consists of three major parts. The first part (including chapters 3 and 4) 

describes two studies in phase I of the project: the studies on students’ difficulties with the 

integral and the area under the curve concepts in mechanics and electricity. The second part 

(including chapters 5 and 6) describes two studies in phase II of the project: the studies on the 

tutorials in mechanics and electricity. The third part (chapter 7) presents a pilot study on an 

attempt to use the transfer in pieces framework to track the development of students’ application 

of the integral and the area under the curve concepts in mechanics problems. 

In chapter 2, we review the previous research relevant to our studies. The relevant topics 

include students’ difficulties with calculus concepts in mathematics and physics courses, transfer 

of learning, and tutorials in physics. In chapter 3, we discuss the methodology, rationale, and 

results of the study on students’ application of the integral concept in mechanics and electricity 

problems. Chapter 4 discusses the same issues on students application of the area under the curve 

concept. In chapter 5, we describe the creation, implementation, and results of the tutorials on 

helping students learn to apply the integral and the area under the curve concepts in mechanics 



5 

 

problems. Chapter 6 discusses the creation, implementation, and results of the tutorials on 

helping students learn to apply the integral concept in electricity problems. In chapter 7, we 

present two case studies in which we follow two students and they progress through our 

interviews in a semester period to trace the development of them in applying the integral and 

area under the curve. Chapter 8 summarizes the major results of the studies and discusses the 

implications for calculus and physics instruction as well as implications for further research on 

the topics. 
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Chapter 2 - Literature review 

 2.1 Chapter overview 

In this chapter, we review the previous studies that are relevant to our research. 

Specifically, we review the literature on students’ understanding and application of mathematical 

concepts in physics problem solving, the instructional materials that have been developed to 

facilitate this process, and the theoretical frame work we will use in analyzing students’ 

application of mathematical concepts in physics problem solving. 

Students participating in our interviews were recruited from several calculus-based 

physics courses. At least one or two semesters of calculus were the pre-requisites of these 

courses. So we start with a review of previous studies in mathematics education research on 

students’ understanding of basic concepts. These studies might provide an idea on the common 

conceptions and misconceptions students hold when learning about calculus concepts. We first 

discuss students’ understanding of basics concepts of calculus (e.g. function, limit, 

differentiation, integration) in calculus in sub-section 2.2.1 and then narrow down our discussion 

to students’ understanding of the integral concept and the integral-area relation in calculus in 

sub-section 2.2.2. 

Understanding a mathematical concept and being able to perform computation relevant to 

that concept are usually the criteria to measure a student’s mastery of that concept. However, 

there have been many studies indicating that students are usually very fluent at computation 

while possessing very little conceptual understanding of the concepts underlying the 

computation. Obviously, this unbalance between conceptual knowledge and procedural 

knowledge will hurt students a lot when they have to use their mathematical knowledge in other 

disciplines, where the mathematical concepts are embedded in the a variety of contexts and 

students are not given pre-determined mathematical problem to solve. For example, most physics 

problems involving integral do not provide a pre-determined integral for students to compute. 

Instead, students have to set up the integral from the physical situation described in the problem 

statement. Students with little conceptual understanding about the integral might find task a very 

difficult or even impossible task. For this reason, we were interested in considering the state of 

the conceptual knowledge and procedural knowledge on basic calculus concepts that students 
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passing calculus courses possess before they enter physics courses. This topic will be discussed 

in sub-section 2.2.3. 

In section 2.3, we discuss previous studies in physics education research on how students 

use math in physics. We start with a review on studies that focus on students’ application of 

mathematics in physics in general. Then we narrow down our discussion to the studies on 

students’ understanding and application of the integral and the area under the curve concepts 

because these concepts are the focus of our study. We will briefly summarize each of the studies 

and relate it to our current study. 

The literature on transfer of learning is discussed in section 2.4. Transfer of learning 

refers to the application of the knowledge learned in one context to other contexts, so it is closely 

related to our study which focused on the application of mathematical concepts in physical 

contexts. We will discuss both the traditional and contemporary models of transfer of learning, as 

well as a model that consolidate traditional and contemporary perspectives. We also introduce 

the transfer in pieces framework propose by Wagner (Wagner, 2006) which will be used for 

analyzing the students’ application of the integral and the area under the curve in physics 

problems. 

One of the objectives of our research project was to develop tutorials to facilitate 

students’ learning to apply the integral and the area under the curve concepts in physics problem 

solving. So in section 2.5, we discuss some of the tutorials that have been developed to facilitate 

students’ learning in introductory physics. These tutorials focus on improving students’ 

conceptual understanding of physics concepts by providing more opportunity for students to 

explore the concepts and resolve the conflicts between their intuitive models and the Newtonian 

models of the concepts. Our tutorials, instead, aimed at improving students’ mathematical skills 

in physics problem solving. The chapter concludes with a summary of the literature discussed in 

the sections. 

 2.2 Research in mathematics education 

 2.2.1 Students’ understanding of basics concepts of calculus 

There have been several studies in mathematics education research on students’ 

understanding of basics concepts of calculus. Among the earliest research was the work of Orton 
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(Orton, 1983). In that study, 110 British students aged 16 – 22 were interviewed on several tasks 

involving the concepts of limit and integration. Many of these tasks involved finding the area 

under a curve using the Riemann sum method and calculating the limit of that Riemann sum. 

Some other tasks asked students to prove basic properties of integration (such as the integral of a 

sum was the sum of integrals) using area under the curve. Orton found that students’ errors with 

these basic concepts of calculus could be classified as structural (fundamental or conceptual), 

executive (operational and procedural), or arbitrary. Structural errors were the errors “which 

arose from some failure to appreciate the relationships involved in the problem or to grasp some 

principle essential to solution.” Executive errors occurred when students failed to carry out the 

calculations although they might have understood the principle involved in the problem. 

Arbitrary errors were made when students followed arbitrary strategy for solving the problem 

that violated the constraints set up by the given information in the problem. For example, in a 

problem in Orton’s study, the students were asked to evaluate the area under the curve of 2y x=  

from 0x =  to x a=  using the staircase method (i.e. approximate the area under the curve as a 

sum of the areas of several rectangles). The problem was divided into three questions. The first 

question asked students to calculate the width of each rectangle if the area was divided into six 

rectangles. The second question asked students to calculate the heights of each rectangle. The 

third question asked students to calculate the total area under the curve. Thirteen students made 

errors in this first task, but eventually were able to obtain / 6a  for the width. Three students were 

then unable to find the height of the rectangles. These three students were said to make structural 

error because they did not recognize that the relationship between the width and the height of the 

rectangles was also the relationship between the x-values and the y-values on the curve. The 

other 10 students were able to recognize this relationship but then failed to get the correct height 

of the rectangles because of the errors in computation. These errors were executive errors. 

Orton also found that the majority of students did not view the integral as the limit of a 

Riemann sum and talked about such limit as an approximation, not as an exact answer, although 

they had no difficulty evaluating a given Riemann sum. Investigating students’ conceptual versus 

procedural abilities, Orton found that most of the students in his study were able to carry out the 

procedures and techniques of integration although they might not have good understanding of the 

underlying concepts. 
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Ferrini-Mundy and Graham (Ferrini-Mundy & Graham, 1994) interviewed a group of six 

students in calculus to reveal students’ understanding of basic concepts of calculus (e.g. function, 

limit, continuity, derivative, and integral) and the interrelationships among those concepts. They 

investigated in details the performance of one student – Sandy – in the interviews. They found 

that Sandy and many other students in the study “interpreted the integral as a signal to ‘do 

something’.” She perceived the definite integral as “the area between the graph of the function 

and the x-axis.” while thinking of the sum of the areas of the small rectangles under the curve as 

the “proof” for that fact. 

 2.2.2 Students’ understanding of the integral concept and the integral-area relation 

Rasslan and Tall (Rasslan & Tall, 2002) investigated the definition and images of the 

definite integral held by high school students in UK. They found that “the majority do not write 

meaningfully about the definition of definite integral, and have difficulty interpreting problems 

calculating areas and definite integrals in wider contexts.” They suggested strategies for teaching 

the definite integral concept. The strategy was to introduce the concept as “cases extended the 

students’ previous experience” and let the students experience it in use through a variety of 

examples covering a wide contextual range. 

Sealey (Sealey, 2006)  investigated students’ problem solving on “real world problems” 

involving integration in a calculus class. The “real world problems” in this study were physics 

problems in which physical quantities were calculated using integration. She found that students 

might be proficient in dealing with the area under a curve but they might not be able to relate 

such an area to the structure of a Riemann sum. She concluded that the area under the curve 

method could be a powerful tool to evaluate a definite integral only when students understood 

the structure of the definite integral. 

Also emphasizing on the importance of understanding the structure of the definite 

integral, Thompson and Silverman (Thompson & Silverman, 2007) pointed out that for students 

to perceive the area under a curve as representing a quantity other than area (e.g. velocity, work), 

it was important that students considered the quantity being accumulated as a sum of 

infinitesimal bits that were formed multiplicatively. Thompson and Silverman proposed the 

accumulation model which considered integration as an accumulation of the bits that were made 

of two multiplicative quantities. This model emphasized the two “layers” of integration: the 
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multiplicative layer when the bits were formed and the accumulative layer when the bits were 

accumulated. 

In our study, we found evidence of students’ failure in interpreting the meaning of the 

area under the curve when they did not perceive it as a Riemann sum and did not understand the 

structure of the Riemann sum. We also used the structure of the Riemann sum as hints to help 

students set up the correct integral or recognize the meaning of the area under the curve. 

 2.2.3 Students’ procedural knowledge and conceptual knowledge in calculus 

As mentioned in the previous section, students are usually very fluent in computing a 

mathematical task while having very little conceptual understanding of the concepts underlying 

that computation. This unbalance between conceptual and procedural knowledge will lead to 

students’ difficulties in applying their mathematical knowledge to physics, which will be 

revealed in our study.  

There have been a number of research studies in mathematics education on students’ 

conceptual versus procedural knowledge on basic concepts of calculus (Artigue, 1991; Chapell 

& Killpatrick, 2003; Engelbrecht, Harding, & Potgieter, 2005; Hiebert & Lefevre, 1986; Mahir, 

2008). A student is said to have conceptual knowledge if the student possesses the knowledge 

and recognizes its connection to other pieces of knowledge. In this sense, the connection between 

the pieces of knowledge is as important as the knowledge itself. Procedural knowledge refers to 

the rules, algorithms, and techniques that are used to solve mathematics problems. (Hiebert & 

Lefevre, 1986) Artigue investigated calculus students’ understanding of differentiation and 

integration. He found that although most of the students could perform routine procedures for 

finding the area under a curve, rarely could they explain their procedures. Some students did not 

even realize why they were doing it. (Artigue, 1991) This finding is shared by the study of Oaks 

(1987). He found that “some students are not even aware that there are concepts underlying the 

procedures they use.” (Oaks, 1987) 

Mahir (2008) investigated the conceptual and procedural knowledge of 62 students who 

had successfully completed a one-year calculus course. These students were asked to solve five 

calculus problems relating the concepts of integral, integral – are relation, integral as a sum of 

areas, and the fundamental theorem of calculus. The first two problems (1 and 2) could be solved 

using integral formulas and techniques, so these problems could evaluate students’ procedural 
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knowledge. The next two problems (3 and 4) could be solved by using either the integral – area 

relation or integral techniques. The last problem (problem 5) was more complicated and required 

the students to combine many concepts, so it served to evaluate students’ conceptual knowledge. 

Mahir found that the majority of the students successfully solved the first two problems (92% on 

problem 1 and 74% on problem 2) while there was only 24% of the students succeeded in 

problem 5 and 40% of the students did not respond to this problem. On problems 3 and 4, the 

majority of the students followed the procedural approach and there was only a small portion of 

the students followed the conceptual approach. The percentages of students following the 

conceptual approach and obtained the correct answers were 100% on problem 3 and 71% on 

problem 4, while these percentages of the students who followed the procedural approach were 

11% and 16% on corresponding problems. Mahir concluded that the students in his study did not 

have satisfactory conceptual understanding of the concepts being tested. He also concluded that 

the students following the conceptual approach also performed satisfactorily on procedural 

calculations and had a higher success rate than the students following the procedural approach. 

He suggested that concept-based instruction might help to improve students’ conceptual 

understanding in calculus. This suggestion was supported by the study of Chapell and Killpatrick 

which found that “the students exposed to the concept-based learning environment scored 

significantly higher than the students in procedural-based environment on assessment that 

measures conceptual understanding as well as procedural skills.” (Chapell & Killpatrick, 2003) 

Students’ inclination to use procedural knowledge rather than conceptual knowledge 

might be explained by their reluctance to visualize the mathematics problems. Eisenberg and 

Dreyfus (1985) pointed out that “students had a strong tendency to think algebraically rather than 

visually … even if they are explicitly and forcefully pushed towards visual processing.” This 

finding was supported by the studies other researchers (Monk, 1988; Mundy, 1984; Swan, 1988; 

Vinner, 1989). One reason for this was pointed out by Eisenberg and Dreyfus (1991): there is a 

common belief among mathematicians, teachers, and students that “mathematics is non-visual, 

regardless of whether or not a visual representation is at the base of an idea.” (p. 30) This reason 

was also mentioned in the study of Aspinwell and Miller (Aspinwell & Miller, 1997) for the case 

of calculus: “students regard computation as the essential outcome of calculus and thus end their 

study of calculus with little conceptual understanding.” 
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 2.3 Research in physics education 

 2.3.1 Students’ difficulties with mathematics in physics 

Research in physics education indicates that students encounter significant difficulties 

when applying their mathematical knowledge and skills to physics problem solving. The major 

cause of these difficulties is not the students’ lack of the required mathematical knowledge to 

solve the problems, but their inability to apply their mathematical knowledge to physics 

problems. (J. Tuminaro & Redish, 2004) Even when students are able to apply a particular 

mathematical concept to a physics problem, they might not conceptually understand the 

mathematical processes although they can easily carry out the calculations. (L. C. McDermott, 

2001) 

Yeatts and Hundhausen (Yeatts & Hundhausen, 1992), based on their teaching 

experience, classified students’ difficulties when transferring from calculus to physics in three 

categories. The first category - “notation and symbolism” - included difficulties that arose from 

students’ rote memory of, and hence, reliance on the symbols used in each context. Mathematics 

and physics might use the same notation or symbol to mean different things, thus causing 

difficulties to students. The second category of difficulty - “the distraction factor” - occurred 

when the surface features of the problem prevented students from seeing the underlying 

mathematical process in a physics problem. The third category was “compartmentalization of 

knowledge,” which occurred when students stored knowledge of different disciplines in different 

“cabinets” and activated knowledge in each “cabinet” only in the corresponding discipline. 

Tuminaro (2004) investigated the reasons for students’ poor performance on 

mathematical related tasks in physics problem solving and the strategy for improving the 

situation. He provided evidence that the major cause for students’ failure in applying 

mathematical knowledge to physics problem solving was not the lack of the necessary 

knowledge but the inability to apply that knowledge in a physics context. He proposed a 

theoretical framework for analyzing students’ application of mathematics in physics. This 

framework identifies three levels of cognitive structures relevant to mathematical thinking and 

physics problem solving: mathematical resources, epistemic games, and frames. Using his 

framework, Tuminaro cited a number of reasons for students’ failure to apply mathematics to 

physics. These included using an inappropriate recourse, using an appropriate resource but 
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mapping it to physics context inappropriately, playing the appropriate epistemic game but 

making wrong moves within the game, playing the inappropriate epistemic game due to incorrect 

framing of the problem. He suggested reframing as an effective instructional strategy that might 

help students activate different resources and epistemic games to solve physics problems. 

Bing and Redish (Bing & Redish, 2008) proposed a model for the association of 

knowledge in mathematics and physics to make sense of a physics equation or idea. They called 

this association “the cognitive blending of mathematics and physics knowledge.” They adopted 

two types of blending described by Fauconnier and Turner (Fauconnier & Mark, 1998) to 

investigate the combination of mathematical and physical knowledge and reasoning. These two 

types of blending are called single-scope and double-scope blends. A single-scope blend imports 

knowledge elements from one input mental space (i.e. the knowledge elements and patterns that 

one has on a specific topic) into the organizing frame of the other mental space. A double-scope 

blend “displays a blending of the organizing frames of the input mental spaces.” (Bing & Redish, 

2008) The cognitive blending framework “emphasizes the demands students face concerning the 

integration of their mathematical and physical knowledge.” and may help instructors understand 

students’ thinking and provide scaffolding to prompt students to blend their knowledge in a 

productive way for the situation at hand. Facilitating students to blend their mathematical and 

physical knowledge is also the ultimate goal of the tutorials we developed in our study. 

 2.3.2 Students’ application of the integral concept in physics 

Cui et al. (2006) investigated students’ retention and transfer from calculus to physics. 

They found that students had significant difficulties distinguishing variables and constants in an 

integral as well as determining the limits of an integral. They also found that four out of seven 

interviewees recognized the use of integral in a physics problem by recalling the strategy they 

had learned from in-class examples while the other three students had a rough idea of an integral 

as a sum of an infinite number of small elements. 

Meredith and Marrongelle (2008) investigated the resources that students used to cue 

integration in electrostatics problems. They used the notion of Sherin’s symbolic forms to 

describe these resources. (Sherin, 2001) A symbolic form is a cognitive mathematical primitive 

which allows students to “associate a simple conceptual schema with an arrangement of symbols 

in an equation.” (p. 482) Meredith and Marrongelle identified three symbolic forms that students 
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used to cue integration, namely, the recall cue, the dependence cue, and the parts-of-a-whole cue. 

Recall is not a symbolic form because it does not have a mathematical structure, but it is 

commonly used in cueing integration. The recall cue is identified when students recall a 

previously learned strategy when solving a problem. The dependence symbolic form is described 

as “a whole depends on the quantity associated with an individual symbol.” The dependence cue 

is identified when students decide to integrate because there is a quantity that depends on another 

quantity. The parts-of-a-whole symbolic form is described as “amounts of generic substance, 

associated with terms that contribute to a whole.” Interpreting an integral as an accumulation of 

infinitesimally small elements indicates the use of parts-of-a-whole cue. Meredith and 

Marrongelle also found that the dependence cue was more commonly used by students than the 

parts-of-a-whole cue, although “the use of the dependence symbolic form led to inaccuracies if 

the quantity being integrated was not a rate or a density.” (p. 577) They suggested that the parts-

of-a-whole symbolic form was a more powerful and flexible resource to cue integration and 

proposed instructional strategies to promote students’ use of the parts-of-a-whole resource to cue 

integration in physics problems. 

Most recently, Wallace and Chasteen (2010) found that part of students’ difficulties with 

Ampère’s law was due to students not viewing the integral in Ampère’s law as representing a 

sum, which aligned with the work of Manogue et al. (2008) on the same topic. 

In our point of view, the application of integration in a physics problem can be divided 

into four steps: 

• Step 1: recognize the need for an integral 

• Step 2: set up the expression for the infinitesimal quantity 

• Step 3: accumulate the infinitesimal quantities 

• Step 4: compute the integral 

The work by Meredith and Marrongelle (2008) investigated the first step. Although they 

did mention that students might misapply the symbolic forms in setting up an integral, they did 

not investigate this misapplication in details. The work of Cui et al. (2006) mentioned some of 

the difficulties students had when applying integral in physics (i.e. step 2) but did not discuss 

them in any significant detail. Our current study adds the missing piece to the picture. We 

investigate students’ difficulties in all four steps of the process, especially those in steps 2 and 3, 

which have previously not been discussed in detail in the literature 
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 2.3.3 Students’ application of the area under the curve concept in physics 

There have been a few studies in physics education research that focus on how students 

apply the area under a curve method in evaluating integrals in physics problems. McDermott et 

al. (1986) investigated students’ difficulties in connecting graphs and physics in the context of 

kinematics. They identified two categories of difficulty students had with graphs.  First, students 

had difficulties in connecting graphs to physics concepts, including discriminating between the 

slope and height of a graph, interpreting changes in height and changes in slope, relating one 

type of graph to another, matching narrative information with relevant features of a graph, and 

interpreting the area under a graph.  Second, students had difficulties in connecting graphs to the 

real world, including representing continuous motion by a continuous line, separating the shape 

of a graph from the path of the motion, representing a negative velocity on a “ v  vs. t ” graph, 

representing constant acceleration on a “ a  vs. t ” graph, and distinguishing among different 

types of motion graphs. 

In a problem involving finding displacement from a graph of “ v  vs. t ”, students had to 

find the area under the curve by counting the number of squares bounded by the curve and the 

0v =  axis and then multiplied it by the displacement that each square represented. They found 

that most of the difficulties students had were directly related to their “inability to visualize the 

motion depicted by the velocity versus time graph.” (p. 506) Students did not know which square 

they should include in the “area under the curve,” so they counted all of the squares from under 

the curve all the way to the bottom line of the grid where the horizontal axis was labeled. That 

led to students’ difficulties in distinguishing positive and negative areas, as well as associating 

them with displacement in positive and negative direction respectively. 

More recently, Pollock et al. (2007) investigated students’ understanding of the physics 

and mathematics of process variables in P-V diagrams in thermodynamics. On a question asking 

students to compare the work done by a gas taking two different paths on the P-V diagram, they 

found that successful students were those who recognized that work was PdV∫  and that this 

integral equaled the area under the path. 

 2.4 Transfer of learning 

Transfer of learning is defined as the ability to apply the knowledge one has learned in 

one situation to another situation. (Reed, 1993; Singley & Anderson, 1989) Transfer of learning 
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during problem solving involves the application of the knowledge and problem solving technique 

one has learned in a particular problem to another problem. In physics problem solving, the 

instructor usually solves a sample problem to demonstrate how a physical principle applies in a 

particular or a general problem. Students are then expected to solve other problems involving 

that principle, i.e. to transfer the problem solving technique they learn from the sample problem 

to other problems. 

 2.4.1 Traditional models of transfer 

The traditional models of transfer (Adams et al., 1988; Bassok, 1990; Brown & Kane, 

1988; Chen & Daehler, 1989; Nisbett, Fong, Lehmann, & Cheng, 1987; Novick, 1988; Perfetto, 

1983; Reed, Ernst, & Banerji, 1974; Throndike & Woodworth, 1901; Wertheimer, 1959) 

considered transfer from the researcher’s perspective. In this perspective, transfer is a passive, 

static process in which students apply the knowledge they learn in one situation to another 

situation. Transfer, therefore, depends on how similar the learning situation is to the transfer 

situation. According to Thorndike’s theory of identical elements, transfer from one activity to 

another occurs only if the activities share common surface features. (Throndike, 1906) On the 

other hand, Judd’s theory of deep structure transfer suggest that transfer depends on how much 

of the underlying principles (i.e. deep structure) are noticed by the learner. (Judd, 1908) Despite 

the difference in what causes transfer to happen, these two theories share a common point: the 

knowledge to be transferred between situations has been pre-defined by the researcher. 

 2.4.2 Contemporary models of transfer 

Transfer researchers have changed their perspective as they recognized a severe lack of 

evidence supporting the previous models of transfer. (N. Sanjay Rebello, 2007) Contemporary 

models of transfer consider transfer from the learner’s perspective. In this perspective, transfer is 

an active, dynamic process in which the learner constructs a new knowledge structure in the new 

situation. These models focus not only on the cognitive aspect but also on the socio-cultural 

aspect of transfer. 

Lobato actor-oriented transfer (AOT) model (Lobato, 2003) conceives transfer as the 

personal construction of similarities between activities. In this model, the researcher does not 

define the knowledge which the learner is expected to transfer. Instead, the knowledge to be 

transferred depends on what the learner perceives as similar between the situations. In this sense, 
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the AOT model examines transfer from the learner’s point of view rather than the researcher’s 

point of view. The role of the research is to find out what students transfer and investigate the 

mediating factors. 

Bransford and Schwartz (Bransford & Schwartz, 1999) consider transfer from the 

preparation for future learning point of view. They are interested in whether the learners can 

learn to solve problems in the new contexts. They believe that transfer is likely to occur if the 

learners reconstruct their learning in the new context in the same way as they did in the learning 

context. 

 2.4.3 Consolidating traditional and contemporary models of transfer 

Based upon Redish’s two-level framework (Redish, 2004), Rebello (N. S. Rebello, Cui, 

Bennett, Zollman, & Ozimek, 2007) developed a new framework that consolidates both the 

traditional and contemporary perspectives about transfer in such a way that both of these two 

types of transfer are valued and promoted in learning. This framework considers transfer as the 

dynamic creation of associations between prior knowledge and read-out information from a 

given situation. According to this framework, there are two kinds of associations that a learner 

can make. The first kind of association occurs when a learner assigns information read out from 

the situation to an element in his or her own prior knowledge. The second kind of association 

occurs when the learner establishes a link between the readout information and an element of 

their prior knowledge structure. 

These associations are related to two different transfer processes: horizontal and vertical 

transfer. Horizontal transfer involves the application of a well developed knowledge to new 

situations. A learner possesses a well developed schema for solving a problem which is invoked 

when the problem is encountered.  The learner ‘plugs-in’ information from the problem into the 

schema. An example of horizontal transfer occurs when solving a simple ‘plug-n-chug’ problem. 

Vertical transfer occurs when a learner encounters a problem that cannot be solved using an 

existing schema. Then they must adapt and reconstruct their schema to incorporate new 

knowledge to solve the problem.  Scaffolding is often needed to facilitate vertical transfer. The 

ability of a learner to creatively adapt to a new problem is called the adaptive expertise. 

(Schwartz, Bransford, & Sears, 2005) To gain adaptive expertise a learner must navigate a 
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sequence learning experiences involving vertical and horizontal transfer as presented in Figure 

2.1 below. 

 

Figure  2.1 Theoretical framework showing sequences of vertical and horizontal transfer 

needed to achieve adaptive expertise 

 

 

The tutorials we developed to facilitate students’ application of the integral and the area 

under the curve concepts in work-energy problems in this study followed the horizontal and 

vertical aspects of transfer. The sequence of matched math and physics exercises in the tutorial 

was intended to facilitate both horizontal and vertical transfer in problem solving. The math 

exercises provided the opportunities to develop representational models of the mathematical 

concept, so they involve vertical transfer. The physics exercises provided the opportunity to 

apply these models in physics contexts, so they involve horizontal transfer. 

 2.4.4 The transfer in pieces framework 

In our study, we also employ the transfer in pieces framework proposed by Wagner 

(Wagner, 2006) to interpret and trace the development of students’ application of the integral and 

the area under the curve concepts in physics problem solving. This framework was developed 
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based on diSessa’s knowledge-in-pieces epistemology. (diSessa, 1993) In diSessa’s framework, 

knowledge consists of fine-grained pieces called phenomenological primitives (p-prims). A p-

prim is an elementary piece of knowledge which is self-explanatory and is neither right nor 

wrong. Students may explain or interpret a physical phenomenon by activating different p-prims. 

Different aspects of the same phenomenon might be interpreted by different combinations of p-

prims. For students who perceive physics as a collection of facts, their physics p-prims are 

usually not organized and the relation between the p-prims is not attended. Therefore, these 

students might employ very different p-prims to explain phenomena having different contextual 

features although they share common physical principles. 

diSessa also proposed a model for a particular type of concept – a coordination class – 

which is “systematically connected ways of getting information from the world.” (diSessa & 

Sherin, 1998) A coordination class has two major structural components: the readout strategies 

and the causal net. The readout strategies determine how the characteristic attributes of a concept 

are seen or “read out” from a given situation. The causal net is a class of knowledge and 

reasoning strategies that determine when and how an observation is related to the desired 

information. Different readout and coordination strategies might be required to perceive and 

interpret the same concept embedded in different contexts. 

Wagner introduced the term concept projection which is “a specific combination of 

knowledge resources and cognitive strategies used by an individual to identify and make use of a 

concept under particular contextual conditions.” (Wagner, 2006) These contextual conditions 

may be any surface features of the problem such as representation or the cover story in which the 

concept is embedded. So an individual’s understanding of a particular concept might be 

supported by several different concept projections corresponding to different situations in which 

the concept is applicable. These different concept projections might share some common 

knowledge resources but also contain their own knowledge resources that make them applicable 

in certain situations but not in others. The span of a concept projection is defined as the range of 

contexts across which that concept projection is found to be applicable (Wagner, 2006). 

According to the concept projection framework, “transfer is understood not as the all-or-nothing 

transportation of an abstract knowledge structure across situations, but as the incremental 

growth, systematization, and organization of knowledge resources that only gradually extend the 

span of situations in which a concept is perceived as applicable.” (Wagner, 2006, p. 10) This 
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framework emphasizes the difference between having a concept and being able to apply that 

concept in different situations. 

In chapter 7 of this dissertation, we will analyze the performance of two students over a 

semester on several problems involving the integral and the area under the curve concepts in the 

light of the transfer in pieces framework. We will interpret students’ application of these two 

concepts in terms of the concept projections that students build for them and how those concept 

projections are related to students’ success or failure on the tasks. 

 2.5 Tutorials to facilitate students’ learning in introductory physics 

As students’ misconceptions about basic physics concepts are revealed by many 

researchers, effort has been put into developing instructional materials to help students correct 

those misconceptions. These instructional materials are usually in form of tutorials, which are 

worksheets carefully designed for students to work in small groups on activities in which 

students’ intuitive knowledge about a physical principle is challenged and is eventually replaced 

by formal knowledge. The students are usually the major subjects in this process. The instructor 

only acts as a facilitator to help students work through the process by asking questions to probe 

students’ understanding of the topic, reveal their misconceptions, and provide scaffolding if 

necessary. We will discuss some of the well-know tutorials in physics below. 

The Tutorial in Introductory Physics (TIP) is a well-known instructional material 

developed by the Physics Education Group at the University of Washington. (L. C.  McDermott 

& Shaffer, 1998) The TIP addresses students’ misconceptions through a three-step process: 

elicit, confront, and resolve. Students are first presented with a situation in which students’ 

misconceptions are found to come into play. Once the misconception has been brought up, 

students are asked questions that might lead to cognitive conflicts between students’ intuitive 

knowledge and the actual situation at hand. As the students reconsider their ideas about the 

situation, the tutorial provides scaffolding to help students build formal knowledge about the 

situation. 

The Physics Education Research Group at the University of Maryland has also developed 

tutorials for introductory physics, which is known as the Activity-based Tutorials (ABT). 

(Wittmann, Steinberg, & Redish, 2004) The ABT makes use of hands-on experiments and 

microcomputer-based data acquisition techniques with which students explore the principles of 
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physics themselves. This group is also the authors of the Open-Source Tutorial (OST) which 

treats students’ intuitions about the world as valuable observations that might have been 

misinterpreted. (Scherr & Elby, 2007) The OST then helps students recognize that their 

intuitions only apply to a limited number of situations or certain aspects of the situation at hand, 

and modify these intuitions so that they cover a broader range of situations or take into account 

all aspect of the situation at hand. In other words, the OST helps students refine their “raw 

intuitions” about the physical world. 

These tutorials have been proven to have positive impacts on students’ conceptual 

understanding in physics compared to traditional instruction. (L. C. McDermott, 2001; L. C. 

McDermott & Redish, 1999) Smith and Wittmann (Smith & Wittmann, 2007) compared the 

effectiveness of the three tutorials mentioned above in helping students understand Newton’s 

third law in an algebra-based physics course. Each of the tutorials was implemented to one-third 

of the students in the same course during the regular tutorial sessions of the course. Students’ 

understanding of Newton’s third law after the lecture, before and after the tutorial, in course 

examinations, and on the Force and Motion Conceptual Evaluation (FMCE) was investigated. 

They found that all three tutorials improved students’ understanding of Newton’s third law, but 

the OST was more effective than the other two tutorials. 

All of the tutorials mentioned above use guided-inquiry method to improve students’ 

conceptual understanding of basic concepts in introductory physics and minimize mathematical 

problem solving. Nevertheless, problem solving is an important aspect of learning introductory 

physics. Many researchers have reported on the difficulties students encounter when solving 

physics problems, especially their poor performance on mathematical tasks in physics problems, 

as discussed in section 2.2 of this chapter. Mathematics is an important tool in physics and being 

able to apply mathematics knowledge and skills to physics problems is one of the most crucial 

goals of physics instruction. In our study, we develop tutorials that aim at helping students learn 

to apply the integral and the area under the curve concepts to physics problems. Our tutorials 

focus not only on improving students’ conceptual understanding of the mathematical and 

physical concepts, but also on improving students’ ability to apply the mathematical concepts in 

physical contexts. 
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 2.6 Chapter summary 

In this chapter, we have reviewed the literature related to our research. We discuss four 

main topics: 

• Students’ understanding of the basic concepts in calculus 

• Students’ application of mathematics in physics problem solving 

• Transfer of learning from both traditional and contemporary perspectives 

• Tutorials to help students learn physical concepts. 

Research in mathematics education has shown that students did not have satisfactory 

conceptual understanding of basics calculus concepts even though they could perform the 

calculations fluently. Students also expressed a strong preference on algebraic method to 

graphical (visualized) method in solving calculus problems. 

Research in physics education have indicated that students had significant difficulties 

applying mathematics to physics. This is not due to the lack of the necessary mathematics 

resources but due to students’ inability to activate those resources in physics contexts. Even 

when students are able to activate a mathematics resource and carry out the calculation, there is 

evidence that students do not understand the process underlying that calculation. Students’ 

difficulties in applying the integral and the area under the curve concepts in physics problems are 

also reported. 

We examine some of the tutorials developed to enhance students’ understanding of 

physics concepts. Among the most well-known tutorials are the Tutorials in Introductory Physics 

(TIP) by University of Washington, the Activity-Based Tutorials (ABT) and the Open-Source 

Tutorial (OST) by University of Maryland. These tutorials have been reported as more effective 

than traditional instruction in helping students’ learn basic concepts of physics. The OST is 

shown to be the most effective in teaching students about Newton’s third law. These tutorials 

aim at improving students’ conceptual understanding and minimize problem solving. The 

tutorials we create in our study also aim at helping students improve their understanding of 

mathematical and physical concepts, but more importantly, our tutorials aim at facilitating 

students’ application of the integral and the area under the curve concepts in physics problem 

solving. 

We also discuss transfer of learning from both the traditional and contemporary 

perspectives, particularly the vertical and horizontal aspects of transfer. We briefly describe the 
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components of our tutorials and how they fit into the vertical versus horizontal transfer 

framework. We also describe the transfer in pieces framework, which we will use to trace 

students’ conceptual development throughout our interviews. 
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Chapter 3 - Students’ application of the integral concept in physics 

problems 

  3.1 Introduction 

In phase 1 of the project, we investigated students’ performance on physics  problems in 

which parts of the information were given as mathematical functions in algebraic and graphical 

representations. In this project, a function was considered to be in algebraic representation if it 

was defined by an equation, for example, 2( ) 2 3 1f x x x= − + . A function was considered to be in 

graphical representation if it was defined by the graph of that function with respect to its 

variable. 

We conducted individual teaching – learning interviews with several students on a variety 

of problems in mechanics and electricity and magnetism. In each of these interviews, the 

students were asked to solve two isomorphic problems: an algebraic problem (i.e. a problem 

involving the algebraic representation of a function) and a graphical problem (i.e. a problem 

involving the graphical representation of a function). In the algebraic problem, students had to 

calculate a physical quantity by setting up and computing an integral algebraically (i.e. 

performing the integration). In the graphical problem, the integral must be computed graphically 

by evaluating the area under the curve. We investigated the difficulties students encountered 

when they set up and computed the integrals in these problems and the hints that might help 

students overcome those difficulties. 

In this chapter, we will investigate students’ performance on the algebraic problems. 

Specifically, we look at how students set up an integral representing a physical quantity from the 

problem statement and how they computed that integral algebraically. 

The following research questions will be addressed in this chapter: 

RQ1: Did students recognize the use of the integral in physics problems? 

RQ2: Did students understand what quantity was being accumulated when calculating an 

integral? 

RQ3: What were the common difficulties that students encountered when setting up and 

computing an integral algebraically in a physics problem? 
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RQ4: What verbal hints might help students overcome those difficulties? 

 3.2 Methodology 

 3.2.1 The individual teaching – learning interview 

In the spring semester of 2009, 20 students were selected from 102 volunteers enrolled in 

a first semester calculus-based physics (Engineering Physics 1 or EP1). Students present at the 

first lecture of the course were offered the opportunity to volunteer for this study. Students were 

selected based on how their availability matched with that of the interviewer. The selected 

students were given monetary incentive for their participation. They were paid $40 for their 

participation in a series of four interviews, each an hour long.  Most of these students were 

freshmen or sophomores in engineering majors and had taken physics in high school. Three of 

them were international students. Among these 20 students, there were 13 males and 7 females. 

 

Table  3.1 Demographics of student participants in the spring 2009 interviews 

Code 

ID 
Year Major Semester Physics Background 

S1 1 Mechanical Engineering Spring 09 High School Physics 

S2 1 Mechanical Engineering Spring 09 High School Physics 

S3 2 Architectural Engineering Spring 09 High School Physics 

S4 1 Chemical Engineering Spring 09 High School Physics 

S5 2 Chemistry Spring 09 None 

S6 1 Electrical Engineering Spring 09 High School Physics 

S7 1 Electrical Engineering Spring 09 High School Physics 

S8 2 Electrical Engineering Spring 09 High School Physics 

S9 1 Mechanical Engineering Spring 09 High School Physics 

S10 1 Mechanical Engineering Spring 09 High School Physics 

S11 1 Chemical Engineering Spring 09 High School Physics 

S12 2 Civil Engineering Spring 09 High School Physics 

S13 1 Environmental Engineering Spring 09 None 

S14 1 Mechanical Engineering Spring 09 High School Physics 
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S15 1 Chemical Engineering Spring 09 High School Physics 

S16 1 Electrical Engineering Spring 09 High School Physics 

S17 1 Mechanical Engineering Spring 09 High School Physics 

S18 1 Open Option Spring 09 High School Physics 

S19 1 Electrical Engineering Spring 09 High School Physics 

S20 1 Civil Engineering Spring 09 High School Physics 

 

Each of these 20 students was scheduled for four one-hour individual interviews during 

the spring 2009 semester. We will label these interviews as interviews 1 through 4. Each 

interview occurred within two weeks after an exam in the EP1 course. The topics of the 

interview problems were those had been tested in the most recent exam. 

• Interview 1: One-dimensional kinematics 

• Interview 2: Work and energy without friction 

• Interview 3: Work and energy with friction 

• Interview 4: Work and energy in rotational motion 

In each interview, a student was asked to solve three problems: 

• Original problem: A problem from the most recent exam. This problem was a 

typical end-of-chapter problem, and was given to help students get familiar with 

the physics principles covered in the interview. 

• Graphical problem: A modified version of the original problem in which part of 

the information was given as a graph of a function. 

• Algebraic problem: A modified version of the original problem in which part of 

the information was given as an algebraic expression of a function. 

In order to investigate the effect of the problem sequence on students’ performance, in 

each of the interviews 2 through 4, approximately half of the students were given the algebraic 

problem before the graphical problem (which we called the A-G sequence), and the other half of 

the students were given the graphical problem before the algebraic problem (which we called the 

G-A sequence). The number of students following each sequence is presented in Table  3.2. 
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Table  3.2 Number of students following each sequence in the spring 2009 interviews 

Interview A-G sequence G-A sequence Total 

2 9 11 20 

3 11 9 20 

4 11 9 20 

 

In the fall semester of 2009, fifteen students from the spring 2009 interviews, who were 

enrolled in a second-semester calculus-based physics course (Engineering Physics 2 or EP2) at 

that time, agreed to continue with our study in electricity and magnetism. Among these 15 

students, there were 9 males and 6 females. Table  3.3 below provides some basic demographic 

information about the students participating in the fall 2009 interviews. 

 

Table  3.3 Demographics of student participants in the spring 2009 interviews 

Code 

ID 
Year Major Semester Physics Background 

S1 1 Mechanical Engineering Fall 2009 High School Physics 

S2 1 Mechanical Engineering Fall 2009 High School Physics 

S3 2 Architectural Engineering Fall 2009 High School Physics 

S4 1 Chemical Engineering Fall 2009 High School Physics 

S5 2 Chemistry Fall 2009 None 

S6 1 Electrical Engineering Fall 2009 High School Physics 

S7 1 Electrical Engineering Fall 2009 High School Physics 

S8 2 Electrical Engineering Fall 2009 High School Physics 

S9 1 Mechanical Engineering Fall 2009 High School Physics 

S10 1 Mechanical Engineering Fall 2009 High School Physics 

S11 1 Chemical Engineering Fall 2009 High School Physics 

S12 2 Civil Engineering Fall 2009 High School Physics 

S13 1 Environmental Engineering Fall 2009 None 

S14 1 Mechanical Engineering Fall 2009 High School Physics 

S15 1 Chemical Engineering Fall 2009 High School Physics 
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Each of these students went through another sequence of four interviews (interviews 5 

through 8) during the fall 2009 semester. The format of these interviews was similar to that of 

the spring 2009 interviews, except that there were four or five problems in each interview. These 

problems included one problem with constant quantities and other problems with non-constant 

quantities, the information of which was provided as mathematical functions in algebraic and 

graphical representations. Each graphical problem in the fall 2009 interviews contained three to 

four graphs of related quantities. In this semester, we did not investigate the effect of the problem 

sequence on students’ performance, so all students were given the problems in the same 

sequence (the A-G sequence) in all interviews. The topics of each interview were: 

• Interview 5: Charge distribution and electric field 

• Interview 6: Resistance and capacitance 

• Interview 7: Current density and Ampere’s law 

• Interview 8: RLC circuit at resonance 

In all interviews in both the spring and fall 2009 semesters, students were asked to think 

aloud as they solved the interview problems. Verbal hints were given by the interviewer 

whenever students made an error or were unable to proceed. All students were able to obtain the 

correct answers for all problems within the one-hour limit of each interview. All interviews were 

video-taped and audio-taped and were fully transcribed. Students’ worksheets as well as the 

interviewer’s field notes were also collected. 

 

Table  3.4 The similarities and differences between the spring and fall 2009 interviews 

Semester Spring 2009 interviews Fall 2009 interviews 

Similarities 

- Individual teaching/learning interviews 

- Same cohort of students 

- Problems with algebraic and graphical representations of functions 

- Students think aloud as they solve the problems 

- Verbal hints are provided when students make an error or are unable 

to proceed 

Differences - 20 students - 15 students 
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- 3 problems in each interview 

- A-G sequence vs. G-A sequence 

- 4 or 5 problems in each 

interview 

- Only A-G sequence 

 

 3.2.2 Rationale of the interview problems 

In this chapter, we will analyze students’ performance on the algebraic problems in 

interviews 2 through 7 in both the spring and fall 2009 semesters, because these problems 

involved integration. The algebraic problem in interview 1 involved calculating kinematics 

quantities (i.e. velocity, acceleration) by computing the derivative of the position and velocity 

functions. The algebraic problem in interview 8 involved terms matching between a general 

function with a specific function for the alternative current in an RLC circuit to find the 

corresponding quantities. So these two problems will not be discussed in this chapter. 

 3.2.2.1 Interviews 2 and 3 

The algebraic problems in interviews 2 and 3 were simple problems involving the 

integral concept. In these problems, students had to calculate the work done by non-constant 

forces by integrating the force functions, i.e. computing ( )F x dx∫ . Prior to our interviews, the 

students had been taught in the lecture that the work done by a non-constant force could be 

calculated by integrating the force function with respect to the displacement. However, there 

were no homework or exam problems in which this knowledge was required, so the students did 

not have a chance to practice the method prior to our interviews. So the algebraic problems in 

interviews 2 and 3 helped us determine whether or not students could recognize the use of the 

integral concept in physics problems after they had been taught it but had not practiced on it. 

These problems helped us answer the research question RQ1. 
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Figure  3.1 The algebraic problem in interview 2 

 

 

Figure  3.2 The graphical problem in interview 3 

 

A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) compressing a spring to a maximum 
of 0.2 m as shown.  The gun is then tilted at an angle of 30° and fired.  
 

 
 

The only information you are given about the gun is that the barrel of the gun is frictionless and 
that the gun contains a non-linear spring such that when the gun is held horizontally, the net 
force F (N) exerted on a bullet by the spring as it leaves the fully compressed position varies as 
a function of the spring compression x (m) as given by:   

230001000 xxF +=  
What is the muzzle velocity of the bullet as it leaves the gun, when the gun is fired at the 30° 
angle as shown above? 

A 0.1 kg bullet is loaded into a gun compressing a spring which has spring constant k = 6000 
N/m. The gun is tilted vertically downward and the bullet is fired into a drum 5.0 m deep, filled 
with a liquid. 

 

The barrel of the gun is frictionless. The frictional force F(N) provided by the liquid changes 
with depth x(m) as per the following function.   

26.010 xxF +=  

The bullet comes to rest at the bottom of the drum 
What is the spring compression x? 
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 3.2.2.2 Interviews 4 

There is a common convention about the integral: we usually use the word “integral” to 

imply “the integral of the function with respect to its direct variable” unless otherwise indicated. 

For example, when we say “the integral of ( )f x ,” we imply “the integral of  ( )f x  with respect 

to x ,” i.e. ( )f x dx∫ . In physics, a physical quantity may be represented as different functions of 

different variables. So when we talk about “the integral of a force F ,” for example, we might 

imply ( )F x dx∫  if the force F  is given as a function of the displacement x , or ( )F t dt∫  if the 

force F  is given as a function of the time t . This convention has a consequence that if we teach 

the students that “the work equals the integral of force,” without stating which variable the 

integral should be taken over, then students might claim any integral of force such as ( )F x dx∫ , 

or ( )F dθ θ∫ , or ( )F t dt∫  as representing the work, while these integrals obviously represented 

different physical quantities. Students might be able to avoid this error if they think of the total 

work as an accumulation of infinitesimal work on small segments ds  of the trajectory over 

which the force can be considered constant. 

The algebraic problem in interview 4 was created to investigate whether or not students 

understand what quantity was being accumulated when performing an integral. In this problem, 

the force was provided as a function of angular displacement instead of linear displacement. This 

difference made the integral of force with respect to its variable ( )F dθ θ∫  no longer represent 

the total work done by the force. The total work is the sum of the work on infinitesimal segment 

of the trajectory, so it must be represented by the integral of force with respect to linear 

displacement, i.e. ( )F dsθ∫ , where ds Rdθ=  was an infinitesimal segment of length along the 

circular track spanning an angle dθ . So to get the correct value of work in this problem, students 

had to not only integrate the force function, but also multiply the value of that integral by the 

radius of the track. This procedure was equivalent to calculating the integral ( )
/ 2

0

R F d

π

θ θ∫  which 

equaled to  ( )
/ 2

0

R

F ds

π

θ∫ . Therefore, this problem required more than just the recognition of the 

integral concept in the problem. It also required an understanding of what quantity was being 
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accumulated when computing an integral. This problem, therefore, might help us answer the 

research question RQ2. 

 

Figure  3.3 The algebraic problem in interview 4 

 

 

As the students progressed through our interviews, they had become more and more 

familiar with the use of the integral in physics problems. However, they still had difficulties 

setting up the integrals from the problem statements, especially when the desired quantities were 

not the integral of the function with respect to its variable (such as the integral in interview 4). So 

in the fall 2009 interviews, we continued investigating further the difficulties students had in 

setting up the integrals by providing them a variety of problems which required more 

sophisticated understanding of the integral as an accumulation process. The research questions 

RQ3 will be answered based on the results of this investigation.  

Besides investigating students’ difficulties, we were also interested in the hints that 

helped students overcome each of the difficulties. So the research question RQ4 will be 

answered together with each of the other research questions. 

 3.2.2.3 Interview 5 

There were two algebraic problems in interview 5, which will be referred to as the 

charged arch problem and the charged rod problem. The charged arch problem involved 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown.  It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. 
The rolling friction on the straight section is negligible. 
 

 

θ 
R 

vi 

A

 
 

The magnitude of the rolling friction force Froll (N) acting on the sphere varies as angle θ 

(radians) as per the following function 

5.42.17.0)( 2 +−−= θθθrollF  

What is the launch speed of the sphere as it leaves the curve at point A? 
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calculating the electric field due to a charged arch at its center. The charge distribution on the 

arch was provided as a function of the angular position on the arch. Due to the symmetry of the 

arch about its vertical axis, only the vertical component of the electric field dE  due to each 

elementary charge on the arch contributed to the total electric field. So the net electric field 

equaled the integral of the vertical component of dE  only, not dE  as a whole. 

The charged rod problem asked students to calculate the electric field due to a charged 

rod on which the charge distribution was given as a function of position. Because the electric 

field dE  due to each charge element on the rod points in the same direction, the net electric field 

is found by integrating dE  as a whole. 

 

Figure  3.4 The charged arch problem in interview 5 

 

You are standing at the center of the arch as in problem 1 in a stormy day. There are negatively 

charged clouds over the arch. The charge distribution λ on the arch now depends on the angle θ 
as per the function: 

θλθλ cos)( 0=  

where λ0
  is a positive constant. 

 

θ 

 

- - - - - - 
- - - - - - 

R 

O 

 
(a) Indicate the charge distribution on the figure below. 
(b) Find the magnitude and direction of the electric field at your feet (i.e. at a point O on the 
ground directly below the top of the arch). 
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Figure  3.5 The charged rod problem in interview 5 

 

 3.2.2.4 Interview 6 

There were three algebraic problems in interview 6 which will be referred to as the 

cylindrical conductor problem, the truncated-cone conductor problem, and the capacitor 

problem. The conductor problem asked students to find the resistance of a cylindrical conductor 

whose resistivity was changing along its length. This conductor could be considered as a series 

combination of several conductors whose length was very small such that the resistivity could be 

considered constant over that length. The total resistance of the conductor was then the integral 

of the resistance of each infinitesimal conductor, i.e. R dR= ∫ . The capacitor problem asked 

students to calculate the capacitance of a circular-plate capacitor. The plates of this capacitor 

were of different sizes and the separation between the plates was comparable to the diameters of 

the plates. Due to these conditions, the formula for parallel-plate capacitance that students 

learned in class, 0 A
C

d

ε
= , was no longer applicable. Instead, this capacitor must be considered 

as a series combination of capacitors made of fictitious plates, the diameters of which were 

equaled and were very large compared to their separation. Because the fictitious capacitors were 

in series, the equivalent capacitance could then be calculated by the integral 
1 1

C dC
= ∫ . 

 

A straight metal rod of length L is lying on the ground but is insulated from the ground. The 
charge on the rod is distributed with charge density given as per the following function: 

2)( xx  αλ =  

where: α is a positive constant, ‘x’ is the position on the x-axis relative to the origin O as 
shown in the figure below. 
 

 

x 

O 
 

 
(a) Indicate the charge distribution on the figure below. 
(b) Find the magnitude and direction of the electric field at your feet, located at x = 0 
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Figure  3.6 The cylindrical conductor problem in interview 6 

 

 

Figure  3.7 The truncated-cone conductor problem in interview 6 

 

 

Figure  3.8 The capacitor problem in interview 6 

 

 3.2.2.4 Interview 7 

The algebraic problem in interview 7 involved finding the total current inside a 

conducting wire, so it will be referred to as the current problem. The current density in the wire 

A capacitor is made of two circular conducting plates of diameter D and d. The permittivity ε 
of the material filled between the plates is constant. Find the capacitance of this capacitor. 
 

 

Find the resistance of a cylindrical conductor of length L, diameter D. The resistivity ρ(x) is 
changing along the conductor as per the following function: 

( )x xρ α=  

where x is the distance from the left end of the conductor. 
 

 

A conductor has diameter decreasing from D to d over its length L. The resistivity ρ is constant 
along the length of this conductor. Find the resistance of this conductor. 
 

 



36 

 

was given as a function of the radial distance from the center of the wire. The total current could 

be obtained by integrating the currents in the infinitesimally thin rings on the cross-sectional area 

of the wire. This problem involved integrating in two dimensions. 

 

Figure  3.9 The current problem in interview 7 

 

 3.2.3 Analysis 

Many physics problems involve calculating a physical quantity from other non-constant 

quantities. Unlike typical problems in calculus courses in which students are given the integrals 

to compute, physics problems usually do not have pre-determined integrals. The problem 

statement does not indicate that integrals are needed to solve the problems. Hence, students must 

be able to recognize the need for an integral and to set up the desired integral from the physics 

scenario described in the problem statement. For that reason, the first important step in solving a 

problem is to recognize whether or not a problem requires integration. This step is not trivial for 

most students because they usually apply the formulas from textbook without noticing the 

conditions under which those formulas hold. For example, the formula for the work done by a 

force W F d= ⋅  only holds for the case in which the force F  is constant over the whole distance 

d . So if the force is not constant then the work done by the force F  must be calculated by the 

integral W F dx= ⋅∫ . Similarly, the formula for resistance 
L

R
A

ρ=  is applicable only for a 

conductor having constant resistivity ρ  and constant cross-sectional area A  along its length L , 

so if ρ  or A  or both of them are not constant, then the integral must be employed to calculate 

the resistance. Research by Meredith and Marrongelle, as mentioned in the literature review, 

reveals the resources that students invoke to cue integration. 

The central idea underlying the integral is accumulation, i.e. adding up infinitesimal 

amounts of a physical quantity to obtain the total amount of that quantity (e.g. resistance) or 

A cylindrical wire of radius R is carrying a current of density j = α.r (α is a constant, r is the 
distance from the center of the wire). Find the total current in the wire. 

 

j = αααα.r 

P 
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adding up infinitesimal effects to obtain the total effect (e.g. work, electric field). So to obtain a 

correct integral, students must have the correct expression for the infinitesimal elements and add 

up those elements in an appropriate manner (e.g. vectorially, reciprocally). An integral is ready 

to be computed only after all these steps are done correctly.  

In summary, the application of integration in physics problems can be divided into four 

steps: 

• Step 1: recognize the need for an integral 

• Step 2: set up the expression for the infinitesimal elements 

• Step 3: accumulate the infinitesimal elements 

• Step 4: compute the integral 

A common theme observed in our interviews was that all students, at some point during 

the interviews, expressed their understanding of an integral as an accumulation of infinitesimal 

elements. However, only one or two of them were able to correctly set up and accumulate the 

infinitesimal quantity without assistance from the interviewer. All other students were not 

confident in performing the steps and needed guidance through the process. 

In this chapter, we will analyze the difficulties students encountered at each of the steps 

mentioned above. We will start with a general description of the difficulties, then present 

examples of those difficulties in each of the problems under investigation, and discuss the 

possible implications from the difficulties.  

For the spring 2009 interviews, we only investigated the performance of the students who 

solved the algebraic problem before the graphical problem (i.e. followed the A-G sequence). 

 3.3 Results – Spring 2009 – Mechanics 

The algebraic problems in the spring 2009 interviews involved calculating the work done 

by non-constant forces provided as functions of displacement. The formula for the work done by 

non-constant forces, ( )W F x dx= ⋅∫ , was provided to students during the lecture without its 

rationale being explicitly addressed. So the students might not understand the accumulation of 

the infinitesimal work although they could apply the formula to calculate the work. 

In the algebraic problem in interviews 2 and 3, the force was provided as a function of 

linear displacement, i.e. ( )F x , so students only needed to recall the formula ( )W F x dx= ⋅∫  to 
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calculate the work. These problems demanded no more than the recall of a previously learned 

formula. Therefore, in interviews 2 and 3, we only investigate whether or not students could 

recognize the use of the integral formula in calculating the work (i.e. step 1). 

The algebraic problem in interview 4 was more complicated because the force was 

provided as a function of angular displacement. The integral of force ( )F dθ θ⋅∫  was not yet the 

value of work. The correct integral for the total work was ( )W F dsθ= ⋅∫  in which ds R dθ= ⋅ , 

so the integral could also be written as ( )W R F dθ θ= ⋅∫ . So besides the strategy of thinking 

about the total work as the sum of infinitesimal works (integrating ( )F dsθ ⋅∫ ), there was an 

alternative strategy of integrating ( )F dθ θ⋅∫  then multiplying by the radius R  of the track. 

Because of this alternative strategy, students could also get the correct value for work without 

understand the structure of the integrand. 

 3.3.1 Interview 2 

There were nine students following the A-G (algebraic – graphical) sequence, which 

means they were presented with the algebraic problem before being presented with the graphical 

problem.  Conversely, 11 students in this interview followed the G-A (graphical – algebraic) 

sequence, which means they were presented with the graphical problem before being presented 

with the algebraic problem. Of the nine students following the A-G sequence:  

• Three students spontaneously recognized that work equaled ( )F x dx∫ .  

• The six remaining students attempted to calculate the work either by finding the 

spring constant 1000 3000
F

k x
x

= = +  to plug in the formula for the work done by 

a spring 21

2
W kx=  or by using the formula for the work done by a constant force 

.W F d=  where F was the value of force at maximum compression and d was the 

distance the bullet traveled. Of these six students, three of them recognized that 

( )W F x dx= ∫  after being provided the hint that the spring constant was not a 

constant, while the other three did not recognize this relationship until the 

interviewer explicitly told them about it. 
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 3.3.2 Interview 3 

There were 11 students following the A-G sequence and nine students following the G-A 

sequence in this interview. Of the 11 students following the A-G sequence: 

• Four students spontaneously recognize that ( )W F x dx= ∫ .  

• Errors that the other seven students made included finding work using 

.W F d= with F  the maximum value of force (2 students), finding work at two 

ends and averaging (1 student), finding “coefficient of friction” from the algebraic 

expression of )(xF  (1 student). The other three students said that they knew that 

work was either the derivative or the integral of force but did not know 

specifically which one. Of the seven students who had errors, five recognized 

( )W F x dx= ∫  after being hinted by the interviewer, while two did not recognize 

it until they were explicitly told so by the interviewer. The hint provided in this 

interview was to guide students to think of the total work as the sum of works on 

small segments of the path. 

 3.3.3 Interview 4 

There were 11 students following the A-G sequence and nine students following the G-A 

sequence in this interview. Of the 11 students following the A-G sequence: 

• All 11 students recognized that they had to integrate the force function. 

• Only one of them spontaneously recognized that he must have ( )F dsθ∫ instead 

of ( )F dθ θ∫ . 

• Five students calculated the integral of force ( )F dθ θ∫  and multiplied by the 

total distance. 

• Five other students just calculated ( )F dθ θ∫  and claimed that it was the value of 

work.  

All of the 10 students who had errors were able to recognize that they had to either take 

( )F dsθ∫  or convert the unit after taking ( )F dθ θ∫  to get the correct value of work after 

several hints were given by the interviewer. For students who did not know what to do with the 
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force function or used it in an incorrect way, then the hint was to guide them to think of the total 

work as the sum of infinitesimal work dW F ds= ⋅ . For students who integrated ( )F dθ θ⋅∫ , the 

interviewer let them continue along this path until they got the value of the integral. The students 

were then asked about the unit of their integral, and when they recognized that they did not have 

the correct unit of work, the interviewer assisted them in doing the unit conversion, during which 

they recognized the need for the radius factor. 

 3.3.4 Conclusion from the spring 2009 interviews 

The algebraic problems in the spring 2009 interviews involved calculating the work done 

by non-constant forces provided as a function of displacement. We found that not many students 

were able to recognize that the work equaled the integral of force, although they had learned 

about it in the course. Many of them attempted to use pre-derived formula for the work done by a 

force W F d= ⋅  or spring force 21

2
W kx=  even when these formulas did not apply. Even when 

the students spontaneously recognized that work equaled the integral of force, there was 

evidence suggesting that they might just recall it from what they learned in the course without an 

understanding of the underpinning of the method. First, only one student in interview 4 

spontaneously recognized that the integral was not the value of the work. The rest of the students 

simply calculated the integral and claimed that it was the value of work, which might imply their 

lack of understanding of how the work was accumulated when they performed the integral. 

Second, there were some students who realized that they had to either differentiate or integrate 

the function but did not know which one to do. This fact indicated that most students simply 

remembered the strategy without understanding the underlying process of integration. 

We answer the research questions RQ1, RQ2, and RQ4 as follows. 

RQ1: Did students recognize the use of the integral in physics problems? 

Most of the students were not able to recognize the use of the integral in calculating the 

work done by non-constant forces. Instead, they attempted to use pre-derived formulas to 

calculate the work. Students’ inability to recognize the use of the integral might be attributed to 

their unfamiliarity with the task (since students did not have any problems involving integral 

prior to our interviews) and their strong inclination to using the pre-derived formulas rather than 

attempting an unfamiliar strategy or inventing a new strategy. 
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RQ2: Did students understand what quantity was being accumulated when calculating an 

integral? 

The fact that some students knew that they had to calculate the derivative or the integral 

of force but did not know which one suggested that these students did not understand the 

physical meaning of the operators. Therefore, students’ application of the integral in finding 

work might simply be the recall of the previously learned knowledge (i.e. the work equaled the 

integral) rather than an understanding of how the work was being accumulated. 

The fact that most of the students claimed the integral ( )F dθ θ∫  in interview 4 as the 

value of force indicated that these students did not understand what quantity was being 

accumulated when they performed the integral. 

RQ4: What verbal hints may help students overcome those difficulties? 

For students who attempted to use pre-derived formulas they learned from the course to 

calculate the work, the hints were to help them recognize that those formulas were not applicable 

to the problems at hand. For example, when a student attempted to find the spring constant using 

F
k

x
=  to plug in the formula 21

2
W kx= , the hint was to ask them whether the spring constant 

was actually a constant, which helped them recognize that the concept of “spring constant” did 

not apply for non-linear spring and hence the formula 21

2
W kx=  did not apply either. The hints 

that guided students to think of the non-constant nature of the force triggered students’ thinking 

of integration. The hints on the accumulation of the infinitesimal work to get the total work also 

helped some students to set up the correct integral for the work in interview 4, although the hints 

on units seemed to be easier to understand for the students. 

 3.4 Results – Fall 2009 – Electricity and Magnetism 

The use of the integral concept in electricity and magnetism (E&M) is more intensive and 

complicated than in mechanics. There were no pre-derived formulas for calculating E&M 

quantities using the integral concept that students had learned from the lecture as there was for 

work in mechanics. So to successfully set up the integral representing a quantity in E&M, 

students must understand how the infinitesimal quantity is calculated and accumulated. 
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In each of the following sub-sections, we will discuss the difficulties students 

encountered at each of the steps of applying the integral concept to physics problems described 

in the previous section: 

• Step 1: recognize the need for an integral 

• Step 2: set up the expression for the infinitesimal elements 

• Step 3: accumulate the infinitesimal elements 

• Step 4: compute the integral 

We will begin with a general description of the difficulties and then present examples of 

those difficulties in each of the problems under investigation. 

 3.4.1 Students’ recognition of integration 

Most of the students in our interviews did not have significant difficulty recognizing the 

need for the integrals in the interview problems. We observed that the non-constant physical 

quantity given in the problem statement was the major cue for integration. 

The charged arch problem (Figure  3.4) and charged rod problem (Figure  3.5) were very 

similar to some of the homework and exam problems in the course, so all students knew that they 

had to use the integral to calculate the electric field. 

On the cylindrical conductor problem (Figure  3.6), 12 out of 15 students stated, with 

different levels of confidence, that an integral was needed because the resistivity was changing 

along the conductor. The reasoning provided by student S6 “since ρ isn’t constant we’re going to 

have to do an integral” was typical for students who were confident with their reasoning.  On the 

other hand, the question posed by student S13, after setting up the expression 
xL

A

α
, “Do I have 

to put an integral somewhere?” indicated her uncertainty about the need for an integral. The 

remaining three students also arrived at the expression 
xL

A

α
 and claimed that it was the final 

answer. When the interviewer hinted that the final answer should not contain x , these students 

were able to recognize that they needed an integral. The following excerpt was typical among 

this group of students. 

Interviewer: Is this [
xL

A

α
] your final answer? 
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S3: Uh … yes. 

Interviewer: But that answer contains x  which is changing. 

S3: Okay … so … should I use integration? 

The truncated-cone conductor problem (Figure  3.7) followed the cylindrical conductor 

problem in interview 6. Thirteen out of 15 students were able to recognize that they could use the 

integral set up in the cylindrical conductor problem except that the area was then a variable. The 

other two students wrote an integral with dA  – the infinitesimal cross-sectional area – as the 

infinitesimal term, i.e. 
( )x L

dA

ρ
∫ . 

The capacitor problem (Figure  3.8) was the last problem in interview 6. Only 12 out of 

15 students got to this problem within the one-hour time limit of the interview. All of them were 

able to recognize the need for an integral to solve the problem. 

The current problem (Figure  3.9) was asked in interview 7. Thirteen out of 15 students 

stated that they needed to have an integral to calculate the total current. The other two students 

attempted to find the total current by multiplying the current density at the surface of the wire by 

the total cross-sectional area of the wire. 

In conclusion, we found that most of the students could easily recognize the need for an 

integral in the problem. The presence of the non-constant quantities was the hint for students to 

think of using integration. This finding agrees with the finding of Meredith and Marrongelle 

(2008) that the dependence cue was most commonly used by students to cue integration in 

physics problems. 

 3.4.2 Set up the expression for the infinitesimal quantities 

In order to calculate an integral, one must know the variable of integration. One way to 

do that is to look at the infinitesimal term (e.g. dx , dr , dθ , …) in the integral. This term also 

carries a physical meaning that must be understood while setting up the integral. For example, if 

( )F x  is a function of force with respect to position x , then ( )F x dx∫  means integrating the 

product of the force ( )F x  at position x  and the corresponding infinitesimal distance dx , in the 

direction of the force to obtain the total work done over the whole distance. On the other hand, 

( )F t dt∫  means integrating the product of the force ( )F t  at time t  and the corresponding 
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infinitesimal time interval dt  to obtain the total impulse due to the force over the total time 

interval. In these examples, dx  and dt  not only indicate the variable of integration but also have 

their own physical meanings: infinitesimal distance and infinitesimal time interval. So it is 

mathematically incomplete and physically meaningless to write the integral as ( )F x∫ . 

However, it was observed that many students in our interviews either set up the integral without 

the infinitesimal term or simply appended it to the integrand or to whatever quantity that was 

changing. These actions essentially changed the physical meaning of the integrand. 

The charged arch problem (Figure  3.4): Starting with the formula for the electric field 

due to a point charge 
2

0

1

4

q
E

rπε
= , all 15 students were able to write the electric field due to a 

charge element dq  as 
2

0

1

4

dq
dE

rπε
= . 

The charged rod problem (Figure  3.5): This problem followed the charged arch problem 

in the same interview. After doing the charged arch problem, all students knew that they had to 

integrate 
2

0

1

4

dq
dE

rπε
= . 

The cylindrical conductor problem (Figure  3.6): To solve this problem, one must set up 

the expression ( )
dx

dR x
A

ρ=  for the infinitesimal resistance of a thin slice of the conductor, then 

integrate to find the total resistance ( )
0

L
dx

R x
A

ρ= ∫ , where A  is the constant cross-sectional area 

of the conductor. Eight out of 15 students started with the formula of resistance 
L

R
A

ρ=  and 

then set up the integral ( )
L

R x
A

ρ= ∫  or ( )
L

R x dx
A

ρ= ∫ . The first integral was mathematically 

incomplete and the second integral did not represent any physical quantity. Among the remaining 

seven students, one student recognized that she needed an infinitesimal length dL  in place of L  

in the formula, three students recognized this after being reminded of the meaning of L  in the 

integral, and the other three students were able to set up the integral only after detailed guidance 

from the interviewer. 
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The truncated-cone conductor problem (Figure  3.7): Twelve out of 15 students stated that 

they could use the integral set up in the cylindrical conductor problem but with area being a 

variable. These students could also recognize that since there were two variables in that integral: 

x  and A , they had to write one variable in terms of the other in order to integrate. All students 

needed a lot of guidance from the interviewer in writing area A  in terms of x . One student set 

up the correct integral but stated that the limits of integral were from d  to D  because the 

diameter was changing. Being hinted that dx  indicated integration with respect to x , hence the 

limits should be the range of x , this student recognized that the limits were from 0 to L . 

Therefore, we interpret this student’s wrong choice of limits as evidence that she did not 

understand that dx  indicated the integration variable x . Two other students set up the integral 

for resistance as 

2

2

2

2

D

d

L
R

dA

π

π

ρ

 
 
 

 
 
 

= ∫  . These students stated that because area A  was changing, they 

used the infinitesimal area dA . Obviously, the term 
L

dA

ρ
 did not represent the infinitesimal 

resistance of a thin slice of the conductor. 

The capacitor problem (Figure  3.8):  To solve this problem, students must think of a 

capacitor with large separation between the plates as a combination of several capacitors made of 

fictitious plates separated by an infinitesimal distance dx . This strategy was novel to many 

students, so they needed hints to recognize the idea.  After the hints were provided, 10 out of 12 

students were able to set up the correct expression for the capacitance of a capacitor with 

infinitesimal separation dx  between the plates: 
( )A x

dC
dx

ε= . The other two students used the 

differential area dA  and got 
dA

dC
L

ε= . This error was similar to the error observed in the 

truncated-cone resistor problem, where students had 
L

dA

ρ
 as the infinitesimal resistance. This 

type of error suggested that these students seemed to simply prefix “ d ” to whatever quantity that 

was changing (i.e. area A  in these cases) without understanding the meaning of the infinitesimal 

term in the integral. 
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The current problem (Figure  3.9): The correct expression for the infinitesimal current in 

the wire is ( )j r dA , where ( )j r  is the current density at a distance r  from the center of the wire 

and dA  is the area of an infinitesimally thin ring on the cross-section of the wire. Thirteen out of 

15 students made mistakes similar to those observed in the cylindrical conductor problems: they 

set up ( )I A j r= ∫  or ( )I A j r dr= ∫ , where A  was the total cross-sectional area of the wire. 

When the interviewer reminded the students about the formula ( )I j r dA= ∫ , all of the students 

agreed that they had seen it before but then failed to tell what dA  meant in that formula. 

In conclusion, we found that students’ failure in setting up the expression for the 

infinitesimal quantity was due to their lack of understanding of the physical meaning carried by 

the infinitesimal term (e.g. dx , dr , dθ  …). This lack of understanding caused students to ignore 

the infinitesimal term or to simply append it to the integrand, or even to prefix d  to whatever 

quantity that was changing when setting up the expression for the infinitesimal quantity. All of 

these actions essentially changed the physical meaning of the expression being set up. 

 3.4.3 Accumulating the infinitesimal quantities 

It was observed in our interviews that after having a correct expression for the 

infinitesimal quantity, almost all of the students started integrating that expression without 

attention to how these quantities should be added up. 

The charged arch problem (Figure  3.4): The electric fields dE  due to the infinitesimal 

elements of charge on the arch must be added vectorially. Eight out of 15 students in our 

interview did not notice the vector nature of dE  and integrated dE  as a whole, while the other 

seven students used symmetry to argue that only the y-component of the electric field due to 

each charge element contributed to the total field and integrated only the y-component of dE . 

The charged rod problem (Figure  3.5): The electric fields dE  due to all infinitesimal 

elements of charge dq  on the rod were pointing in the same direction so the total field could be 

obtained by simply integrating dE . So even though all of the students could do this step, we 

could not conclude whether they understood that they were adding vectors having the same 

direction or just integrated the infinitesimal quantity. 

The cylindrical conductor and the truncated-cone conductor problems (Figure  3.6 and 

Figure  3.7): The slices that made up the conductor were connected in series, so the total 
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resistance could be obtained by adding up the resistance of these slices. When the thickness of 

each slice became infinitesimally small, this was accomplished by integrating dR . Similarly, in 

the current problem (Figure  3.9), because the currents in all thin rings that made up the cross 

section of the wire were in the same direction, the total current could be obtained by integrating 

the infinitesimal current dI  in each ring. In these cases, the total quantities were obtained by 

simply integrating the infinitesimal quantities, i.e. R dR= ∫  and I dI= ∫ , so we could not 

conclude whether or not students really understood how the infinitesimal quantities should be 

accumulated. 

The capacitor problem (Figure  3.8): The capacitor in this problem could be viewed as a 

series of capacitors whose plates were separated by a small distance. The equivalent capacitance 

could be found by adding the capacitance of each individual capacitor reciprocally, i.e. 

1 2

1 1 1
...

eq
C C C

= + +  which became 
1 1

eq
C dC

= ∫  when the separation between the plates became 

infinitesimally small. This problem demanded more than just integrating the infinitesimal 

quantities to obtain the total quantity. It also required an understanding of integration in 

association with the physical situation of the problem. 

Out of 12 students who attempted the capacitor problem, only two students recognized 

that they had to integrate 
1

dC
. The other 10 students integrated dC  and got the integral 

( )

0

L A x
C dC

dx
ε= =∫ ∫ . These students immediately recognized that this integral had dx  in the 

denominator, so they attempted to bring dx  to the numerator although they could not give a 

reason why they could do that. The interviewer had to give hints to cue students’ attention to the 

arrangement of the capacitors. The following excerpt is typical in this situation. 

Aaron: … since L is going to turn into dx  I think … but to make that … it should be dx  

in the denominator … [wrote 

2

0

4
L

d

dx

π

ε∫  and then flipped the integrand] 

Interviewer: Why did you flip it? 

Aaron: Well, so that dx  is in the numerator. 

Interviewer: You must have a reason for flipping the integrand. 
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Aaron: Oh, okay …  

Interviewer: What does your integrand mean? 

Aaron: Like if you slice it up it’s just one of the slices. 

Interviewer: Okay, but when you add up capacitance, you must know how the capacitors 

are connected, that is, in parallel or in series. 

Aaron: Um … it doesn’t say. 

Interviewer: Look at how the plates are arranged. 

Aaron: Um … 

Interviewer: You should draw some of the fictitious plates to see how they are arranged. 

Aaron: [draws the plates] Okay … so … they are in series, aren’t they? 

Interviewer: Yes, and what is the equation for capacitors in series? 

Aaron: It’s the one over thing. 

Interviewer: So how should you integrate in this problem? 

Aaron: Well … because integral means sum … and I have … so the integral is … [writes 

1

dC∫
] 

In this excerpt, Aaron indicated an understanding of the meaning of the integrand (“if you 

slice it up it’s just one of the slices”), the structure of the integrand (i.e. dx  must be in the 

numerator), and the formula for capacitors in series (“it’s the one over thing”). However, he was 

not able to recognize that the capacitors were in series until he drew the fictitious plates between 

the two plates of the capacitor. Similar situations also occurred with other students who 

integrated dC . This evidence suggested that students’ lack of visualization of the physical 

scenario might account for their disregard of how the quantity should be accumulated. 

 3.4.4 Computing the integral 

The last step in applying integration to physics problems is to compute the integral set up 

in the previous three steps. This was expected to be an easy task for students because they had 

practiced computing integrals in their calculus courses. However, students still had some 

difficulties with computing the integrals in our interview problems. 



49 

 

The charged arch problem (Figure  3.4): Upon having the integral for the electric field 

due to the arch 
2

0

1
cos

4

dq
E

r
θ

πε
= ∫ , 13 out of 15 students were unable to recall the relation 

dq dsλ=  between the charge element dq  and the length ds  of that element along the arch. 

Eleven out of 15 students could not relate infinitesimal length of the arc to the infinitesimal angle 

it subtended at the center: ds rdθ= . After the variable conversion, the resulting simplified 

integral was 
/ 2

2

/ 2

cos d

π

π

θ θ
−

∫ . All 15 students needed to be given the equation 

( )2 1
cos 1 cos 2

2
θ θ= +  and two of them needed assistance in computing the integral explicitly. 

The charged rod problem (Figure  3.5): Students’ difficulties with computing the integral 

in this problem were due to students’ inability to interpret the physical meaning of symbols. 

Twelve out of 15 students interpreted r  in Coulomb’s law as “radius,” so they were unable to 

decide whether r was a constant or a variable in the integral. The charged rod problem came 

right after the charged arch problem, so all students were then able to write dq dsλ= , but then 

11 of them were not able to recognize that ds dx=  in this problem. 

The cylindrical conductor problem (Figure  3.6): The integral in this problem was very 

simple so all students were able to compute it without assistance from the interviewer. 

The truncated-cone conductor and the capacitor problems (Figure  3.7 and Figure  3.8) 

The most difficult part of computing this integral was to figure out the expression for the cross-

sectional area as a function of position. However, because it was not the purpose of the interview 

to test students’ geometric skills, the expression for ( )A x  was provided to the students if they 

failed to get it after a few attempts. The resulting simplified integral was 
2

0

L
dx

d D
D x

L

− 
+ 

 

∫  

where D , d , L  were constants. Only two students succeeded in computing this integral using 

substitution. Others needed to be given the result of the integral. In the truncated-cone conductor 

problem, one student set the limits of the integral as d  and D  (i.e. the diameters of the 

conductor at two ends) based on the fact that the diameter was changing. The same error was 



50 

 

made by five students when solving the capacitor problem, including those who had the correct 

limits for the integral in the truncated-cone conductor problem. 

The current problem (Figure  3.9): The most difficult part of computing the integral in this 

problem was to write the differential cross-sectional area dA  in terms of the distance r  from the 

center of the wire. Asking students to take the derivative of the cross-sectional area 2
A rπ=  

helped students derive the expression 2dA rdrπ= . The resulting integral was very simple, so all 

of the students were able to compute it. 

In summary, we found that students encountered a number of difficulties in computing 

the integrals in physics problems. Some of these difficulties could be attributed primarily to 

students’ misunderstanding of the physical meaning of symbols in the integrals. Other 

difficulties arose when students could not recall basic mathematical equations. A few students 

still had difficulties determining the limits of the integrals. Many students were unable to 

compute mathematical integrals. 

 3.4.5 Conclusion from the fall 2009 study 

In this study, we took a close look at students solving problems involving integration in 

the context of electricity. We found that students’ failure in applying integration to our interview 

problems occurred when students set up the expressions for the infinitesimal quantities and 

accumulated those quantities using integral. These difficulties might be attributed primarily to 

students’ inability to interpret the meaning of the infinitesimal term dx  in the integral, and to 

students’ disregard of how the quantities must be added up. A few students still had difficulties 

recognizing when an integral was needed in a problem. Students also had difficulties in 

computing the integrals they had set up, mostly because they were unable to interpret the 

physical meaning of the symbols and to invoke basic mathematical equations. 

We answer the research question RQ3: What are the common difficulties that students 

encounter when solving problems in electricity involving integration? Students generally did not 

have significant difficulty recognizing the need for integration in a problem. However, students 

did have significant difficulties setting up and computing the desired integral. These difficulties 

included setting up an incorrect expression for the infinitesimal quantity and/or accumulating the 

infinitesimal quantities in an inappropriate manner. Determining the limits of the integrals, 
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relating variables in an integral, and computing the integrals algebraically were also the 

difficulties faced by some of the students. 

These findings align with those from other research on students’ difficulties with 

integration. We found that the non-constant quantity given, either mathematically (e.g. resistivity 

as a function of position, charge distribution as a function of angle) or pictorially (e.g. figure of a 

conductor with changing diameter), in the problem statement was the cue for most students to 

think of integration in a problem. This finding supports the conclusion of Meredith and 

Marrongelle (2008) that the most common resource that students use to cue integration is the 

dependence cue. However, the dependence cue, as pointed out by Meredith and Marrongelle, is 

only helpful when the non-constant quantity is a density or a rate of change. This finding also 

aligns with the fact that many students in our study failed to set up the correct integral in 

problems involving non-constant quantities which were not rates of change (e.g. resistivity, 

diameter). 

Although most of the students indicated an understanding of integration as an 

accumulating process, they were not confident in carrying out the process and needed detailed 

guidance from the interviewer. Some of the students had difficulties determining the limits of 

integral. These observations are similar to those described by Cui et al. (2006). 

Our study extends the literature on students’ use of integration in physics problem 

solving. We found that the major difficulties students encountered when attempting to set up an 

integral in a physics problem were due to students’ inability to understand the infinitesimal term 

in the integral and failure to understand the notion of accumulation of an infinitesimal quantity. 

Meredith and Marrongelle (2008) suggested that the parts-of-a-whole symbolic form was 

a more powerful and flexible resource to cue integration and proposed instructional strategies to 

promote students’ use of this recourse as a cue for integration in physics problems. Our study 

pointed out that setting up a correct integral in a physics problem requires more than recognizing 

the need for an integral. It also requires setting up the correct expression for the infinitesimal 

quantity that each “part” represents and accumulating that quantity in a correct manner. There 

were several students in our interviews who mentioned the sum of infinitesimally small elements 

(although they did not use that terminology) at some point while solving the problems, indicating 

that they had a rough idea of the parts-of-a-whole resource, but then set up the incorrect 

expression for the “part” or did not pay attention to how the “parts” should be added up. So we 
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expand upon the conclusion of Meredith and Marrongelle that although the parts-of-a-whole 

symbolic form is the most powerful and flexible way to think of integration, it does not 

guarantee the correctness of the integral that is set up. 

 3.5 Limitations and future work 

The research methodology used in both the spring 2009 and fall 2009 studies was 

individual interview. This method allowed us to gain detailed insight into students’ performance 

on the problems and also enabled us to interview the same students several times on different 

topics during the two semesters. On the other hand, the individual interview method limited the 

number of student participants in the study. There were only 20 students in the spring 2009 study 

and 15 students in the fall 2009 study compared to more than 200 students enrolled in each of the 

courses from which the interviewees were recruited. Due to this fact, the major limitation of this 

study is the generalizability of its findings. 

Based on our interview findings, we plan to develop tutorial materials to address 

students’ difficulties with integration in physics problems and implement them with all of the 

students in the course (usually around 200+ students) in future semesters when the courses are 

offered to test the effects of those materials in helping students learn to solve physics problems 

involving integration. 
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Chapter 4 - Students’ application of the area under the curve 

concept in physics problems 

 4.1 Introduction 

In this chapter, we investigate how students solve physics problems in which part of the 

information is given as a graph. Specifically, we look at how student use the area under the curve 

concept to calculate a physical quantity. We examine the following research questions: 

• RQ1: To what extent did students recognize the use of the area under the curve in 

physics problems?  

• RQ2: To what extent did students understand what quantity was being 

accumulated when calculating the area under a curve? 

• RQ3: To what extent did students understand the relationship between a definite 

integral and the area under a curve? 

We will analyze students’ performance on the graphical problems in interviews 2 through 

7 in the spring and fall 2009 semesters. In interviews 2 through 4, the graphical problems 

involved calculating the work done by non-constant forces from the graphs force functions. In 

interviews 5 through 7, the graphical problems involved computing pre-determined integrals 

using the area under the curve concept. The graphical problem in interview 1 involved 

calculating kinematics quantities (i.e. velocity, acceleration) by computing the slope of the curve. 

The graphical problem in interview 8 involved reading out information from a graph. So these 

two problems will not be discussed in this study. 

 4.2 Rationale of the interview problems 

The interview problems were designed to help us answer the research questions 

mentioned above. In the spring 2009 interviews, our problems aimed at exploring whether or not 

students could recognize the use of the area under the curve concept in physics problems, and 

whether or not students understood what quantity the area under the curve represented. These 

problems helped us answer the first two research questions: 

• RQ1: To what extent did students recognize the use of area under the curve in 

physics problems?  
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• RQ2: To what extent did students understand what quantity was being 

accumulated when calculating the area under a curve? 

In the graphical problems in interviews 2 and 3 (Figure  4.1 and Figure  4.2) students had 

to calculate the work done by non-constant forces by evaluating the area under the curve of force 

versus linear displacement. Prior to our interviews, the students had been taught in the lecture 

that the work done by a force could be calculated using area under the curve of force versus 

displacement. However, there were no homework or exam problems in which this knowledge 

was required, so the students did not have a chance to practice the method prior to the interviews. 

So the graphical problems in interviews 2 and 3 might help us determine whether or not students 

could recognize the use of the area under the curve concept in physics problems after they had 

been taught it but had not practiced on it. 

 

Figure  4.1 The graphical problem in interview 2 

 

 

A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) compressing a spring as shown.  
The gun is then tilted at an angle of 30° and fired. 

 
 
The only information you are given about the gun is that the barrel of the gun is frictionless 
and when the gun is held horizontally, the net force F (N) exerted on a bullet by the spring as 
it leaves the fully compressed position varies as a function of its position x (m) in the barrel as 
shown in the graph below. 

 
What is the muzzle velocity of the bullet as it leaves the gun, when the gun is fired at the 30° 
angle as shown above 
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Figure  4.2 The graphical problem in interview 3 

 

 

The graphical problem in interview 4 (Figure  4.3) was designed to answer the research 

question RQ2. This problem also involved finding the work done by a frictional force using the 

area under the curve concept. However, the graph provided in this problem was the graph of 

force versus angular displacement instead of linear displacement, so finding the area under the 

curve meant accumulating the product of force and angle, which did not yield the total work. 

Students had to convert angular displacement into linear displacement along the circular track by 

multiplying the angular displacement by the radius of the track. So to get the correct value of 

A 0.1 kg bullet is loaded into a gun compressing a spring which has spring constant k = 6000 
N/m.  The gun is tilted vertically downward and the bullet is fired into a drum 5.0 m deep, 
filled with a liquid. 
 

 
 
The barrel of the gun is frictionless.  The resistance force provided by the liquid changes with 
depth as shown in the graph below.  The bullet comes to rest at the bottom of the drum. 
What is the spring compression x ? 
 

 



56 

 

work in this problem, students had to not only calculate the area under the curve, but also 

multiply that area by the radius of the track. This procedure was equivalent to calculating the 

integral ( )
/ 2

0

R F d

π

θ θ∫  which equaled to ( )
/ 2

0

R

F ds

π

θ∫ , where ds Rdθ=  was an infinitesimal 

segment of length along the circular track spanning an angle dθ . Therefore, this problem 

required more than just the recognition of the area under the curve concept. It required an 

understanding of what quantity was being accumulated when computing the area under the 

curve. Without such an understanding, students might claim the area under the curve itself as the 

value of the work. This problem, therefore, could help us determine whether students understood 

what physical quantity the area under the curve represented or just applied the knowledge of 

“work equaled area under the curve of force” without understanding its underpinnings. 

 

Figure  4.3 The graphical problem in interview 4 

 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown. It hits a curved section (radius R = 1.0 m) and is launched vertically at point 
A. The rolling friction on the straight section is negligible. 

 

 

θ 
R 

vi 

A

 
 

The magnitude of the rolling friction force acting on the sphere varies as angle θ as per the 
graph shown below. What is the launch speed of the sphere as it leaves the curve at point A? 
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As students proceeded through our interviews in the spring 2009 semester, they had 

become familiar with the use of the area under the curve concept in physics problems. Another 

issue arose: Most of the students could state that “the integral equaled the area under the curve,” 

but did they know which curve? In other words, when students had an integral and more than one 

graphs, did they know which area under the curve was equal to the integral? Obviously, in order 

to choose from several graphs the one corresponding to a pre-determined integral, students had 

to understand the relationship between integral and area under the curve. So our problems in the 

fall 2009 interviews were designed to help us answer the third research question: 

RQ3: To what extent did students understand the relationship between a definite integral 

and an area under a curve? 

In each of these problems, students had to calculate a physical quantity (e.g. electric field, 

resistance, electric current) by evaluating a definite integral. Explicit expression of the integrand 

or part of the integrand was not given. Instead, students were provided with several graphs of 

quantities related to the integrand. Students had to choose the graph on which the area under the 

curve equaled the integral at hand. These problems could help us determine whether students 

understood how a definite integral was related to an area under a curve. 

In the next sections, we will present our findings from the interviews and discuss how 

these findings help us answer our research questions. We will use pseudonyms S1 to S15 to 

identify the students. 

 4.3 Results – Spring 2009 – Mechanics 

 4.3.1 Students’ recognition and understanding of the area under the curve concept 

The graphical problems in interviews 2, 3, and 4 involved calculating the work done by 

non-constant forces from the graphs of force versus linear or angular position. We found that in 

interviews 2 and 3, most of the students attempted to calculate the work by using pre-determined 

formulae for the work done by constant forces. Upon being asked to think of another strategy to 

find work, only a few students were able to recognize that they could instead calculate the area 

under the curve of force. Other students only recognized the use of the area under the curve after 

hints or detailed guidance were provided by the interviewer. In interview 4, students had become 
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familiar with the task, so most of them spontaneously stated that work equaled the area under the 

curve of force. However, as discussed above, students had to multiply the area under the curve 

by the radius of the circular track to obtain the correct value of the work done by the rolling 

friction force. Only one student could recognize the need for the radius factor without assistance 

from the interviewer. Many other students did not understand why they needed a radius factor 

even after hints or detailed guidance were provided by the interviewer. 

We classified students’ performance into three levels:  

• getting the correct answer spontaneously, i.e. without hints from the interviewer. 

• getting the correct answer after a few hints given by the interviewer. The hints 

given were to ask students to think about the structure of the equation for work or 

its unit: Work is the product of force and displacement, and the unit of work is the 

product of units of force and displacement. Then students were asked to think 

about how such a product could be obtained from the graph (i.e. multiplying the 

quantities on the vertical and horizontal axes, which essentially yielded the area). 

• getting the correct answer after detailed, step-by-step guidance from the 

interviewer. 

We will now discuss students’ performance on each of the problems. 

 4.3.1.1  Interview 2 

The graphical problem in this interview involved finding the work done by a spring. 

There were two possible strategies for calculating the work done by the spring force in this 

problem: 

• finding the area under the curve of force 

• finding the spring constant k . Because of the linear dependence of spring force 

on displacement ( F kx= − ) in this problem, the spring constant k  equaled the 

magnitude of the slope of the line. Then the work done by the spring force could 

be found from the equation 21

2
W kx= , where x  was the maximum spring 

compression. 

Only one out of 11 students following the G-A sequence spontaneously stated that work 

equaled the area under the curve of force versus distance, and used the first strategy to calculate 
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work. The other 10 students followed the second strategy and also obtained the correct value of 

work. When these students were asked to think of another strategy to find the work done by the 

spring force, 6 students could recognize that work equaled area under the curve of force after 

hints. The other 4 students stated that the area might have a physical meaning but were not able 

to recall what the meaning was until being told explicitly by the interviewer. 

 4.3.1.2 Interview 3 

The graphical problem in this interview involved finding the work done by the resistance 

force of a liquid. This work might be found by finding the area under the curve of force. Only 3 

out of 9 students who followed the G-A sequence spontaneously stated that work equaled area 

under the line. Three other students attempted to use the equation for the work done by the 

frictional force on a horizontal floor W F d mgdµ= ⋅ =  in which the coefficient of friction µ  

was the slope of the curve. Another student stated that the slope of the curve was the value of 

work. The remaining 2 students attempted to use the equation W F d= ⋅  where F  was the value 

of force at the maximum point on the graph. Of the 6 students who did not spontaneously 

calculate area under the curve, 3 recognized that work could be calculated using the area under 

the curve after hints, while the other 3 were not able to recognize it until being told explicitly by 

the interviewer. 

 4.3.1.3  Interview 4  

This problem involved finding the work done by the rolling friction force on a circular 

track. This could be done by finding the area under the curve and multiplying this area by the 

radius of the track. Only one out of 9 students following the G-A sequence spontaneously set up 

the correct calculation and obtained the correct value for the work. Five other students 

spontaneously stated that the area under the curve was the value of work. Of these 5 students, 

upon being told that the area itself was not the value of work, only 2 students recognized the 

need for the radius factor while the other 3 students did not know what was missing and needed 

detailed guidance from the interviewer. The remaining three students needed detailed guidance 

on both recognizing the use of the area under the curve and the need for the radius factor. 
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 4.3.2 Conclusion from the spring 2009 study 

Table  4.1 summarizes the number of students (out of the total) who obtained the correct 

value of work using area under the curve without hints, with hints, and with detailed guidance. 

 

Table  4.1 Students’ performance in the spring 2009 interviews 

Interview 
Correct without 

hints 

Correct after 

hints 

Correct after 

detailed guidance 

2 

1/11 

S16 

6/11 

S1, S2, S4, S8, 

S19, S14 

4/11 

S3, S7, S11, S12 

3 
3/9 

S16, S10, S15 

3/9 

S2, S6, S12 

3/9 

S3, S11, S13 

4 

1/9 

S9 

2/9 

S6, S10 

6/9 

S5, S17, S18, S13, 

S15, S20 

 

From Table  4.1, we see that only a few students (S9, S10, S15, S16) could spontaneously 

recognize the use of the area under the curve in calculating work when the graph of force versus 

displacement was provided. Student S16 followed the A-G sequence in interview 4 so he was not 

included in the analysis of the graphical problem for this interview. In this problem, both of the 

students S10 and S15 spontaneously stated that the work done by the rolling friction force was 

the area under the curve of force versus angle. One of them (S10) could recognize the need for 

the radius factor after being told that the area itself was not the value of work. The other student 

(S15) only obtained the correct value of work after detailed guidance from the interviewer. 

Student S9 was the only one who could calculate the correct value of work in the graphical of 

interview 4 without any assistance. However, he followed the A-G sequence in interviews 2 and 

3, so he was not included in the analysis of the problems in those interviews.. 
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We answer our first two research questions as follows. 

• RQ1: To what extent did students recognize the use of area under the curve in 

physics problems?  

The majority of students in our interviews did not spontaneously recognize the use of 

area under the curve in calculating work from the graph of force. There were two possible 

explanations: (i) students were not familiar with the method; and (ii) students held strong 

preference on algebraic method. The fact that more students were able to recognize that work 

equaled the area under the curve as they progressed through the interviews suggested that 

students gained familiarity with the concept. Some students, while talking to the interviewer after 

the interviews, stated that they had not seen any problem using the area under the curve in their 

physics homework or exam. On the other hand, students also expressed an inclination to an 

algebraic approach even when a graph was provided. They attempted to use pre-derived 

formulae for work and just used the graph to collect data on the values of spring constant or 

coefficient of friction to plug in those formulae. Some students explicitly told the interviewer 

that they hated problems with graphs and preferred working with equations. These facts 

supported the second explanation. 

• RQ2: To what extent did students understand what quantity was being 

accumulated when calculating the area under a curve?  

In the graphical problems in interviews 2 and 3, the area under the curve itself was the 

value of work. So when a student recognized that work equaled the area under the curve, we did 

not know whether he understood how work was accumulated when calculating the area or he just 

applied what he was taught in the lecture. There were four students in interview 2 stated that the 

area had some meaning but were not able to tell what the meaning was, and three students in 

interview 3 stated that the slope of the line was the coefficient of friction. These were evidence 

that these students did not understand what quantity the slope and the area represented. 

In the graphical problem in interview 4, finding the area meant accumulating the product 

of force and angle, which did not yield the total work. Six out of 9 students spontaneously stated 

that work equaled the area under the curve, but only one of them recognized the need for the 

radius factor without assistance from the interviewer. This was further evidence that although 

students could invoke the knowledge of “work equaled the area under the curve of force,” they 
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might not understand what quantity was being accumulated when calculating such an area. 

Therefore, they failed to apply that knowledge in novel situations. 

 4.4 Results from the fall 2009 study 

 4.4.1 Matching a definite integral with an area under the curve 

The graphical problems of interviews 5, 6, and 7 involved evaluating definite integrals 

using the area under the curve concept. All 15 students (S1 to S15) participating in these 

interviews solved the algebraic problems prior to the graphical problems. Each of these graphical 

problems provided three or four graphs describing the relation between the related quantities in 

the problem. Students had to select among these graphs the one in which the area under the curve 

was the value of the integral they encountered when solving the problem. 

We found that most of the students preferred computing the integral algebraically to 

evaluating it graphically. Students attempted to find the algebraic expressions for the functions 

from the given graphs to plug into the integrals and computed them algebraically. Students 

considered evaluating the integrals using the area under the curve only when the integral was too 

complicated to be computed algebraically or when students were unable to find the explicit 

expressions for the functions. About half of the students in each interview were able to select the 

appropriate graph to find area (i.e. the graph of the integrand), while others needed hints on this 

task. The hint provided to the students in this situation was to draw a graph of an arbitrary 

function ( )f x  and have students label the axes of the graph such that the area under the curve 

from x a=  to x b=  equaled the integral ( )
b

a

f x dx∫ . This exercise, which directed students’ 

attention to the relationship between the integrand and the function being plotted, helped most of 

the students recognize the correct graph to find the area. 
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 4.4.1.1  Interview 5 

Figure  4.4 The graphical problem in interview 5 

 

 

The graphical problem in interview 5 is presented in Figure  4.4. In this problem, students 

had to calculate the electric field due to a charged arch on which the charge distribution was a 

function of the angular position. According to Coulomb’s law, the electric field due to the arch at 

its center was ( )
/ 2

0 / 2

1
cos

4
E d

R

π

π

λ θ θ θ
πε

−

= ∫ . Students were provided with the graphs of “ ( )λ θ  

vs. θ ”, “ ( )sinλ θ θ  vs. θ ”, and “ ( )cosλ θ θ  vs. θ ”, and had to evaluate the integral 

You are standing at the center of the arch as in problem 1 in a stormy day. There are negatively 

charged clouds over the arch. The charge distribution on the arch now depends on the angle θ 
as per one of the graphs shown.   
 

 

θ 

 

- - - - - - - - - - - - 

R 

O 

 

- - - - - - - - - - - - 

 
 
(a) Indicate the charge distribution on the figure below. 
(b) Find the magnitude and direction of the electric field at your feet (i.e. at a point O on the 
ground directly below the top of the arch) 
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( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫ . The value of this integral equaled the area under the curve of “ ( )cosλ θ θ  vs. 

θ ” (i.e. the second graph in the problem statement) from / 2π−  to / 2π . One out of 15 students 

attempted to find the algebraic expression for ( )λ θ  to compute the integral algebraically. Four 

other students did not know what to do with the graphs. Upon being provided hints on the 

relation between a definite integral and an area under a curve, two of them were able to choose 

the correct graph to calculate the area under the curve, while the other two students needed 

further hints to recognize the correct graph. Out of the 10 students who spontaneously 

recognized the relation between the integral and the area under a curve, four students were able 

to choose the correct graph. The remaining six students initially chose the incorrect graph and 

needed hints to recognize the correct one. The errors these students made included: finding area 

under the curve of “ ( )λ θ  vs. θ ” (S11, S14, and S15) because they were “integrating ( )λ θ ”; 

multiplying the area under the curve of “ ( )λ θ  vs. θ ” by cosθ  (S6); choosing the graph of 

“ ( )sinλ θ θ  vs. θ ” because “its area was easy to calculate” (S12); and relating the area with the 

anti-derivative of the integrand (S13). 

 4.4.1.2 Interview 6 

The graphical problem in this interview is presented in Figure  4.5. This problem asked 

students to calculate the resistance of a conductor whose resistivity and diameter were changing 

along its length. The resistance of this resistor could be calculated by evaluating the integral 

( )
( )

2

0

x dx
R

A x

ρ
= ∫ , where ( )xρ  and ( )A x  were the resistivity and the cross-sectional area of the 

conductor at position x . The graphs of “ ( )xρ  vs. x ”, “ ( )A x  vs. x ”, “ ( ) ( )x A xρ ⋅  vs. x ”, and 

“
( )
( )
x

A x

ρ
 vs. x ” were provided. Obviously, the value of the integral for the resistance equaled the 

area under the curve of “
( )
( )
x

A x

ρ
 vs. x ” (i.e. the fourth graph in the problem statement) from 0.0 

m to 2.0 m. 
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Figure  4.5 The graphical problem in interview 6 

 

 

Three out of 15 students were able to choose the correct graph to evaluate the integral. 

Among the other 12 students, eight attempted to compute the integral algebraically by finding 

the algebraic expressions for ( )xρ , ( )A x  and plugging in the integral. The expression for 

( )xρ  could be easily obtained from the linear graph of “ ( )xρ  vs. x ”, while the expression for 

the area function ( )A x  had been derived in the algebraic problem which came before this 

problem. However, the obtained integral was too complicated for algebraic computation, so these 

8 students considered evaluating the integral using area under the curve and all of them were able 

to pick the correct graph. The remaining four students were not able to choose the correct graph 

until being hinted by the interviewer. The errors these students made could be attributed to their 

misconceptions about basic properties of integral and the relationship between an integral and 

the area under a curve. 

A conductor has diameter decreasing from D to d over its length L. The resistivity of this 

conductor along the x axis is ρ(x) and its cross-sectional area is A(x). The graphs of ρ(x) vs. x, 

A(x) vs. x, ρ(x).A(x) vs. x, and ρ(x)/A(x) vs. x are given. Find the resistance of this conductor. 
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 4.4.1.3 Interview 7 

The graphical problem in interview 7 is presented in Figure  4.6. In this problem, students 

were asked to calculate the total current in a wire carrying a current with current density ( )j r  

changing across its cross-sectional area.  

 

Figure  4.6 The graphical problem in interview 7 

 

 

The equation for the current in this problem was ( )
2

0

2I j r rdrπ= ∫ . Students were given 

the graphs of “ ( )j r  vs. r ”, “ ( )rj r  vs. r ”, “ ( )2
r j r  vs. r ”, and “

( )j r

r
 vs. r ”. The value of the 

integral in the current equation equaled the area under the curve of “ ( )rj r  vs. r ” (i.e. the second 

graph in the problem statement) from 0 cm to 2 cm. Nine out of 15 students were able to choose 

the correct graph. Four other students chose the “ ( )j r  vs. r ” graph for the reason that the 

A cylindrical wire of radius R = 2 cm is carrying a current of density j which depends on the 
distance r from the center of the wire as per the graphs given. Find the magnitude of the 
magnetic field caused by the wire at a point P on its surface. 
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current density ( )j r  was being integrated. The remaining two students chose the “
( )j r

r
 vs. r ” 

graph because its area was easy to calculate. 

In summary, almost all of the students indicated knowledge that an integral equaled the 

area under a curve. However, when provided with several graphs, students had difficulties 

identifying the graph on which the area under the curve was the value of a certain integral. There 

were four common errors that students made in selecting the graph: 

• relating only one part of the integrand with the function being plotted (e.g. 

equating ( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫  with the area under the curve of “ ( )λ θ  vs. θ ”, or 

( )
2

0

j r rdr∫  with area under the curve of “ ( )j r  vs. r ”); 

• relating the area with the integrand (e.g. equating the area under the curve of 

“ ( )xρ  vs. x ” with the value of the function ( )xρ  in the integral 

( )
( )

2

0

x dx
R

A x

ρ
= ∫ ); 

• identifying the graph to find the area based on the simplicity of the area 

calculation (e.g. choosing a graph because the area calculation was 

straightforward); 

• applying incorrect properties of integration (e.g. equating the integral of a 

quotient with the quotient of integrals). 

In the next subsection, we will discuss students’ misconceptions about integration and the 

area under a curve. 

 4.4.2  Students’ misconceptions about the integral and the area under the curve 

Our interviews also revealed some students’ misconceptions about basic properties of 

integrals and the relationship between the integrals and the area under a curve. These 

misconceptions were the integral equals the area under the curve of the anti-derivative of the 

integrand, integral of a product or quotient equals sum or quotient of integrals, and integrand 

equals area under the curve. We will discuss each of these misconceptions below. 
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 4.4.2.1 The area under a curve equaled the anti-derivative of the integrand 

In the graphical problem in interview 5 (Figure  4.4), the integral was ( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫ , 

which equaled the area under the curve of “ ( )cosλ θ θ  vs. θ ” from / 2π−  to / 2π . The 

following excerpt was taken from the interview with student S13 when she was attempting to 

choose the graph to find area. 

Interviewer: Okay, so now you have graphs … 

S13: Yeah, I understand that I have to use these graphs, I just don’t know how. 

Interviewer: And you have your integral. So what is the relation between an integral and 

a graph? 

S13: It’s the area underneath the curve. 

Interviewer: Uh huh, area under the curve. So which graph do you use to find the area? 

S13: I’m hoping this one. [points at the graph of “ ( )λ θ  vs. θ ”] 

Interviewer: Yes, you hope. But you should have a reason. 

S13: No … It’s this one [points at the graph of “ ( )sinλ θ θ  vs. θ ”] 

Interviewer: How do you know you should use that graph? 

S13: Um, because if I need the integral of cosine it’s going to be sine so I need the area 

under this. 

This student was able to recognize that the integral equaled the “area underneath the 

curve” when hinted on the relationship between the integral and the graph. However, she was not 

sure which area was corresponding to the integral. After picking a graph with the “hope” that it 

would be the correct one, she was more thoughtful in her second attempt. Her explanation that 

the integral of cosine was sine indicated that she chose the graph based on the result of 

integrating the cosine in the integrand. This evidence suggested that she did not understand the 

relation “the integral equaled the area underneath the curve” although she could invoke it when 

solving the problem. 

 4.4.2.2 The area under a curve equaled the integrand 
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In the graphical problem in interview 6 (Figure  4.5), the integral was 
( )
( )

2

0

x
dx

A x

ρ
∫  which 

equaled the area under the curve of “
( )
( )
x

A x

ρ
 vs. x ” from 0.0 m to 2.0 m. Student S8 calculated 

the areas under the curves of “ ( )xρ  vs. x ” and “ ( )A x  vs. x ” and plugged those areas into 

( )xρ  and ( )A x  in the integral. Similarly, in the graphical problem in interview 7 (Figure  4.6), 

student S3 calculated the area under the curve of “ ( )j r  vs. r ” and plugged that area into ( )j r  

in the integral ( )
2

0

j r rdr∫ . These errors indicated that these students perceived the area under a 

curve as the value of the integrand rather than the value of the integral. 

 4.4.2.3 Integral of a product or quotient equaled a sum or quotient of integrals  

In the graphical problem in interview 6 (Figure  4.5), student S1 found the explicit 

expression for ( )xρ  from the “ ( )xρ  vs. x ” graph and calculated the integral using the equation 

( )
( )

( )
( )

2 2 2

0 0 0

x dx
dx x dx

A x A x

ρ
ρ= +∫ ∫ ∫ . Students S6 and S8 attempted to use the equation 

( )
( )

( )

( )

2

2

0

2

0

0

x dx
x

dx
A x

A x dx

ρ
ρ

=
∫

∫
∫

  and calculated the quotient of the areas under the curves of “ ( )xρ  vs. 

x ” and “ ( )A x  vs. x ”. 

 4.4.3 Conclusions from the fall 2009 study 

In summary, we found evidence that students might not completely understand the 

concept that “the integral equals the area under the curve” although they might be able to invoke 

it during problem solving.  We also found evidence that some students held misconceptions 

about basic properties of integrals. 

We answer our last research question – RQ3: To what extent did students understand the 

relationship between a definite integral and area under a curve?  
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Almost all of the students indicated knowledge of “the integral equaled the area under the 

curve,” but only half of them (four students in interview 5, eight in interview 6, and nine in 

interview 7) were able to select the graph corresponding to a pre-determined integral when 

several graphs were present. The errors other students made – choosing a graph based on part of 

the integrand or on the simplicity of the area calculation – indicated that these students did not 

completely understand the relationship between a definite integral and area under a curve. 

 4.5 Discussion 

In this study, we found that the majority of the students did not spontaneously invoke the 

area under the curve concept during physics problem solving. This might be attributed to 

students’ unfamiliarity with the graphical methods as well as their strong inclination to algebraic 

methods in solving physics problems. Even when students invoked the area under the curve 

concept in a physics problem, there was evidence that they might not understand what physical 

quantity the area represented. We also found that when provided with several graphs, many 

students were unable to choose the graph on which the area under the curve equaled a pre-

determined integral, even though they could state that the integral equaled the area under the 

curve. 

We will now discuss how our findings support and extend other studies in mathematics 

and physics education research on students’ use of the area under the curve concept. 

Students’ difficulties with the area under the curve concept in the physics context of our 

study are similar to those previously found in mathematics context. We found that most of the 

students used area under the curve to find work from a graph of force versus displacement but 

they might not understand why the work was equal to the area, so they failed to recognize that 

the area under the curve in the sphere problem was not yet the value of work. This is similar to 

what Artigue concluded in his study: most students could perform routine procedures of finding 

area under the curve but rarely could they explain why these procedures were necessary. 

Thompson and Silverman (2006) suggested that for students to perceive the area under 

the curve as representing a quantity other than area (in our case it was work), students must be 

able to see the integration process as an accumulation of the incremental bits that were formed 

multiplicatively. The hints we provided to help students recognize the use of the area under the 

curve concept in our interviews aimed at this goal. We asked students questions that directed 
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their attention to the fact that the total work was the accumulation of the product of force and 

distance over small increments, which was essentially the area under the curve on the graph of 

force versus linear displacement.  

Sealey (2006) concluded that the area under the curve method could be a powerful tool to 

evaluate a definite integral only when students understood the structure of the definite integral. 

Our study showed the extent to which students struggled with choosing an area that equaled a 

definite integral when they did not view the integral as having two components: the integrand 

and the infinitesimal term dx  or dr . About half of the students in our interviews chose the 

incorrect graph because their choice was based on the wrong clues (i.e. based on part of the 

integrand, the anti-derivative of the integrand, or the ease of finding the area). The hints that 

asked students to label a graph of an arbitrary function ( )f x  such that the area under the curve 

equaled the integral ( )
b

a

f x dx∫  directed students’ attention to the two components of an integral 

and helped them recognize that the integrand was the clue for choosing the correct graph. 

McDermott et al. (1986) studied how students used area under the curve in kinematics. 

Our study investigated students’ use of area under the curve in many other topics of introductory 

physics. We did not have any problems involving negative area as in McDermott et al.’s study, 

but we had problems with more than one graph from which we could investigate how students 

related a definite integral with an area under a curve. 

 4.6 Limitations and future work 

The research methodology used in this study was individual interview. This method had 

an advantage that it allowed us to gain insight into how individual students interacted with the 

concept of an integral as area under the curve. It also allowed us to interview the same students 

several times during two semesters, and therefore, we could track the development of a student 

through the courses. In spite of the advantages afforded by individual interviews, the method 

limited the number of students participating in the study, and hence, limited the generalizability 

of the results.  

Our interview problems involved several physics quantities that could be calculated using 

area under the curve. However, there was no problem involving negative areas or areas that had 
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the lower bound other than the ( ) 0f x =  axis (i.e. the x-axis). By “area under the curve” we 

usually mean the area bounded by the curve and the ( ) 0f x =  axis. There are problems in which 

the “area under the curve” is bounded by the curve and the ( ) 2f x = −  line for instance. 

Investigating whether students know “integral equals area under the curve, but above what?” will 

be an interesting study following the study presented in this paper. 

Based on our interview findings, we plan to develop tutorial materials to help students 

understand the “integral equals area under the curve” relationship and implement them for all of 

the students in both EP1 and EP2 courses (usually around 200+ students each) in the future 

semesters when the courses are offered to test the effects of those materials in helping students 

learn to use the area under the curve method in physics problem solving. 
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Chapter 5 - Tutorials to facilitate students’ application of the 

integral and the area under the curve concepts in work – energy 

problems 

 5.1 Motivation and Introduction 

In the spring 2009 study, we found that students in introductory mechanics encountered 

significant difficulties in applying the integral and the area under the curve concepts to 

mechanics problems. The major difficulties included not recognizing the use of these two 

concepts in the problems, and not understanding the accumulation process when doing the 

integral or finding an area under the curve. Many of these students, however, were eventually 

able to solve those problems with verbal hints provided by the facilitator. This suggested that the 

students would have been able to apply the integral and the area under the curve concepts in 

mechanics problems if they had received appropriate scaffolding which targeted their difficulties.  

In other words, these problems were well within these students’ Zone of Proximal Development 

(Vygotsky, 1978) 

Based on the knowledge of the difficulties that students encountered and the scaffolding 

that might be helpful, we developed and tested instructional materials, which will be referred to 

as tutorials, to facilitate students’ application of the integral and the area under the curve 

concepts in mechanics problems. Each tutorial had two components: 

• a set of exercises created to help students learn the knowledge and skills 

necessary to enable them to apply the integral and the area under the curve 

concepts in physics problems; 

• a protocol for the conversation between the facilitator and the students to facilitate 

students’ construction of ideas as they worked through the set of exercises. 

In the spring 2010 semester, we created and tested four tutorials on different topics of 

introductory mechanics as follows: 

• Tutorial 1: One-dimensional kinematics 

• Tutorial 2: Newton’s laws and forces 

• Tutorial 3: Work – energy for a point mass 

• Tutorial 4: Work – energy for a rigid body 
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The first two tutorials focused on helping students build the skills to apply the derivative 

concept and vector addition to physics problems. In this chapter, we will only discuss the 

tutorials 3 and 4 because they aimed at helping students learn to apply the integral and the area 

under the curve concepts in physics problems, and they also had similarly structured sets of 

exercises. These sets of exercises consisted of one or two pairs of matched math and physics 

exercises, a debate problem, and two problem posing tasks. We tested the effect of our tutorials 

in comparison with standard instructional materials on problem solving. In this study, we defined 

“standard instructional materials on problem solving” (or “standard instructional materials” in 

brief) as the practice of providing students with sample problems and written solutions after 

students had attempted the problems themselves. 

We will present the rationale of the tutorials 3 and 4, and their impact on students’ ability 

to apply the integral and the area under the curve concepts in physics problems on work – 

energy. The research question for this study is: To what extent did our tutorials help students 

improve their ability to apply the integral and the area under the curve concepts in work – energy 

problems, compared to standard instruction (i.e. sample problems and solutions)? 

 5.2 Rationale of the tutorials and the standard materials 

In this section, we will present the rationale for the creation of the exercises of the 

tutorials 3 and 4, and the selection of the sample problems and solutions to be used to represent 

standard instructional materials in our study. 

The purpose of the tutorials was to help students learn to apply mathematical concepts 

(i.e. the integrals and the area under the curve) to physics problems. This task required students 

to invoke mathematical knowledge or model and then apply it to a physical context. We found 

from our study in the spring 2009 that students had a lot of difficulties in doing such a task, 

although the mathematical models and the physics knowledge required in our interview problems 

were very familiar for most students (i.e. the integral and the area under the curve; work-kinetic 

energy theorem). We suspected that the physics context might hinder the mathematical model 

which made students fail to recognize the application of the mathematical model in the physics 

problems. So our ideas for creating the tutorial were to provide students with an intermediate 

step in applying a mathematical model to physics problems. Specifically, we provided students 

with a simple math exercise in which they only needed to recall a familiar math model. This 
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intermediate step offered students an opportunity to invoke, in a context-free environment, the 

math model necessary to be applied to the physics exercise ahead. Then came the physics 

exercise in which students applied the math model in the previous step to a simple physical 

context. This strategy made it clear to students how a mathematical model could be applied to a 

physical situation. So part of the exercise set of our tutorials was a sequence of matched (related) 

math and physics exercises. In this sequence, a mathematical model was invoked in the math 

exercise and then was applied to the physics exercise that followed. This sequence, therefore, 

suited well with the vertical and horizontal framework mentioned in the literature review. 

Besides preparing students with the ability to apply mathematical models to physics 

scenarios, our tutorials also aimed at helping students prepare the physics knowledge necessary 

to solve complete physics problems, in which the mathematical models were applied. We found 

from the spring 2009 study that students also had difficulties applying basic physical principles 

(e.g. conservation of energy, work-kinetic energy theorem) to the interview problems. So in each 

of our tutorials, there was a debate problem in which students were asked to comment on the 

strategies suggested by fictitious students for solving a physics exercise. The strategies that these 

fictitious students suggested contained errors that we observed our students made in the spring 

2009 interviews. By reflecting on other students’ errors, students doing the debate problem might 

be able to avoid those errors in their own solutions when they solve similar problems. 

The last exercise in each of our tutorials was a problem posing task. Students were asked 

to create a problem of their own using the mathematical model and the physics scenarios of the 

previous exercises, and to write an instruction for solving the problem they created. The purpose 

of this task was to help students learn to integrate the mathematical model with a physical 

context. Table  5.1 below summarizes the types of exercises in our tutorial and their purposes. 
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Table  5.1 The types of exercise in the tutorial and their purposes 

Type of exercise Purpose 

Math exercise 

Helps students build 

mathematical model in a 

context-free environment 

Sequences of 

Physics exercise 

Helps students apply the 

mathematical model in the 

math exercise to a simple 

physics context. 

Debate problem 

Prepares students with the 

necessary physics background 

to solve a complete physics 

exercise. 

Problem posing task 

Helps students learn how a 

mathematical model can be 

applied to a physics exercise. 

 

After completing each of the exercises, students were asked to check with a facilitator 

before proceeding to the next problem. The protocols for the conversation between the facilitator 

and the students after each exercise of these tutorials were very similar. The facilitator first asked 

students to explain what they had done and then checked the correctness of their solution to the 

exercise. If the students did the exercise correctly, the facilitator would then ask students about 

what ideas they had learned from doing the exercise and how those ideas might help them solve 

similar exercises in the future. If the students did not get the correct answer to the exercise, the 

interviewer would provide hints to help students recognize and correct their errors. 

The criteria for the selection of the standard instructional materials were that they were 

similar to typical end-of-chapter problems in terms of their structure and were similar to the 

problems in the tutorial in terms of physics concepts and representations. Specifically, the 

standard materials adopted the mathematic and physics concepts and representations from the 

tutorial but must not contain math exercises, debate problem, and problem posing tasks, because 

these types of problems were unlikely to appear in typical introductory physics textbooks. These 
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types of exercises should be replaced by equivalent physics exercises in the standard materials. 

Another criterion was that the amount of time to complete one set of the standard material must 

be equivalent to the amount of time needed to complete one tutorial. This criterion was to ensure 

equivalent amount of practice students taking each set of material experienced. Table  5.2 below 

summarizes the changes that were made on the tutorial when the standard material was created. 

 

Table  5.2 Comparison of the types of exercises in the tutorial and the standard material 

Type of exercise in 

tutorial 
 

Type of exercise in 

standard material 

Sequence of math and 

physics exercises 

All physics exercises 

similar to the physics 

exercises in the tutorial 

Debate problem 
Physics exercise discussed 

in the debate problem 

Problem posing tasks 

is replaced by 

Physics exercises 

 

 5.2.1 Tutorial 3 

 5.2.1.1 Creation of treatment group materials for tutorial 3 

The exercise set of tutorial 3 consisted of two pairs of matched math and physics 

exercises (one pair in algebraic representation and the other in graphical representation), a debate 

problem, and two problem posing tasks. The pairs of math and physics exercises were to teach 

students about the accumulation process underlying the integral and the area under the curve. 

Each pair of exercises was expected to help students recall the necessary mathematical 

knowledge in a context-free math exercise and then applied that knowledge to a physical 

situation, i.e. the physics exercise. The debate problem was intended to prepare students with the 

physics background needed to do problems involving work and energy. The problem posing task 

provided students with an opportunity to practice putting together the knowledge on the integral 

and the area under the curve concepts with the physics background to create and solve complete 

problems involving the integral and the area under the curve. 
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The topic of the tutorial 3 was work – energy of a point mass, which was the same as the 

topic of the interview 3 in the spring 2009 study. So the exercise set of tutorial 3 was created 

based on the findings about students’ difficulties and the helpful hints in interview 3 of the spring 

2009 study. The interview 3 in the spring 2009 study involved finding the work done by a non-

constant force using the integral and the area under the curve concepts. We found that only 3 out 

of 11 students in the A-G sequence and 3 out of 9 students in the G-A sequence could 

spontaneously recognize that the work equaled the integral of force or the area under the curve of 

force, respectively. Other students attempted to use the formulas for the work done by a constant 

force or kinetic friction force on a horizontal floor, i.e. .W F d=  and W mgdµ= , to calculate the 

work done by the resistance force of the liquid. Five students in the A-G sequence and 3 students 

in the G-A sequence were able to recognize that work equaled the integral and the area under the 

curve after hints were provided by the interviewer. The hint was to guide students’ thinking 

about the total work as the sum of the infinitesimal works on small segments of the path, i.e. 

thinking about integrating a function and finding an area under the curve as an accumulation 

process. Since this hint had proven to be effective, we employed its idea in creating the exercise 

set for the tutorial 3. So the goal of the exercise set in tutorial 3 would be to help students learn to 

view the integral and the area under the curve as an accumulation. 

Exercise 1 (Figure  5.1) asked students to calculate the integral ( )
c

a

f x dx∫  given the graph 

of ( )f x  vs. x . This could be done by finding the area under the curve of ( )f x  vs. x  from 

x a=  to x c= , which equaled the sum of the areas of a rectangle and a trapezoid. This simple 

math problem was an example of accumulation in mathematics. It might help students recall that 

the integral notation ( )
c

a

f x dx∫  represented the sum of the product of ( )f x  and dx  at every 

value of x  from x a=  to x c= . The product of ( )f x  and dx  was actually the area of a 

trapezoid of height ( )f x  and width dx . So the integral ( )
c

a

f x dx∫  represented the sum of the 

area of all trapezoids, which essentially equaled the total area under the curve of ( )f x  vs. x  

from x a=  to x c= . 
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Exercise 2 (Figure  5.2) was an application of the mathematical idea in exercise 1 to a 

physical situation. In this exercise, students had to calculate the work done by a force ( )F x  over 

a distance d . The magnitude of the force was not constant over the distance d  and was given by 

the graph of ( )F x  vs. x . Students had learned that work equaled force time distance, i.e. 

W F d= ⋅ , which was applicable only when the force F  was constant over the whole distance 

d . So when a non-constant force was presented, the total work must be calculated by adding all 

of the works on small segments of the distance, over which the force could be considered 

constant. The work on each segment was the product of the force ( )F x  and the length dx  of a 

small segment of the path, which was actually the area of a trapezoid under the curve of force. So 

the total work on the whole distance d  would then equal the total area under the curve of ( )F x  

vs. x  from 0x =  to x d= . 

 

Figure  5.1 Exercise 1 of the tutorial 3 

 

Exercise 1 – Tutorial 3 

 

The graph of a function ( )f x  is given below. 

Find the value of the integral ( )
c

a

f x dx∫  in terms of the constants a, b, c, m, n. 

 f(x) 

x 

m 

n 

a b c 
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Figure  5.2 Exercise 2 of the tutorial 3 

 

 

Exercises 3 and 4 (Figure  5.3 and Figure  5.4) formed another pair of matched math and 

physics exercises. Exercise 3 asked students to calculate the area limited by the curves of some 

functions. This area could be calculated by adding up the areas of all thin trapezoids under the 

curve, which was essentially the value of the integral. So the exercise 3 was the inverse of the 

exercise 1. In exercise 1, students calculated an integral using the area under the curve, while in 

exercise 3, students calculated an area under the curve using the integral. Exercise 3, therefore, 

reinforced the idea of how the integral was related to the area under the curve: they both 

represented the accumulation of small quantities to obtain the total quantity. 

Similarly, exercise 4 was the inverse of exercise 2. In exercise 4, students had to calculate 

the work done by a non-constant force over a distance from the function of force. This work 

could be calculated by adding up the works on all small segments of the distance, i.e. adding up 

the product of ( )F x  and dx , which was essentially the value of the integral of force. The 

exercise 4, therefore, also reinforced the idea of how the work could be calculated by integrating 

the force function. 

 

Exercise 2 – Tutorial 3 

 
The graph below shows the magnitude of a force F(x) acting on an object with respect 
to the displacement x of the object (F is in Newton and x is in meter). Find the work 
done by force F on the object over the distance d that the force is acting. 

 F(x) 

x 

Fmax 

d 
0 b 

c 
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Figure  5.3 Exercise 3 of the tutorial 3 

 

 

Figure  5.4 Exercise 4 of the tutorial 3 

 

 

Exercise 5 (Figure  5.5) was a debate problem, in which students were given a 

conversation of several fictitious students discussing about their strategies to solve a physics 

problem. The discussion focused on how to apply the conservation of energy principle, and how 

to calculate the work done by friction in the problem. The reasoning of some fictitious students 

was correct, while others’ was not. The errors that the fictitious students made in their reasoning 

were the common errors observed in our interviews in the spring 2009 study. Students were 

asked to comment on the reasoning of each of the fictitious students and to indicate the fictitious 

students who had correct strategies. By reflecting on other students’ errors, our students were 

expected to be able to avoid those errors when solving problems similar to the problem being 

discussed in the debate problem. 

Exercise 4 – Tutorial 3 

 
A block is pulled on a horizontal frictionless floor by a force F  whose magnitude (in 
Newton) depends on the displacement x of the block (in meters) as per the function: 

( ) 2
F x ax bx c= + +  (a, b, c are constants). Find the work done by force F  when the 

block has been moved from 1x  to 2x . 

Exercise 3 – Tutorial 3 

 
Find the area of the region surrounded by the graphs of the following functions: 

( ) ( )3

1 22 1, 0, ,f x x x f x x x x x= + + = = = . 
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Figure  5.5 Exercise 5 of the tutorial 3 

 

 

Exercise 6 (Figure  5.6) consisted of two problem posing tasks. Each task asked students 

to create a solvable problem of their own in which the physics scenario of the problem discussed 

Exercise 5 – Tutorial 3 

 
Five students are discussing their strategies to solve the following problems. 

A 3.5 kg block is accelerated from rest by a spring, spring constant 632 N/m 
that was compressed by an amount x. After the block leaves the spring it 
travels over a horizontal floor with a coefficient of kinetic friction µk = 0.25. 
The frictional force stops the block in distance D = 7.8 m. 

 
What was the spring compression x? 
  

Below are parts of the students’ strategies. Comment on each student's ideas. Explain 
who you agree with most and why. For the students who make statements you 
disagree with, try to identify what went wrong in the student's reasoning. 

Student Strategy Comments 

David 

Energy is conserved so all the changes in energy add to zero. The 
block starts from rest and then comes to a stop, so there is no change in 
kinetic energy. The only energy that changes is the spring's potential 
energy and that's good because that involves the compression of the 
spring. You can calculate the change in potential energy and solve for 
the compression. 

 

Mary 

Friction is involved so you need to use ∆K + ∆U = W, where W = -
µkmgD is the work done by friction. ∆K is zero because initial and 
final speeds are zero. The initial U is that of the spring and final U is 
zero. Then put everything into the equation and solve for x.  

 

Eric 
Isn't the work +µkmgD, because W in that equation is the amount of 
work done and therefore it must be positive? 

 

Susan 

But the spring does work on the block too and you have to take that 
into account. Work is force times distance, and since the force of the 
spring is -kx and the spring pushes the block a distance x, the work 
done by the spring is -kx2. That’s the formula you should use to find 
the compression. 

 

Mike 

All you have to do to calculate the work done by the spring is to plug 
in the total distance the spring pushes the block into the force -kx. So, 
if the initial compression is L, the work done by the spring is -kL. 
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in exercise 5 and the physics ideas in exercises 2 or 4 were employed. Students were also asked 

to write an instruction to solve the problems they created. This exercise was expected to help 

students learn to embed an integration task into a physics scenario to make a complete physics 

problem involving integration. 

 

Figure  5.6 Exercise 6 of the tutorial 3 

 

 5.2.1.2 Creation of control group materials for tutorial 3 

As mentioned above, the criteria for creating the materials for the control group were that 

these materials represented typical end-of-chapter exercises and were similar to the exercises in 

the tutorials in terms of the physics concepts and representations. So we started with our tutorial 

exercises and select textbook-like exercises that covered the same concepts and had the same 

representations. 

It is unlikely that a textbook in introductory physics prepares students with the 

mathematical knowledge necessary for an exercise before introducing the exercise. So the first 

difference between the standard material and our tutorial was that the standard materials did not 

contain math exercises. For this reason, the exercises 1 and 3 in the tutorials (which were math 

exercises) were replaced by equivalent physics exercises in the standard material. The exercises 

1 and 3 in the standard material were physics exercises in which students were asked to find the 

work done by non-constant forces. The exercises 2 and 4 in the standard material were also 

physics exercises on the work done by non-constant force, but with numerical values instead of 

algebraic variables as in exercises 1 and 3. 

Typical physics textbooks do not contain debate problems and problem posing tasks. So 

the problems 5 and 6 in the tutorial (which were the debate problem and the problem posing 

Exercise 6 – Tutorial 3 

 
a. Start with the physics problem in problem 5, modify it by including in it the 

physics ideas in problem 2 to create a new solvable problem of your own.  Write 
your instructions to solve that new problem. 

 
b. Start with the physics problem in problem 5, modify it by including in it the 

physics ideas in problem 4 to create a new solvable problem of your own.  Write 
your instructions to solve that new problem. 
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tasks, respectively) were also removed in the standard material. Instead, exercise 5 in the 

standard material was the exercise being discussed in the debate problem in the tutorial. Students 

using the standard material solved the exercise and referred to its solution upon completing, 

rather than judging other students’ reasoning about the strategies to solve the exercise without 

actually solving it. 

We estimated that the time it took to complete the exercises 1, 3, and 5 in the standard 

material was longer than the time it took to do the corresponding exercises in the tutorial. The 

amount of time to solve the problem posing task in the tutorial might compensate for this 

difference. This was the reason that there were only 5 exercises in the standard material 

compared to 6 exercises in the tutorial, but equivalent total time on task was ensured. 

All problems in the standard material 3 are presented in Figure  5.7 to Figure  5.11 below. 

 

Figure  5.7 Exercise 1 of the standard material 3 

 

 

Exercise 1 – Standard material 3 

 
The graph below shows the magnitude of a force F(x) acting on an object with respect 
to the displacement x of the object (F is in Newton and x is in meter). Find the work 
done by force F on the object over the distance d that the force is acting. 

 F(x) 

x 

Fmax 

d 
0 b 

c 
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Figure  5.8 Exercise 2 of the standard material 3 

 

 

Figure  5.9 Exercise 3 of the standard material 3 

 

 

Figure  5.10 Exercise 4 of the standard material 3 

 

Exercise 4 – Standard material 3 

 
A block is pulled on a horizontal frictionless floor by a force F whose magnitude 

depends on the displacement of the block as per the function: ( ) 32 3 2F x x x= − +   

(x is in meter, F is in Newton). Find the work done by force F when the block has 

been moved from 0 m to 2 m. 

Exercise 3 – Standard material 3 

 
A block is pulled on a horizontal frictionless floor by a force F  whose magnitude (in 
Newton) depends on the displacement x of the block (in meters) as per the function: 

( ) 2
F x ax bx c= + +  (a, b, c are constants). Find the work done by force F  when the 

block has been moved from 1x  to 2x . 

Exercise 2 – Standard material 3 

 
The graph below shows the magnitude of a force F (in Newton) acting on an object 
with respect to the displacement x (in meters) of the object. Find the work done by 
force F on the object over the displacement from 0 m to 10 m. 

 F (N) 

x (m) 

2 

3 

5 

7 10 
0 
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Figure  5.11 Exercise 5 of the standard material 3 

 

 

 5.2.2 Tutorial 4 

 5.2.2.1 Creation of treatment group materials for tutorial 4 

Tutorial 4 consisted of three pairs of matched math and physics exercises, a debate 

problem, and two problem posing tasks. The first pair of math and physics exercises was to 

remind students about the relationship between the distance along a circle and the angle it 

spanned at the center of the circle. The other two pairs of math and physics exercises were to 

familiarize students with converting the variable of a function to get the function in the desired 

variable, and to calculate a physical quantity from the new function. The debate problem was 

intended to prepare students with the physics background needed to solve problems involving 

work and energy of a rigid body. The problem posing tasks provided students with an 

opportunity to integrate the physics context and the mathematical tools. 

The topic of the tutorial 4 was work – energy of a rigid body, which was the same as the 

topic of the interview 4 in the spring 2009 study. So the exercise set of tutorial 4 was created 

based on the findings about students’ difficulties and the helpful hints in interview 4 of the spring 

2009 study. In this interview, students had to calculate the work done by the rolling friction force 

between a sphere and a circular track. The force was given as a function of the angular 

displacement of the sphere on the track in algebraic and graphical representations. We found that 

the major difficulty students encountered in this interview was not recognizing that the integral 

Exercise 5 – Standard material 3 

 

A 3.5 kg block is accelerated from rest by a spring, spring constant 632 N/m 
that was compressed by an amount x. After the block leaves the spring it travels 
over a horizontal floor with a coefficient of kinetic friction µk = 0.25. The 
frictional force stops the block in distance D = 7.8 m. 
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of force or the area under the curve in this interview was not the value of work, because the force 

was given as a function of the angular displacement. The correct value of work must be 

calculated using the integral or the area under the curve of force versus linear displacement. So 

prior to doing the integral or finding the area under the curve, students must convert the variable 

to have the given force as a function of linear displacement. The variable conversion from 

angular displacement θ  to the linear displacement s  could be done using the relationship 
s

R
θ =  

in which R  is the radius of the track. 

The exercise set of the tutorial 4 aimed at helping students do the variable conversion on 

a function. The purpose of exercise 1 (Figure 5.12) was to help students recall the relation 

between an angle and the distance it spanned on a circular track. Part A of this exercise was a 

math question on the relationship between the angle θ  and the length x  it spanned on the edge 

of a circular disk of radius R . Part B of exercise 1 was a physics question in which this 

relationship was employed. 

 

Figure  5.12 Exercise 1 of the tutorial 

 

 

Exercise 2 (Figure  5.13) was intended to teach students to find the work done by a force 

when the force was given as a graph of force versus angular displacement. Part A of this exercise 

Exercise 1 – Tutorial 4 

 

a. What is the length of the arc ‘x’ along a circle in terms of radius R and angle θ  
(in radian)? 

 
b. A bug sits on the edge of the turn table of radius R = 2.0 m which is rotating 

around its center. What is the distance ‘x’ that the bug has traveled after the turn 

table has rotated by an angle θ = π/4 ? 
 

 

θ  

R  

R  

  x 
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was a math question which asked students to convert the graph of a function to the graph of the 

same function with respect to a different variable. Specifically, students were asked to convert 

the graph of force versus angular displacement to the graph of the same force versus linear 

displacement. Using the relation s Rθ= , the values on the horizontal axis of the graph could be 

converted into linear displacement, while the values on the vertical axis (i.e. the magnitude of 

force) remained unchanged. Part b of exercise 2 was a physics question which asked students to 

calculate the work done by the force in part a. Once the graph of force versus linear displacement 

had been obtained, the work could be calculated by simply finding the area under the curve of 

force on this graph. This exercise was aimed to help students reflect on two graphs of the same 

function, and how the work could be calculated using one graph but not the other. 
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Figure  5.13 Exercise 2 of the tutorial 4 

 

 

Similarly, exercise 3 (Figure  5.14) had the same purpose and procedure as exercise 2, but 

with algebraic representation of the force function. Part a of exercise 3 was a math question 

which asked students to convert the variable of a function. Specifically, the given function was a 

function of the angular displacement as the variable, and students had to convert it to a function 

of linear displacement. This could be accomplished by replacing the angular displacement θ  in 

Exercise 2 – Tutorial 4 

 
A toy plane is attached to a pole by a string and flies around it in a circular arc of 
radius R (in meters). The graph below shows the force exerted by the engine of the 

plane as it starts from rest from its initial position (θ = 0 radian) to the final position  

(θ = π radians). 
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Angle (in Radians)  
a. Plot the graph of force of the engine (in Newton) with respect to the distance ‘x’ 

(in meter) that the plane travels along the circular arc from its initial to its final 
point. 
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Distance ‘x’ traveled along circular arc (in meters)  

b. Find the work done by engine when the plane travels from its initial point to the 
final point. 
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the given function with the linear displacement s  using the relation 
s

R
θ = . Part B of exercise 3 

was a physics question which asked students to calculate the work done by the a force, given the 

force function in part a. Once the function of force with respect to linear displacement had been 

obtained, the work could be calculated by integrating this function with respect to its variable. 

This problem helped students reflect on how a function could be written with respect to different 

variables, and how the work could be calculated by integrating the function with respect to one 

variable but not the others. 

 

Figure  5.14 Exercise 3 of the tutorial 4 

 

 

The debate problem of the tutorial 4 (Figure  5.15) was intended to prepare students with 

the physics background to solve problems involving work – energy of a rigid body. Students 

were provided a problem which asked for the speed of a hoop as it left the circular track and the 

discussion of 5 fictitious students on how to solve the problem. The reasoning of some of the 

fictitious students was correct, while others’ reasoning was not. The errors that these students 

made were the common errors that we found in our interview 4 in the spring 2009 study. Our 

students were then asked to comment on the reasoning of each of the fictitious students. By 

reflecting on other students’ mistakes, our students might be able to avoid them in their own 

solutions. 

Exercise 3 – Tutorial 4 

 
A toy plane is attached to a pole by a string and flies around it in a circular arc of 
radius R = 3.0 m. The equation below shows the force exerted by the engine of the 

plane as it starts from rest from its initial position (θ = 0 radian) to the final position  

(θ = π radians) 

( ) a bF θ θ= +  

where, a, b are constants; F is in Newton, and θ is in radian. 

a. Write down the equation of force of the engine as a function of the distance ‘x’ the 
plane travels along the circular arc from its initial to its final point. 

 
b. Find the work done by the engine when the plane travels from its initial point to 

the final point in terms of a and b. 
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Figure  5.15 Exercise 4 of the tutorial 4 

 

Exercise 5 of tutorial 4 (Figure  5.16) consisted of two problem posing tasks, which asked 

students to create their own problems by combining the physics principles of the physics 

Exercise 4 – Tutorial 4 

 
Five students are discussing their strategies to solve the following problem. 

 A hoop radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 10 m/s along a 
track as shown.  It hits a curved section (radius R = 2.0 m) and is launched vertically at 
point A. 

 

R 

vi 

A 

 

What is the launch speed of the hoop as it leaves the slope at point A?  

  
Below are parts of the students’ strategies.  They may not be the complete solutions. 
Comment on each student's ideas. Explain who you agree with most and why. For the 
students who make statements you disagree with, explain what you think is wrong in 
the student's reasoning. 

 Strategy Comments 

D
a

v
id

 

Energy of the hoop is conserved. On the straight part of the track, the 
hoop’s energy includes both translational and rotational kinetic energy. At 
point A, the hoop’s energy includes potential and translational kinetic 
energy. When the hoop flies off the track, it does not roll any more, so it 
does not have rotational kinetic energy at point A. 

 

M
a

ry
 Yes, the hoop does not have rotational energy at point A, but it does not 

have translational energy on the straight part of the track either. The hoop 
doesn’t have translational motion. It moves forward because it is rolling 
along the track. 

 

E
ri

c 

The hoop has both translational and rotational motion both on the straight 
part of the track and at point A. So there are two kinds of kinetic energy in 
both initial and final energy. 

 

S
u

sa
n

 

Both gravity and normal forces, which are acting on the sphere, do not 
cause any torque to the sphere so angular momentum of the sphere is 
conserved between initial point and point A. Angular momentum equals to 
moment of inertia times angular speed, so I can find angular speed at point 
A. This angular speed divided by the radius of the sphere is the linear 
speed of the sphere at point A. 

 

J
im

 I will use kinematics equation: v2 = v0
2 + 2ad, where a is acceleration due 

to gravity which is acting on the sphere as it climbs up the track and d is 
the distance along the track. Then I can find speed of the sphere at point 
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problem being discussed in the debate problem with the algebraic and graphical representations 

of the force function discussed in exercises 2 and 3. This exercise was intended to help students 

learn to embed a unit conversion task and an integration task into a physics scenario to make a 

complete physics problem. 

 

Figure  5.16 Exercise 5 of the tutorial 4 

 

 5.2.2.1 Creation of control group material for tutorial 4 

The criteria for creating the material for the control group for tutorial 3 also applied for 

the creation of the control group materials for tutorial 4. We removed all of the math exercises, 

debate problem, and problem posing tasks from the tutorial 4 and put in physics exercises 

covering the same concepts and had the same representations to the standard material. 

Specifically, part a of exercise 1 in the tutorial was a math question, so it was removed in the 

standard material. Exercises 2 and 3 in the standard material 4 were adopted from the 

corresponding exercises in the tutorial 4, but with the math questions (parts a of these exercises) 

removed. 

The debate problem in the tutorial 4 was replaced by a physics exercise in the standard 

material 4. This was the physics exercise that was discussed by the fictitious students in the 

tutorial 4. The problem posing tasks were also removed in the standard material 4. 

Due to the removal of the math questions and the problem posing tasks from the tutorial 

4, the standard material 4 was shorter and seemed to take less time to complete than the tutorial 

4. So to ensure the equivalent amount of practice time, we added one more physics problem to 

the standard material 4, which was the exercise 5 in this material. 

All exercises in the standard material 4 are presented in the Figure  5.17 to Figure  5.21. 

Exercise 5 – Tutorial 4 

 
a. Start with the physics problem in problem 4, modify it by including in it the 

physics ideas in problem 2 to create a new solvable problem of your own.  Write 
your instructions to solve that new problem. 

 
b. Start with the physics problem in problem 4, modify it by including in it the 

physics ideas in problem 3 to create a new solvable problem of your own.  Write 
your instructions to solve that new problem. 
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Figure  5.17 Exercise 1 of the standard material 4 

 

 

Figure  5.18 Exercise 2 of the standard material 4 

 

Exercise 2 – Standard material 4 

 
A toy plane is attached to a pole by a string and flies around it in a circular arc of 
radius R = 3.0 m. The graph below shows the force exerted by the engine of the plane 

as it starts from rest from its initial position (θ = 0 radian) to the final position (θ = π 
radians). 
Find the work done by the engine when the plane travels from its initial point to the 
final point. 

Force of Engine (N) vs. Angle (Radians)
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Exercise 1 – Standard material 4 

 
A bug sits on the edge of the turn table of radius R = 2.0 m which is rotating around 
its center. What is the distance ‘x’ that the bug has traveled after the turn table has 

rotated by an angle θ = π/4 ? 
 

θ  

R  

R  

  x 
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Figure  5.19 Exercise 3 of the standard material 4 

 

 

Figure  5.20 Exercise 4 of the standard material 4 

 

 

Exercise 4 – Standard material 4 

 
A hoop radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 10 m/s 
along a track as shown.  It hits a curved section (radius R = 2.0 m) and is launched 
vertically at point A. 

 

R 

vi 

A 

 

What is the launch speed of the hoop as it leaves the slope at point A? 

Exercise 3 – Standard material 4 

 
A toy plane is attached to a pole by a string and flies around it in a circular arc of 
radius R = 3.0 m. The equation below shows the force exerted by the engine of the 

plane as it starts from rest from its initial position (θ = 0 radian) to the final position  

(θ = π radians) 

( ) θθ 250 +=F  

(F is in Newton and θ is in radian) 
Find the work done by the engine when the plane travels from its initial point to the 
final point. 
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Figure  5.21 Exercise 5 of the standard material 4 

 

 5.3 Experimental design 

In the spring 2010 semester, we conducted five focus group learning interview (FOGLI) 

sessions to test the effectiveness of our tutorials in comparison with standard instructional 

materials, i.e. sample problems and written solutions. The pretest-posttest control group 

experimental design was used. Twenty five students enrolling in the first-semester calculus-

based physics course (Engineering Physics 1) volunteered to participate in our study. Each 

student was paid $75 for their participation in the study. These 25 students were randomly 

assigned into either a control or a treatment group. The number of students in each group varied 

with each session, ranging from 8 to 10 students in the control group and 12 to 14 students in the 

treatment group.  Most of the students were freshmen or sophomores in engineering majors. 

Each FOGLI session occurred within 10 days after the students had taken an exam in the 

course. The topics covered in the FOGLI were also the topics covered in the most recent exam. 

In each of the 90-minute FOGLI sessions, for the first 15-20 minutes students individually 

attempted a pre-test consisting of an algebraic problem and a graphical problem. In the next 40–

50 minutes, students in the treatment group worked on our tutorials, while students in the control 

group worked on isomorphic textbook exercises covering the same physics concepts and 

principles, and employing the same representations. Students in both groups were encouraged to 

discuss with their partners while doing the exercises. After completing each of the exercises, the 

Exercise 5 – Standard material 4 

 
A hoop of mass 0.5 kg starts with speed vi= 12 m/s and rolls without slipping up a 
slope of height L = 6.0 m and is launched horizontally at point A The point of launch 
is at a height h = 12 m above the ground. 

 

 

A 

ground 
 

What is the launch speed of the hoop as it leaves the slope at point A? 
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students in the control group were provided with a printed solution of the exercise they had just 

completed. Students would then read through the solution and compared with their own solution. 

Students might also ask the facilitator to clarify information in the written solution. On the other 

side, the students in the treatment group were required to check-in with the facilitator after they 

had completed an exercise in the tutorial. The facilitator then had a short conversation with the 

students to elicit their ideas on solving the exercise. If the students got the correct answer and 

had reasonable strategy for solving the exercise, the facilitator would ask students about what 

ideas they had learn from doing that exercise, and how those ideas might help them solve other 

similar exercises. If the students did not get the correct answer to the exercise or used a flawed 

strategy for solving the exercise, the facilitator would then ask students questions to help them 

recognize their errors. The facilitator, however, did not tell the students the correct answer or the 

strategy to solve the exercise. Once the students got to the correct answer for the exercise, the 

facilitator would also ask them to reflect on what they had learned in the exercise and how that 

might help them solve similar exercises. In the last 15-20 minutes, students individually 

attempted the post-test which differed from the pre-test only in numerical values provided in the 

problem statements. 
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Table  5.3 Comparison of the experimental procedures taken by the control and the 

treatment groups 

Group Treatment group Control group 

Similarities 

- Students worked on the pre-test and post-test problems 

individually. 

- Students worked in small groups on the exercises in the 

exercise sets. 

- Students were asked to notify the facilitator after they had 

completed each exercise in the set. 

Differences 

- Students worked on the 

tutorials. 

- Short conversation with 

facilitator after each exercise. 

- The facilitator elicited 

students’ ideas and provided 

hints if needed, but did not tell 

the answer. 

- Students worked on the 

standard material. 

- Printed solution provided after 

each exercise. 

- The facilitator clarified the 

solutions if needed, but did not 

tell the answer. 

 

 

In this chapter, we will examine the effectiveness of the tutorials 3 and 4 in comparison 

with standard instructional materials. These tutorials were tested in the FOGLI sessions 3 and 4, 

respectively. 

 5.4 Data sources and analysis 

Students’ worksheets of the pre-test, post-test, and the tutorial were collected. Rubrics 

were created to grade the pre-test and post-test problems in each FOGLI session. Each problem 

was graded separately on the physics aspect and the representation aspect. The maximum score 

on the physics aspect was 10 points and on the representation aspect was 8 points.  

The general rubrics for grading the physics aspect and the representation aspect 

(algebraic and graphical) of the test problems (pre-test/post-test) were presented in Table  5.4 to 

Table  5.6 below. 
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Table  5.4 The general rubric for grading the physics aspect of a pre-test/post-test problem 

Points 0 1 2 3 

Physics 

Approach 

Student makes no 
progress toward a 
correct solution 

Student uses a 
physics approach 
which is very 
complicated to 
get a correct 
solution (ex: 
using Newton’s 
2nd law with 
changing force) 

Student uses a 
mixture of an 
appropriate 
approach and 
inappropriate one 
(ex: using BOTH 
Newton’s 2nd law 
and conservation of 
energy in problem 
with changing 
force) 

Student uses an 
appropriate 
physics approach 
(ex: a physics 
approach that 
may lead to a 
correct solution) 

Physics 

Equation 

Student doesn’t 
have any equation 

Student misses 
two or more 
quantities from 
the correct 
equation OR has 
two or more 
incorrect 
equations of 
physics 
quantities. 

Student misses 
ONE quantity from 
the correct equation 
OR has ONE 
incorrect equation 
of physics quantity. 

Student has 
correct equations 
of physics 
principle and 
quantities (ex: 
having all 
involved 
quantities with 
their correct 
signs) 

Value of 

Physical 

Quantity 

Student plugs in 
two or more in 
correct values 
(including sign 
errors) into 
physical 
quantities in an 
equation 

One of the 
following cases: 
- Student plugs in 
ONE incorrect 
value (or sign 
error) into a 
physical quantity 
in an equation 
- Student only 
plugs in a few 
value from all of 
the given 
information 

Student plugs in 
ALL correct values 
with correct signs 
into physical 
quantities in an 
equation (ex: using 
vertical distance as 
h when calculating 
gravitation potential 
energy mgh) 

 

Math 

Manipula-

tion 

Major errors in 
arithmetic (ex: 
errors in finding 
roots of an 
equation) 

Correct arithmetic 
or minor errors in 
arithmetic (ex: 
confusing signs) 
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Points 0 1 2 3 

Units of 

Physical 

Quantity 

Incorrect units of 
physical 
quantities (ex: 
using Newton as 
unit of work, 
adding quantities 
of different units) 

Correct units of 
physical 
quantities (ex: 
using Joules as 
unit of work, 
adding quantities 
of the same units) 

  

 

Table  5.5 The general rubric for grading the physics aspect of an algebraic problem 

Points 0 1 2 3 4 

Interpretation 

of Function 

Incorrect 
interpretation or use 
of the given 
equation (ex: 
interpreting F(x) as 
“F times x”) 

Correct 
interpretation and 
use of the given 
equation (ex: 
interpret F(x) as “F 
is a function of x”) 

   

Mathematical 

Operator 

Choosing incorrect 
mathematical 
operator to 
calculate physical 
quantities (integrate 
x(t) to find v(t), or 
v(t) to find a(t); 
differentiate F(x) to 
find work or 
“spring constant) 

   Choosing the 
correct 
mathematical 
operator to 
calculate physical 
quantities from 
equation given 
(ex: differentiate 
x(t) to find v(t), 
or v(t) to find a(t); 
integrate F(x) to 
find work) 

Setting up 

Calculation 

Setting up an 
incorrect 
calculation to 
calculate the 
desired quantity 
(ex: setting up the 

integral ( )F dθ θ∫  

to find work). 

Setting up a correct 
calculation to 
calculate the 
desired quantity 
(ex: setting up the 
integral 

( )F Rdθ θ∫  to find 

work). An integral 
in the form of 

( )F x∫  is 

acceptable. 
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Points 0 1 2 3 4 

Mathematical 

Manipulation 

Major errors in 
calculating 
derivative or 
integral (ex: 
confuse between 
differentiating and 
integrating) 

Minor error or 
correct 
manipulation of 
derivative or 
integral. 

   

Unit of 

Quantity 

Incorrect unit of 
quantity found from 
the calculation with 
the given function 
(ex: using Newton 
as unit of integral 
of F(x)dx) 

Correct unit of 
quantity found from 
the calculation of 
the given function 
(ex: using Joule as 
unit of integral of 
F(x)) 

   

 

Table  5.6 The general rubric for grading the representation aspect of a graphical problem 

 0 1 2 3 4 

Gather 

Information 

from Graph 

ALL values of 
quantities read off 
from graph are 
incorrect 

ALL values of 
quantities read off 
from graph are 
correct 

   

Mapping 

Graph to 

Physics 

Incorrect mapping 
of graph quantity 
to physics quantity 
(ex: velocity as 
area under x(t) vs. t 
graph)  

   Correct mapping 
of graph quantity 
to physics 
quantity (ex: 
velocity as slope 
of x(t) vs. t graph, 
work as area 
under F(x) vs. x 
graph) 

Setting up 

Calculation 

Setting up 
incorrect equation 
of graph quantity 
(ex: slope = y/x, 
where y and x are 
coordinates of one 
point) 

Setting up correct 
equation of graph 
quantity (ex: slope 

= ∆y/∆x = rise/run) 
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 0 1 2 3 4 

Manipulation 

of Graph 

Process 

Incorrect plugging 
in of values or 
incorrect 
mathematical 
calculation of 
graph quantity (ex: 
incorrect 
calculation of 
slope, area under 
the graph) 

Correct plugging in 
values and correct 
mathematical 
calculation of graph 
quantity (ex: 
correct calculation 
of slope, area under 
the graph) 

   

Unit of Graph 

Quantity 

Incorrect unit of 
physical quantity 
found from graph 
(ex: using Newton 
as unit of the area 
under F(x) vs. x 
graph) 

Correct unit of 
physical quantity 
found from graph 
(ex: using Joules as 
unit of area under 
F(x) vs. x graph) 

 

 

Due to the small number of participants in each group, the non-parametric Mann-

Whitney test (Field, 2009) was employed to test the significance of the difference between the 

scores of the two groups on the pre-test and post-test. The null hypothesis was that the scores of 

the two groups were not statistically significantly different. 

 5.5 Results 

In this section, we will present the pre-test and post-test problems, the scores of students 

in each group, and the results of the Mann-Whitney test in FOGLI sessions 3 and 4 where we 

tested our tutorials 3 and 4. 

 5.5.1 Tutorial 3 Results 

There were 9 students in the control group and 12 students in the treatment group in 

FOGLI session 3. The control and the treatment groups met at different times. Nine students in 

the control group were divided into four groups (one group of 3 students and three groups of 2 

students each). Twelve students in the treatment group were divided into 5 groups (two groups of 

3 students each and three groups of 2 students each). Students in both control and treatment 

groups were given the freedom to choose their partners. 
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 In the first 20 minutes of the FOGLI session, all students in both control and treatment 

groups worked independently on the pre-test which consisted of a graphical problem and an 

algebraic problem presented in Figure  5.22 and Figure  5.23 below, respectively. The physics 

aspect of these problems involved the application of the work-kinetic energy theorem for a point 

mass. The representation aspect of these problems involved calculating the work done by a force 

using the integral and the area under the curve of force versus linear displacement. 

 

Figure  5.22 The graphical problem in the pre-test of FOGLI session 3 

 

 

A 0.05 kg bullet is loaded into a gun compressing a spring which has spring constant  
k = 5000 N/m. The gun is tilted vertically downward and the bullet is fired into a 
drum 5.0 m deep, filled with a liquid. 

The barrel of the gun is frictionless. The magnitude of the resistance force provided 
by the liquid changes with depth as shown in the graph below. The bullet comes to 
rest at the bottom of the drum. 

What is the spring compression x? 
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Figure  5.23 The algebraic problem in the pre-test of FOGLI session 3 

 

 

In the next 50 minutes, the students in the control groups worked on the set of exercises 

described in Figure  5.7 through Figure  5.11. Students were required to notify the facilitator after 

they completed each exercise. The facilitator then provided the students with the solution to the 

exercise they had just completed.  

The students in the treatment group worked on the exercise set of our tutorial 3 (Figure 

 5.1 through Figure  5.6). Students were asked to check-in with the facilitator after they completed 

each exercise. The facilitator then engaged in a conversation with the students to elicit their ideas 

about the exercise and provided hints to help students solve the problem if needed, but did not 

tell them the solution. 

All students in both the control and the treatment groups were able to solve the exercises 

easily. So the conversations between the facilitator and the students in the treatment group after 

the exercises were pretty short and the facilitator did not have to provide any hint to help 

students with the exercises of tutorial 3. 

In the last 20 minutes of the FOGLI session, students in both the control and the 

treatment groups worked individually again on a graphical and an algebraic problems of the post-

test, which were different from the pre-test problems only in numerical values of the quantities. 

The rubrics for grading the physics and the representation aspects of the pre-test and post-

test problems were built upon the general corresponding rubrics and are presented in the Table 

 5.7  through Table  5.9 below. 

 

A 0.05 kg bullet is loaded into a gun compressing a spring which has spring constant  
k = 5000 N/m. The gun is tilted vertically downward and the bullet is fired into a 
drum 5.0 m deep, filled with a liquid. 

The barrel of the gun is frictionless. The magnitude of the resistance force F (in 
Newton) provided by the liquid changes with depth x (in meters) as per the following 
function: 

( ) 28 0.5F x x x= +  

The bullet comes to rest at the bottom of the drum. 

What is the spring compression x? 
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Table  5.7 Rubric for grading the physics aspect of the pre-test/post-test problems in 

FOGLI session 3 

Points 0 1 2 3 

Physics 

Approach 

Student doesn’t 
have any idea 
for solving the 
problem 

Student uses 
Newton’s 2nd law 

Student uses a mixture 
of Conservation of 
energy AND Newton’s 
2nd law 

Student uses 
conservation of 
energy OR 
Work-Kinetic 
Energy theorem 

Physics 

Equation 

Student has 
completely 
incorrect 
equation or 
doesn’t have 
any equation 

Student has ONE 
of the following: 
- Missing two or 
more quantities 
from the correct 
equation 
- Having two or 
more incorrect 
equations of 
physics 
quantities. 

Student has ONE of the 
following: 
- Missing ONE 
quantity from the 
correct equation;  
- Having ONE 
incorrect equation of 
physics quantity. 
Example: one of the 
following equations: 

21

2
nc

kx W=  ; 

21
0

2
kx mgh+ =  ; 

nc
kx mgh W+ =  … 

Student has the 
correct 
equation: 

21

2
nc

kx mgh W+ =

 
OR its 
equivalence. 
Note: Wnc in 
this equation 
represents the 
“energy lost due 
to non-
conservative 
forces” and 
therefore, Wnc 
has positive 
value. 

Value of 

Physical 

Quantity 

Student 
incorrectly 
loads two or 
more values 
with signs into 
physical 
quantities in an 
equation 

Student 
incorrectly loads 
ONE value with 
sign into a 
physical quantity 
in an equation 

Student correctly loads 
ALL values with 
correct signs into 
physical quantities in 
an equation. 
Note: h and Wnc may 
have positive or 
negative value 
depending on where 
student chose h = 0 and 
what he/she meant by 
Wnc (if Wnc is “energy 
lost to non-
conservative forces”, it 
gets positive value; if 
Wnc is “work by non-
conservative forces”, it 
gets negative value) 
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Points 0 1 2 3 

Mathemati

cal 

Manipulati

on 

Student makes 
major error or 
more than one 
minor error in 
arithmetic 

Student makes 
correct arithmetic 
or ONE minor 
error in arithmetic 
- missing a 
square-root 
- missing a square 
- confusing signs 

  

Units of 

Physical 

Quantity 

Student has 
incorrect unit of 
work, kinetic 
energy, 
potential 
energy, spring 
compression. 

Student has 
correct unit of 
work, kinetic 
energy, potential 
energy, spring 
compression. 

  

 

Table  5.8 Rubric for grading the representation aspect of the algebraic pre-test/post-test 

problems in FOGLI session 3 

Points 0 1 2 3 4 

Interpretation 

of Function 

One of the following 
cases: 
- Student doesn’t 
indicate an 
understanding that F(x) 
is the equation of 
resistance force of the 
liquid with respect to 
depth. 
- Student plugs a 
specific value of x into 
F(x) and uses that as 
the force throughout 
the liquid (to calculate 
work W = F.d) 

Student indicates an 
understanding that F(x) is 
equation of resistance 
force of liquid with 
respect to depth. 

   

Mathematical 

Operator 

Student doesn’t choose 
integration as a tool to 
find work OR divides 
F(x) by x to find the 
“spring constant” of the 
liquid so that they can 
find work by the liquid 
as ½ kliquidx

2. 

Student calculates 
integral of force but then 
uses it as the total force 
of the liquid on the bullet 
(multiplies by distance to 
find work) 

  Student 
calculates the  
integral of force 
equation over 
the depth of the 
liquid to find 
the work done 
by resistance 
force of liquid. 
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Points 0 1 2 3 4 

Setting up 

Calculation 

Student sets up an 
incorrect integral/limits 
OR incorrect 
calculation with the 
mathematical operator 
chosen in the previous 
step. 

One of the following 
cases: 
- Student sets up the 
correct integral to find 
value of work done by 

the liquid: ( )
5

0

F x dx∫ .  

It is acceptable that 

student writes ( )
5

0

F x∫ . 

- Student sets up correct 
calculation with the 
mathematical operator 
chosen in the previous 
step. 

   

Mathematical 

Manipulation 

Major errors in 
calculating the integral 
set up in the previous 
step (ex: confuse 
between differentiating 
and integrating) 

Correct calculation of the 
integral set up in the 
previous step. 

   

Unit of 

Quantity 

Incorrect unit of the 
quantity found from the 
calculation with the 
force equation. 

Correct unit of the 
quantity found from the 
calculation with the force 
equation. 
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Table  5.9 Rubric for grading the representation aspect of the graphical pre-test/post-test 

problems in FOGLI session 3 

Points 0 1 2 3 4 

Gather 

Information 

from Graph 

More than one 
incorrect value from 
graph 

Correct values of 
minimum and 
maximum force, 
depth read off from 
graph 

 

Mapping 

Graph to 

Physics 

One of the following 
cases: 
- Student doesn’t use 
the idea that area under 
the graph is work done 
by resistance force of 
liquid. 
- Student calculates the 
slope of graph and uses 
it as coefficient of 
resistance force of 

liquid (µk). 
- Student figures out 
the equation of the 
graph and uses it as 
coefficient of resistance 

force of liquid (µk). 

Student calculates the 
area under the graph 
but uses it as total 
force by the liquid on 
the bullet (multiplies 
it with distance to 
find work) 

One of the 
following cases: 
- Student 
calculates the 
area under the 
graph to find the 
work done by 
resistance force 
of liquid. 
- Student 
considers liquid 
as a spring 
whose “spring 
constant” is the 
slope of the 
graph. In this 
case, the area 
under the graph 
is the value of 
the term ½ 
kliquidx

2 where x 
is the depth in 
the liquid. 
- Student 
calculates the 
integral of the 
equation of the 
graph to find the 
work done by 
resistance force 
of liquid. 
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Points 0 1 2 3 4 

Setting up 

Calculation 

One of the following: 
- Setting up incorrect 

area base height×  

- Setting up incorrect 
calculation of the slope 
of the graph 
- Setting up incorrect 
integral of graph’s 
equation 

One of the following: 
- Setting up correct 
area under the graph 

1

2
base height×  

- Setting up correct 
calculation of the 
slope of the graph 
- Setting up correct 
integral of graph’s 
equation 

 

Manipulation 

of Graph 

Process 

One of the following: 
- Incorrect calculation 
of area set up in the 
previous step 
- Incorrect calculation 
of the slope set up in 
the previous step 
- Incorrect calculation 
of the integral set up in 
the previous step 

One of the following: 
- Correct calculation 
of area set up in the 
previous step 
- Correct calculation 
of slope set up in the 
previous step 
- Correct calculation 
of the integral set up 
in the previous step 

 

Unit of 

Graph 

Quantity 

Incorrect unit of area 
under graph or integral 
of graph’s equation 
(Newton) 

Correct unit of area 
under graph or 
integral of graph’s 
equation (Joule) 

 

 

The inter-rater reliability of the rubric in Table  5.7 was 92%, the rubric in Table  5.8 was 

95%, and the rubric in Table  5.9 was 85%. We present the results for the physics aspect and the 

representation aspect below. 

 5.5.1.1 The physics aspect 

The means and standard deviations of the physics scores of each group in the pre-test and 

post-test are presented in Table  5.10. The Mann-Whitney test result is presented in Table  5.11. 

Table  5.10 The mean (±±±± SD) of the physics score of each group in the pre-test and post-test 

in FOGLI session 3 

Problem Group Pre-test Post-test 

Control 8.25 (± 2.25) 7.88 (± 2.80) 
Graphical 

Treatment 8.08 (± 2.78) 9.08 (± 1.31) 

Control 8.13 (± 2.59) 8.50 (± 2.00) 
Algebraic 

Treatment 8.33 (± 2.27) 9.17 (± 1.11) 
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Table  5.11 The Mann-Whitney test results for the physics score in the pre-test and post-test 

in FOGLI session 3 

Problem Pre-test Post-test 

Graphical 
U = 48.5, p = 1.00, 

z = −0.04, r = −0.01 

U = 59.0, p = 0.42,  

z = −0.85, r = −0.19 

Algebraic 
U = 51.5, p = 0.82, 

z = −0.27, r = −0.06 

U = 57.0, p = 0.51, 

z = −0.69, r = −0.16 

 

Table  5.11 indicates that there was no statistically significant difference in the physics 

scores between the control group and the treatment group in any problem of the pre-test and 

post-test. Although the effect sizes were slightly higher in the post-test (r = - 0.19 in the 

graphical problem and r = - 0.16 in the algebraic problem) than in the pre-test (r = - 0.01 and r = 

- 0.06 respectively), the effects were still weak.  This implies that our tutorial 3 did not improve 

the students’ ability to solve problems involving work – energy of a point mass significantly 

more than the control exercise set did. This result suggests that the tutorial 3 might need to be 

refined to increase students’ practice with the work-energy theorem for a point mass. 

 5.5.1.2 Representation aspect 

The means and standard deviations of the representation scores of each group in the pre-

test and post-test are presented in Table 5.12. The Mann-Whitney test result is presented in Table 

5.13. 

 

Table  5.12 The mean (±±±± SD) of the representation score of each group in the pre-test and 

post-test in FOGLI session 3 

Problem Group Pre-test Post-test 

Control 4.88 (± 2.75) 6.13 (± 1.89) 
Graphical 

Treatment 5.33 (± 2.84) 7.58 (± 0.90) 

Control 4.25 (± 2.82) 4.88 (± 2.80) 
Algebraic 

Treatment 4.08 (± 2.64) 7.00 (± 1.60) 

 

Table  5.13 The Mann-Whitney test results for the representation score in the pre-test and 

post-test in FOGLI session 3 

Problem Pre-test Post-test 

Graphical 
U = 52.0, p = 0.79, 
z = 0.31, r = -0.07 

U = 74.5, p = 0.04,  
z = -2.04, r = -0.46 

Algebraic 
U = 46.5, p = 0.88,  
z = 0.11, r = 0.03 

U = 73.5, p = 0.05,  
z = -1.97, r = -0.44 
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These tables indicate that the representation score of the treatment group was not 

statistically significantly different from that of the control group in the pre-test, but it was 

statistically significantly higher in the post-test (p < .05). The effect sizes, r = -0.46 in the graph 

problem and r = -0.44 in the equation problem in the post-test suggest that these were strong 

effects. This result implies that our tutorial 3 significantly improved students’ ability to find 

work using the integral and the area under the curve of force versus linear displacement more 

than the control exercise set did. 

 5.5.2 Tutorial 4 Results 

There were 9 students in the control group and 13 students in the treatment group in 

FOGLI session 4. The control and the treatment groups met at different times. Nine students in 

the control group were divided into four groups (one group of 3 students and three groups of 2 

students each). Thirteen students in the treatment group were divided into 6 groups (one group of 

3 students each and five groups of 2 students each). Students in both the control and the 

treatment groups were given the freedom to choose their partners. 

In the first 20 minutes of the FOGLI session 4, all students in both control and treatment 

groups worked independently on the pre-test which consisted of a graphical problem and an 

algebraic problem presented in Figure  5.24 and Figure  5.25 below, respectively. The physics 

aspect of these problems involved applying the work-kinetic energy theorem for a rigid body to 

calculate the linear speed of a sphere at the launch point. The representation aspect of these 

problems involved calculating the work done by the rolling friction force between the track and 

the sphere using the integral and the area under the curve. 
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Figure  5.24 The graphical problem in the pre-test of FOGLI session 4 

 

A sphere radius r = 2 cm and mass m = 1.0 kg is rolling at an initial speed vi = 10 m/s 
along a track as shown.  It hits a curved section (radius R = 2.0 m) and is launched 
vertically at point A. The rolling friction on the straight section is negligible. 

 

R 

vi 

θ 

A 

 
 

The magnitude of the rolling friction force acting on the sphere varies as angle θ as 
per the graph shown below 
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What is the launch speed of the sphere as it leaves the curve at point A?  
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Figure  5.25 The algebraic problem in the pre-test of FOGLI session 4 

 

 

In the next 50 minutes, the students in the control groups worked on the standard material 

4 described in Figure  5.17 through Figure  5.21.  Students were required to notify the facilitator 

after they completed each exercise. The facilitator then provided the students with the solution to 

the exercise they had just completed.  

The students in the treatment group worked on the exercise set of our tutorial 4. Students 

were asked to check-in with the facilitator after they completed each exercise. The facilitator 

then engaged in a conversation with the students to elicit their ideas about the exercise and 

provided hints to help students solve the problem if needed, but did not tell them the solution. 

Similar to FOGLI session 3, all students in both the control and the treatment groups 

were able to solve the exercises easily in FOGLI session 4. So the conversations between the 

facilitator and the students in the treatment group after the exercises were short and the facilitator 

did not have to provide any hint to help students with the exercises of tutorial 4. 

In the last 20 minutes of the FOGLI session, students in both the control and the 

treatment groups worked individually again on a graphical and an algebraic problems of the post-

test, which differed from the pre-test problems only in numerical values of the quantities. 

A sphere radius r = 2 cm and mass m = 1.0 kg is rolling at an initial speed vi = 10 m/s 
along a track as shown.  It hits a curved section (radius R = 2.0 m) and is launched 
vertically at point A. The rolling friction on the straight section is negligible. 

 

R 

vi 

θ 

A 

 
 
The magnitude of the rolling friction force F (in Newton) acting on the sphere varies 

with angle θ (radians) as per the following function 

( ) 5.0 1.5F θ θ= −  

What is the launch speed of the sphere as it leaves the curve at point A?  
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The rubrics for grading the physics and the representation aspects of the pre-test and post-

test problems in FOGLI session 4 were also built upon the corresponding general rubrics and are 

presented in the Table  5.14 through Table  5.16 below. 

 

Table  5.14 Rubric for grading the physics aspect of the pre-test/post-test problems in 

FOGLI session 4 

Points 0 1 2 3 

Physics 

Approach 

Student makes 
no progress 
toward a correct 
solution.  

Student uses 
Newton’s 2nd law 

Student uses a 
mixture of 
Conservation of 
energy AND 
Newton’s 2nd law 

Student uses 
conservation of 
energy OR 
Work-Kinetic 
Energy theorem 

Physics 

Equation 

Student doesn’t 
have any 
equation 

Student has ONE 
of the following: 
- Missing TWO 
or more quantities 
from the correct 
equation 
- Having TWO or 
more incorrect 
equations of 
physics 
quantities. 

Student has ONE of 
the following: 
- Missing ONE 
quantity from the 
correct equation;  
- Having ONE 
incorrect equation 
of physics quantity. 
Example: ONE of 
the following: 
- missing the 
rotational KE 
- missing the 
gravitational PE on 
the right-hand side 
- missing Wnc 

- using 22

5
mr  

instead of 21

2
Iω  

Student has the 
correct 
equation: 

2 2

2 2

1 1

2 2

1 1

2 2

i i

f f

nc

mv I

mv I

mgR W

ω

ω

+ =

+

+ +

 
OR its 
equivalence. 

( 22

5
sphere

I mr= ) 

Note: Wnc in 
this equation 
represents the 
“energy lost due 
to non-
conservative 
forces” and 
therefore, Wnc 
has positive 
value. 
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Value of 

Physical 

Quantity 

Student  plugs 
in TWO or 
more incorrect 
values  
(including sign 
errors) into 
physical 
quantities in an 
equation 

Student plugs in 
ONE incorrect 
value  (or makes a 
sign error) into a 
physical quantity 
in an equation 

Student correctly 
plugs in ALL 
values with correct 
signs into physical 
quantities in an 
equation. 
Note: Wnc may have 
positive or negative 
value depending on 
what he/she meant 
by Wnc (if Wnc is 
“energy lost to non-
conservative 
forces”, it gets 
positive value; if 
Wnc is “work by 
non-conservative 
forces”, it gets 
negative value) 

 

Mathematical 

Manipulation 

Student makes 
major error or 
more than one 
minor error in 
arithmetic 

Student makes 
correct arithmetic 
or ONE minor 
error in arithmetic 
- missing a 
square-root 
- missing a square 
- confusing signs 

  

Units of 

Physical 

Quantity 

Student has 
incorrect unit of 
work, kinetic 
energy, 
potential 
energy. 

Student has 
correct unit of 
work, kinetic 
energy, potential 
energy. 
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Table  5.15 Rubric for grading the representation aspect of the algebraic pre-test/post-test 

problems in FOGLI session 4 

Points 0 1 2 3 4 

Interpretation 

of Function 

Student doesn’t 
indicate an 

understanding that F(θ) 
is equation of rolling 
friction force of the 
track with respect to 
angle OR plugs a 

specific value of θ into 

F(θ) and uses that as 
the force at every point 
on the track. 

Student appropriately 

uses the fact that F(θ) is 
equation of rolling 
friction force of the track 
with respect to angle. 

   

Mathematical 

Operator 

Student doesn’t choose 
integration as the tool 
to find work OR uses 
the force equation to 
find the “coefficient of 
rolling friction” on the 
track. 

   Student 
calculates the 
integral of force 
equation over 
angle times 
radius of the 
track to find  
the work done 
by rolling 
friction force on 
the track. 



116 

 

Points 0 1 2 3 4 

Setting up 

Calculation 

One of the following: 
- Student sets up an 
incorrect integral (for 

example, ( )
/ 2

0

F d

π

θ θ∫  

or ( )
/ 2

0

F

π

θ∫  without 

multiplying the result 
by R afterward) 
- Student doesn’t have 
an integral to find work 
done by the liquid. 

Student sets up the 
correct integral to find 
value of work done by 
rolling friction: 

( )
/ 2

0

F Rd

π

θ θ∫ .  

It is acceptable that 
student writes 

( )
/ 2

0

F R

π

θ∫ .  

It is also acceptable that 
student writes the 

integrals ( )
/ 2

0

F d

π

θ θ∫  or 

( )
/ 2

0

F

π

θ∫  if later in the 

problem, student 
multiplies the value of 
that integral by the radius 
of the track. 

   

Mathematical 

Manipulation 

Major errors in 
calculating the integral 
set up in the previous 
step (ex: confuse 
between differentiating 
and integrating) 

Correct calculation of the 
integral set up in the 
previous step. 

   

Unit of 

Quantity 

Incorrect unit of the 
quantity found from the 
integral of force 
equation (Newton) 

Correct unit of the 
quantity found from the 
integral of force equation 

( )
/ 2

0

F Rd

π

θ θ∫  has unit of 

Joules 

( )
/ 2

0

F d

π

θ θ∫  has unit of 

N.rad. 
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Table  5.16 Rubric for grading the representation aspect of the graphical pre-test/post-test 

problem in FOGLI session 4 

 0 1 2 3 4 

Gather 

Informati

on from 

Graph 

Incorrect 
values of 
minimum and 
maximum 
forces (bases 
of trapezoid) 
and maximum 
angle (height 
of trapezoid) 

Correct values 
of minimum 
and maximum 
forces (bases 
of trapezoid) 
and maximum 
angle (height 
of trapezoid) 

 Incorrect 
values of 
minimum and 
maximum 
forces (bases 
of trapezoid) 
and maximum 
angle (height 
of trapezoid) 

Correct values 
of minimum 
and maximum 
forces (bases 
of trapezoid) 
and maximum 
angle (height 
of trapezoid) 

Mapping 

Graph to 

Physics 

Student 
doesn’t use 
the idea that 
area under the 
graph or 
integral of the 
equation of 
the graph is 
part of the 
work done by 
rolling 
friction. 

Student 
calculates the 
area under the 
graph or 
integral of the 
graph 
function but 
uses it as total 
force. 

Student finds 
the area under 
the graph or 
integrate the 
equation of 
the graph and 
sets that equal 
work done by 
rolling 
friction (i.e. 
student 
doesn’t 
multiply by 
the radius of 
the track) 

Student 
doesn’t use 
the idea that 
area under the 
graph or 
integral of the 
equation of 
the graph is 
part of the 
work done by 
rolling 
friction. 

Student 
calculates the 
area under the 
graph or 
integral of the 
graph function 
but uses it as 
total force. 
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Setting 

up 

Calculati

on 

One of the 
following 
cases: 
- Setting up 
incorrect area 
of trapezoid 
- Setting up 
incorrect 
integral of 
graph’s 
equation 

One of the 
following 
cases: 
- Setting up 
correct area 
under the 
graph 

( )1 2

2

base base

height

+

×

 

or area of 
triangle plus 
area of 
rectangle. 
- Setting up 
correct 
integral of 
graph’s 
equation 

 One of the 
following 
cases: 
- Setting up 
incorrect area 
of trapezoid 
- Setting up 
incorrect 
integral of 
graph’s 
equation 

One of the 
following 
cases: 
- Setting up 
correct area 
under the 
graph 

( )1 2

2

base base

height

+

×

 or area of 
triangle plus 
area of 
rectangle. 
- Setting up 
correct 
integral of 
graph’s 
equation 

Manipula

tion of 

Graph 

Process 

One of the 
following 
cases: 
- Incorrect 
calculation of 
area set up in 
the previous 
step 
- Incorrect 

calculation of 
the integral set 
up in the 
previous step 

One of the 
following 
cases: 
- Correct 
calculation of 
area set up in 
the previous 
step 
- Correct 
calculation of 
the integral 
set up in the 
previous step 

 One of the 
following 
cases: 
- Incorrect 
calculation of 
area set up in 
the previous 
step 
- Incorrect 
calculation of 
the integral 
set up in the 
previous step 

One of the 
following 
cases: 
- Correct 
calculation of 
area set up in 
the previous 
step 
- Correct 
calculation of 
the integral set 
up in the 
previous step 

Unit of 

Graph 

Quantity 

Incorrect unit 
of area under 
graph or 
integral of 
graph’s 
equation 
(Newton or 
Joule) 

Correct unit 
of area under 
graph or 
integral of 
graph’s 
equation 
(Newton time 
radian, or 
N.rad) 

 Incorrect unit 
of area under 
graph or 
integral of 
graph’s 
equation 
(Newton or 
Joule) 

Correct unit of 
area under 
graph or 
integral of 
graph’s 
equation 
(Newton times 
radian, or 
N.rad) 
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The inter-rater reliability of the rubric in Table  5.14 was 88%, of the rubrics in Table  5.15 

and Table  5.16 was 95% . We present the results for the physics aspect and the representation 

aspect below. 

 5.5.2.1 Physics aspect 

The means and standard deviations of the physics scores of each group in the pre-test and 

post-test are presented in Table  5.17. The Mann-Whitney test result is presented in Table  5.18. 

 

Table  5.17 The mean (±±±± SD) of the physics score of each group in the pre-test and post-test 

in FOGLI session 4 

Problem Group Pre-test Post-test 

Control 4.89 (± 3.66) 7.00 (± 3.04) 
Graphical 

Treatment 6.54 (± 3.57) 8.77 (± 1.09) 

Control 3.78 (± 3.31) 5.11 (± 4.31) 
Algebraic 

Treatment 6.08 (± 3.95) 8.62 (± 1.39) 

 

Table  5.18 The Mann-Whitney test results for the physics score in the pre-test and post-test 

in FOGLI session 4 

Problem Pre-test Post-test 

Graphical 
U = 48.5, p = 1.00, 

z = −0.04, r = −0.01 

U = 59.0, p = 0.42,  

z = −0.85, r = −0.19 

Algebraic 
U = 51.5, p = 0.82, 

z = −0.27, r = −0.06 

U = 57.0, p = 0.51, 

z = −0.69, r = −0.16 

 

These tables show similar trends of the physics score in FOGLI session 4 as in FOGLI 

session 3, so the conclusions are the same: our tutorial in this session didn’t improve students’ 

ability to solve problems involving the work-kinetic energy theorem for a rigid body in 

comparison to the control problem set. The treatment should be refined to increase students’ 

practice with the work-kinetic energy theorem for a rigid body. 

 5.5.2.2 Representation aspect 

The means and standard deviations of the representation scores of each group in the pre-

test and post-test in FOGLI session 4 are presented in Table  5.19. The Mann-Whitney test result 

is presented in Table  5.20. 
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Table  5.19 The mean (±±±± SD) of the representation score of each group in the pre-test and 

post-test in FOGLI session 4 

Problem Group Pre-test Post-test 

Control 2.00 (± 2.45) 3.78 (± 2.68) 
Graphical 

Treatment 3.08 (± 2.56) 5.92 (± 2.81) 

Control 3.22 (± 2.22) 4.56 (± 2.24) 
Algebraic 

Treatment 3.54 (± 1.45) 7.00 (± 1.53) 

 

Table  5.20 The Mann-Whitney test results for the representation score in the pre-test and 

post-test in FOGLI session 4 

Problem Pre-test Post-test 

Graphical 
U = 40.0, p = 0.20, 
z = -1.29, r = -0.28 

U = 28.0, p = 0.04, 
z = -2.07, r = -0.44 

Algebraic 
U = 58.5, p = 1.00, 
z = -0.00, r = -0.00 

U = 20.0, p = 0.01, 
z = -2.65, r = -0.56 

 

These tables also indicate similar trend in the representation score as in FOGLI session 3, 

so the same conclusions apply: our tutorial in session 4 significantly improved students’ ability 

to find work using the integral and then area under the curve of force versus angular 

displacement more than the control problem set did. 

 5.6 Conclusion 

We created tutorials to facilitate students’ learning to solve work – energy problems 

involving the integral and the area under the curve concepts. Each tutorial consisted of a set of 

exercises and a protocol for the conversation between the facilitator and the students after they 

had completed each of the exercises. An exercise set consisted of two or three pairs of matched 

math and physics exercises, a debate problem, and two problem posing tasks. The purpose of the 

pairs of matched math and physics exercises were to help students recall a mathematical model 

and then applied to a simple physics context. The debate problem was intended to prepare the 

students with the physics background necessary to solve typical work – energy problems, and to 

call for students’ awareness on possible errors they might make when solving those problems. 

The problem posing tasks provided an opportunity for students to incorporate a mathematical 

model with a physics scenario to make a complete problem in which the mathematical model 

was employed. These tasks might provide students with a better view of how a mathematical 

model could be applied to a physics problem. All of the exercises in the tutorials were pretty 
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simple so all groups were able to get the correct answers. Therefore the conversation between the 

facilitator and the students that took place after each exercise was mostly to elicit students’ ideas 

about the exercise and what they had learned from the exercise. The facilitator did not have to 

provide hints to help students solve the exercises in the tutorial. 

We conducted focus group learning interviews (FOGLI’s) to test the effectiveness of our 

tutorials in comparison to standard instructional materials. The standard materials consisted of 

typical end-of-chapter exercises and solutions that covered the same concepts, principles, and 

had the same representations as the exercises in the tutorials. We found that both of our tutorials 

on the topics of work – energy for a point mass and for a rigid body significantly improved 

students’ ability to calculate a physical quantity using the integral and the area under the curve 

concepts in a physics problem, although they were not so effective in preparing students with the 

physics background of the work – energy problems. These results suggested that the tutorials 

should be improved to better prepare students with the physics background of the problems. 

 5.7 Limitations and future work 

The main limitation of this study is the small sample size of students with whom these 

tutorial materials were implemented. There were only 25 out of more than 200 students in the 

course participated in the study. Another limitation of the study was that there were only two 

tutorials, 90 minutes each, on the topic. These tutorials might create some improvement on 

students’ performance on the tests as in our FOGLI sessions, but it is not likely that such short-

term treatment could have a long-term effect on students’ application of the integral in work-

energy problems. 

In future implementations, we plan to scale up the study to include a larger sample size. 

We plan to revise the tutorials, especially the physics aspect, and to implement them on a larger 

sample of students. 
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Chapter 6 - Tutorials to facilitate students’ application of the 

integral concept to physics problems in electricity 

 6.1 Motivation and Introduction 

In the fall 2009 study, we investigated students’ difficulties in solving physics problems 

in electricity involving integration. During the individual interviews, students were asked to 

solve problems in which they had to set up and compute an integral to calculate a physical 

quantity. We found that the majority of the students were able to recognize the need for an 

integral in a problem. However, they had significant difficulties setting up and computing the 

desired integral. These difficulties occurred when the students attempted to set up the expression 

for the infinitesimal quantity and add up the infinitesimal quantities using the integral. These 

difficulties might be attributed primarily to students’ inability to interpret the meaning of the 

infinitesimal term dx  in the integral, and to students’ disregard of how the infinitesimal 

quantities must be added up. 

Many students in our interviews, however, were eventually able to solve the interview 

problems with verbal hints provided by the interviewer. This suggested that, with appropriate 

scaffolding, students would have been able to set up and compute the desired integral in 

electricity problems. 

Based on the knowledge of the difficulties that students encountered and the scaffolding 

that were helpful, we proposed a strategy to facilitate students to apply the integral concept to 

physics problems in electricity. Specifically, our strategy aimed at helping students learn the 

meaning of the infinitesimal term dx  in the integral and the accumulation process underlying the 

integral. Based upon this strategy, we developed instructional materials, which will be referred to 

as tutorials, to facilitate students’ learning to apply the integral electricity problems. Each tutorial 

had two components: 

• a problem segmented into a sequence of smaller, related exercises which led 

students through the procedure of solving the problem. As students solved the 

exercises in the sequence, they could learn the meaning of each term in the 

integral as well as the accumulative nature of the integral. 
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• a protocol for the conversation between the facilitator and the students to clarify 

the tutorial and students’ ideas as they worked through the exercises. 

In the fall 2010 semester, we created three tutorials on different topics of introductory 

electricity as follows: 

• Tutorial 1: Electric field due to a charge distribution 

• Tutorial 2: Resistance and capacitance 

• Tutorial 3: Electric current 

We tested the effectiveness of our tutorials in comparison with standard learning 

materials. The standard materials consisted of the same problems as in the tutorials but were not 

segmented, and the solutions to those problems.  

In this chapter, we will present the rationale of our tutorials, and their impact on students’ 

ability to apply the integral to physics problems in electricity. The research question for this 

study is: To what extent did our tutorials help students improve their ability to apply the integral 

concept to electricity problems, in comparison to standard materials (i.e. sample problems and 

solutions)? 

 6.2 Rationale of the tutorials and the standard materials 

The central idea of the integral is the accumulation process, i.e. adding up an infinite 

number of individual amounts of a physical quantity to obtain the total amount of that quantity 

(e.g. resistance, current) or adding up an infinite number of individual effects to obtain the total 

effect (e.g. work, electric field). So the first crucial step is to set up the expression for the 

individual quantity or effect. Each of our tutorials aimed at helping students learn about 

integration via doing a sample problem involving integration. However, students were not asked 

to solve the problem as they usually were in the course. Instead, the problem was segmented into 

several exercises which led to the complete solution to the problem. Our tutorial starts with an 

exercise asking students to calculate the total value of a physical quantity (e.g. resistance, 

current) of some individual objects. The follow-up exercises were variations of the first exercise 

in which the individual objects evolve to become infinitesimal parts of a larger object. Solving 

these exercises, students might learn how the whole quantity of an object becomes an 

infinitesimal quantity of a larger object and how a sum becomes an integral. 
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Upon completion of each exercise, students were asked to check with a facilitator before 

proceeding to the next exercise. The facilitator then asked students to explain their solution to the 

exercise to make sure that students were on the right track. The facilitator might also provide 

students with verbal hints to help them recognize their errors if they did not get the correct result. 

The standard material was intended to be similar to the material commonly used in the 

course for practice on a particular topic or skill. It contained the same problem as the one in the 

tutorial but the problem was not segmented. With this kind of material, students learned the topic 

or skill by attempting to solve the problem and then referring to its solution. The facilitator, in 

the role of the course instructor, was available to help the students clarify the problem and the 

solution, but did not explicitly teach the students how to solve the problem. Students learned to 

solve the problem by reading the solution which contained all necessary information, and 

reflected on their own solution. 

In the next sub-section, we will discuss the rationale of each tutorial we created and the 

standard material we used for comparison with our tutorial. 

 6.2.1 Creation of the tutorial 1and the standard material 1 

 6.2.1.1 Creation of the tutorial 1 

The structure of the tutorial 1 was different from the structure of the other two tutorials. It 

contained not only one problem segmented into several exercises, but also other mathematics and 

physics problems which aimed at emphasizing the accumulative nature of the integral. Problem 1 

of this tutorial (Figure  6.1) was a simple math problem which asked students to calculate the area 

of the shaded region on the graph. This area could be found easily by counting the number of 

squares that made up the region and multiplying by the area each square represented. Problem 2 

(Figure  6.2) also asked students to calculate the area of a shaded region, but the upper bound of 

this region was described by a continuous function. The area of this region, therefore, could not 

be obtained by just counting the squares, but by integrating the function of the upper bound. 

These two problems were intended to remind students of a basic knowledge in calculus: the area 

under a curve equaled the integral of the function of the curve. More importantly, these problems 

gave students an idea about how a sum of discrete elements became an integral when the 

elements became continuous. Problems 3 (Figure  6.3) and problem 4 (Figure  6.4) repeated this 

idea within a physics context. Problem 3 asked students to find the net electric field due to a 
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series of point charges located at discrete positions on the x-axis at a point out of the x-axis. 

Because the charge distribution was discrete, the net electric field vector could be obtained by 

adding up the electric field vectors due to all individual charges. Due to the symmetry of the 

charge distribution, only the y-components of each electric field vectors contributed to the net 

field vector. Problem 4 was similar to problem 3 except that the charge distribution was 

continuous and was described by the charge distribution λ . So the procedure for solving 

problem 4 was similar to that for problem 3 except that the sum of the electric fields due to all 

point charges now became the integral of the electric field due to each infinitesimal charge. The 

pair of problems 3 and 4 emphasized the accumulative nature of the integral: the integral was the 

sum of an infinite number of quantities. Although the underpinnings of these two problems were 

the same, the problem 4 was more complicated because it required viewing the rod of charge as a 

continuous series of point charges and setting up an integral for the net electric field. This task 

was found to cause significant difficulties for the students in our interviews in the fall 2009 

study, so the problem 4 was segmented into several steps. Each step asked students to complete a 

specific task which led to the solution to the problem. 

Problem 5 (Figure  6.5) was another problem on finding the net electric field due to 

continuous charge distribution. This problem was also segmented into steps as problem 4. It 

provided students with another example of the process they had learned in problem 4. 

Overall, the idea for the tutorial 1 was to lead students from the case of discrete quantity 

to the case of continuous quantity, during which a sum became an integral. The problems with 

the continuous cases were segmented into steps, which emphasized the contribution of each step 

to the solution to the problem. 
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Figure  6.1 Problem 1 of the tutorial 1 

 

 

Figure  6.2 Problem 2 of the tutorial 1 

 

 

Problem 2 – Tutorial 1 

 

Find the value of the area below the curve of ( ) 2 6 10f x x x= − +  from x = 0 to x = 6. 

 

Problem 1 – Tutorial 1 

 
Find the value of the shaded area below. 

 

1 

1 2 

2 

3 

3 

4 

4 5 6 7 0 
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Figure  6.3 Problem 3 of the tutorial 1 

 

Problem 3 – Tutorial 1 
Five charges are placed along the x-axis at x = 1 m, 2 m, 3 m, 4 m, 5 m. The value of each 

charge is given as: 3 3q x= + −  where x is the location of the charge (x is in m, q is in µC). 

Find the electric field due to this system of charge at a point P which has xP = 3.0 m, yP = 3.0 
m. 

 

+ + + + + 

x1 = 1 x2 = 2 x3 = 3 x4 = 4 x5 = 5 

q1 q2 q3 q4 q5 

x 

y 
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Figure  6.4 Problem 4 of the tutorial 1 

 

Problem 4 – Tutorial 1 

 
A non-conducting rod of length L = 4.0 m is lying along the x-axis from x = -2.0 m to x = 

+2.0 m and is having linear positive charge density λ . Find the electric field due to this rod 
at a point P which has xP = 0, yP = +2.0 m. 
 

 

x 
x = -2.0 m 

y 

x = +2.0 m O 
 

 
Please follow the steps below to solve this problem. 
 
Step 1: Determine the sign and distribution of charge on the rod and locate point P 
 
Step 2: Exploit symmetry to find the direction of the E-field 
 
Step 3: Set up the expression for dE, the electric field due to a segment of charge dq at 
location x. 
 
Step 4: Set up the expressions for dEx, dEy (the x- and y-components of dE) 
 
Step 5: Set up the integral for finding the cumulative contribution of the component that adds 
up 
 
Step 6: Express dq in terms of spatial variable (i.e. dx – the length segment along the rod) and 

the linear charge density λ(x). 
 
Step 7: Decide on the variable of integration and express all other variables in terms of the 
chosen variable 
 
Step 8: Decide on the limits of integration and compute the integral 
 
Step 9: Report the magnitude and direction of the E-field due to the rod at point P 
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Figure  6.5 Problem 5 of the tutorial 1 

 

Problem 5 – Tutorial 1 
 
A non-conducting semi-circular arch carries charge with charge density given as per the 
function: 

( ) 0 cosλ θ λ θ=  

where λ0 is a positive constant. Find the electric field due to this charge at the center of the 
arch. 

 

R 

θ  x 

y 

 
Please follow the steps below to solve this problem. 
 
Step 1: Determine the sign and distribution of charge on the arch 
 
Step 2: Exploit symmetry to find the direction of the E-field 
 
Step 3: Using Coulomb’s Law, set up the expression for dE, the electric field due to a 

segment of charge dq at angle θ. 
 
Step 4: Set up the expressions for dEx, dEy (the x- and y-components of dE) 
 
Step 5: Set up the integral for finding the cumulative contribution of the component that adds 
up 
 
Step 6: Express dq in terms of spatial variable (i.e. ds – the length segment along the arch 

spanning the angle dθ) and the linear charge density λ(θ) 
 

Step 7: Decide on the variable of integration and express all other variables in terms of the 
chosen variable 
 
Step 8: Decide on the limits of integration and compute the integral 
 
Step 9: Report the magnitude and direction of the E-field due to the arch at its center 
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 6.2.1.2 Creation of the standard material 1 

The standard material 1 contained five problems on finding the total electric charge of 

two charge configurations (i.e. the rod and the arch) and the net electric fields due to those 

charge configurations. It differed from the tutorial 1 in several ways. First, it did not have any 

math problem. The math problems in the tutorial 1 were replaced by physics problems in 

algebraic and graphical representations. Second, the standard material 1 did not have problems 

with discrete distribution of charge. The problems with discrete distribution in the tutorial 1 were 

replaced by problems with continuous distribution. Third, the problems in the standard material 

were not segmented into steps. 

All of the problems and their solutions in the standard material 1 are presented in Figure 

 6.6 through Figure  6.15. The first three problems (1, 2, and 3) asked students to find the total 

charge on a rod having a charge distribution described by a graph or an equation, and to find the 

net electric field due to that rod at a point out of it. The last two problems (4 and 5) in this set 

asked students to find the total charge on an arch having a charge distribution given as a function 

and the net electric field due to that arch at its center. The problems on the electric field (i.e. 

problems 3 and 5) were adopted from the tutorial 1, while the other three problems on the total 

charge were added to the standard material to replace the math problems and the problems with 

discrete distribution in the tutorial. Note that although all of the problems in the standard material 

dealt with continuous distribution, none of them were segmented. These problems were similar 

to end-of-chapter practice problems in a typical textbook. 
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Figure  6.6 Problem 1 of the standard material 1 

 

 

Figure  6.7 Solution to problem 1 of the standard material 1 

 

 

Solution to Problem 1 – Standard material 1 
 

x 
x = 0 x = L 

dx 

 

Consider a small segment dx. This segment carries a charge: ( )dq x dxλ= . 

The total charge is found by integrating this dq over the length of the rod: 

( )
4

0

Q dq x dxλ= =∫ ∫ . 

This integral is equal to the area under the curve of λ(x) vs. x, which is the curve in the given 
graph. This area can be approximated by counting the rectangles. There are approximately 
8.5 rectangles under the curve; each rectangle represents a quantity of: 

( ) ( )1.0 . 5.0 / 5.0m C m Cµ µ=  

So the total area is 8.5x(5.0 µC) = 42.5 µC. 

So the total charge on the arch is: Q = 42.5 µC. 

Problem 1 – Standard material 1 

 

Find the total charge on a non-conducting rod of length L = 4.0 m lying along the x-axis and 
having linear charge density given as per the graph below. 
 

 
x 

x = 0 x = L 
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Figure  6.8 Problem 2 of the standard material 1 

 

 

Figure  6.9 Solution to problem 2 of the standard material 1 

 

 

Figure  6.10 Problem 3 of the standard material 1 

 

Solution to Problem 2 – Standard material 1 
 

x 
x = 0 x = L 

dx 

 

Consider a small segment dx. This segment carries a charge: ( )dq x dxλ= . 

The total charge is found by integrating this dq over the length of the rod: 

( )
4

0

Q dq x dxλ= =∫ ∫  

44 4
3

0 0

2 2 128
4

x
Q x dx Cµ

 
= = = 

 
∫  

So the total charge on the arch is: Q = 128 µC. 
 

Problem 3 – Standard material 1 

 

A non-conducting rod of length L = 4.0 m is lying along the x-axis from x = -2.0 m to  

x = +2.0 m and is having linear positive charge density λ . Find the electric field due to this 
rod at a point P which has xP = 0, yP = +2.0 m. 

 
 

x 
x = -2.0 m 

y 

x = +2.0 m O 
 

 

Problem 2 – Standard material 1 

 

Find the total charge on a non-conducting rod of length L = 4.0 m lying along the x-axis and 

having linear charge density ( ) 32x xλ =  (x is in m, λ is in µC/m). 

 

 
x 

x = 0 x = L 
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Figure  6.11 Solution to the problem 3 of the standard material 

 

 

Solution to Problem 3 – Standard material 1 
 

x 
x = -2.0 m 

y 

x = +2.0 m O dx 

θ 

dE
���

 

dEx 

dEy dE’
y 

'dE
����

 

dE’
x P 

dx’ x 
 

Consider a small segment dx along the rod at location x. This segment carries a charge: 

dq dxλ= . 

This charge causes at P an electric filed dE
���

 which has the magnitude: 2 2

dq dx
dE k k

r r

λ
= = . 

dE
���

 can be broken into two components: .cos and .sinx ydE dE dE dEθ θ= =  

With any charge dq on the right half of the rod, there is a charge dq’ on the left half of the rod 

which equals to dq. The charge dq’ causing at O an electric field 'dE
����

 which can be broken 

into dE’
x and dE’

y. The x-components of dE
���

 and 'dE
����

 cancel out, while their y-components 
add up. So the total electric field due to the arch points in the +y direction and has the 
magnitude which is the integral of dEy over the rod. 

2 2 2 2
sin sin sin

y y

dx
E dE dE k k dx

x y x y

λ λ
θ θ α θ= = = =

+ +∫ ∫ ∫ ∫  

We will integrate with respect to x, so we’ll write sinθ in terms of x, which is: 

( )
1/ 2

2 2
sin

y y

x x y
θ = =

+
 

So the integral becomes: 
( ) ( )

2

1/ 2 3/ 22 2 2 2 2 2
2

y

y dx
E k dx ky

x y x y x y

λ
λ

−

= =
+ + +

∫ ∫ , (y = 2.0 m) 

2

2 2 2

2

2 2

2 8 8 2
y

x k k
E ky

y x y

λ λ
λ

−

  − 
= = − =   

  +  
 

So, the electric field due to the arch at its center O is 
2

O

k
E j

λ
= +

���
� . 
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Figure  6.12 Problem 4 of the standard material 1 

 

Figure  6.13 Solution to problem 4 of the standard material 1 

 

Solution to Problem 4 – Standard material 1 
 

R 

θ  x 

y 

R 
ds 

dθ 

 
Consider a small segment ds along the arch spanning an angle dθ. We have the relation: 
ds Rdθ= . 

This segment carries a charge: ( ) ( )dq ds Rdλ θ λ θ θ= = . 

The total charge is found by integrating this dq over all angle of the arch: 

( )
0

Q dq Rd

π

λ θ θ= =∫ ∫ , ( ) 0 0

0 0 0

cos cosQ R d R d R d

π π π

λ θ θ λ θ θ λ θ θ= = =∫ ∫ ∫  

[ ]0 0 0

0

cos sin 0Q R d R

π
π

λ θ θ λ θ= = =∫  

The total charge on the arch is zero. 

This result makes sense because on the right half of the arch where cosθ is positive, the 

charge is positive, and on the left half of the arch where cosθ is negative, the charge is 

negative. The cosine function is symmetric with respect to θ = π/2, so the positive charge on 
the right half is equal in magnitude to the negative charge on the left half, which results in 
zero net charge. 
 

Problem 4 – Standard material 1 

 

A non-conducting semi-circular arch carries charge with charge density given as per the 
function: 

( ) 0 cosλ θ λ θ=  

where λ0 is a positive constant. Find the total charge on the arch. 
 

R 

θ  x 

y 
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Figure  6.14 Problem 5 of the standard material 1 

 

 

Problem 5 – Standard material 1 

 

A non-conducting semi-circular arch carries charge with charge density given as per the 
function: 

( ) 0 cosλ θ λ θ=  

where λ0 is a positive constant. Find the electric field due to this charge at the center of the 
arch. 

 

R 

θ  x 

y 
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Figure  6.15 Solution to problem 5 of the standard material 1 

 

Solution to Problem 5 – Standard material 1 
 

R 

θ  x 

y 

R 
ds 

dθ 

dE
���

 

dEx 

dEy 

dE
’
x 

dE
’
y 

'dE
����

 

O 

θ  

θ  

 
The cosine function is positive from θ = 0 to θ = π/2 and is negative from θ = π/2 to θ = pi, 
so the charge on the right half of the arch is positive while the charge on the left hafl of the 
arch is negative. 

Consider a small segment ds along the arch spanning an angle dθ. We have the relation: 

ds Rdθ= . 

This segment carries a charge: ( ) ( )dq ds Rdλ θ λ θ θ= = . 

This charge causes at O an electric filed dE
���

 which has the magnitude: 

( ) ( )
2 2

Rd ddq
dE k k k

R R R

λ θ θ λ θ θ
= = = . 

dE
���

 can be broken into two components: .cos and .sin
x y

dE dE dE dEθ θ= =  

The cosine function is symmetric about θ = π/2, so the charge is distributed symmetrically 
about the top of the arch. This means that with any charge dq on the right half of the arch, 
there is a charge dq’ on the left half of the arch which equals in magnitude with dq. The 

charge dq’ causing at O an electric field 'dE
����

 which can be broken into dE’
x and dE’

y. The y-

components of dE
���

 and 'dE
����

 cancel out, while their x-components add up. So the total electric 
field due to the arch points in the –x direction and has the magnitude which is the integral of 
dEx over all angle on the arch. 

( ) 0 cos
cos cos cosx x

d d
E dE dE k k

R R

λ θ θ λ θ θ
θ θ θ= = = =∫ ∫ ∫ ∫  

20 0 0

00 0

0 0

1 cos 2 1
cos sin 2

2 2 2

1 1
sin 2 0 sin 0

2 2 2 2

x

k k k
E d d

R R R

k k

R R

ππ πλ λ λθ
θ θ θ θ θ

λ λ π
π π

+  
= = = +  

    
= + − + =    

    

∫ ∫
 

So, the electric field due to the arch at its center O is 
0

2
O

k
E i

R

λ π
= −

���
�
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 6.2.2 Creation of the tutorial 2 and the standard material 2 

 6.2.2.1 Creation of the tutorial 2 

The tutorial 2 consisted of a sequence of exercises which were designed to help students 

learn about the integral in physics problem. The context of this tutorial was the problem of 

finding the capacitance of a capacitor whose plates were considerably far apart compared to the 

size of the plates. However, students were not asked to solve that problem. Instead, they were led 

through a sequence of exercises which asked them to find the equivalent capacitance of series of 

individual capacitors. These capacitors evolved from separate capacitors with different plate 

sizes and separations between the plates to adjacent capacitors with similar plate sizes and small 

separations. The result of the last exercise in the sequence was the capacitance of the capacitor 

with different plate sizes and large separation, which was the answer to the initial problem. The 

sequence of exercises in the tutorial 2 is presented in Figure  6.16 below. 
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Figure  6.16 Sequence of exercises in the tutorial 2 

 

 

Tutorial 2 

 
1.  Three capacitors made of the same material (permittivity ε) have different distances, d1, 

d2, d3 between their plates respectively.  The plates of each capacitor are circular and have 
radii r1, r2, r3 respectively.  Find the total capacitance CAB. 
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2.  What is the total capacitance CAB, if all three capacitors above are arranged side by side 

as shown in the figure below? [Hint: Is the result same as above?] 

CC33
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CC22

dd22 dd33

AA

CC11

dd11

CC33

BB

CC22

dd22 dd33

AA

CC11

dd11  
3.  What is the total capacitance CAB if all three capacitors above have the same distance 

between their plates, ∆x? 

CC33

BB

CC22

∆∆xx ∆∆xx

AA

CC11

∆∆xx

CC33

BB

CC22

∆∆xx ∆∆xx

AA

CC11

∆∆xx
 

4.  What is the total capacitance CAB if instead of three capacitors, there are a large number 
of capacitors of the same length �x and the radius of the i-th capacitor plate located at xi 
is ri = a +bxi? 

5.  What is the total capacitance CAB if instead of three capacitors, there are a very large 
number of infinitesimally thin capacitors of the same distance between plates dx and the 
radius of plates of these capacitors varies as per the function r(x) = a +bx, where x is the 
location of the thin capacitor with respect to the left end of the wire and 0 ≤ x ≤ L? 
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The tutorial started with a general case: finding the equivalent capacitance of a series of 3 

capacitors having different plate sizes and different separations between the plates (Exercise 1). 

This exercise was to remind students of the formula for the capacitance of parallel-plate 

capacitor and the formula for the equivalent capacitance of a series of capacitors. Exercise 2 

asked for the total capacitance of the same capacitors in exercise 1 when they were arranged side 

by side. Putting the capacitors together in exercise 2 triggered the idea that these capacitors 

might be a part of a larger system. In exercise 3, the separation between the plates of all 

capacitors was set to be equal to x∆ . This change in the system introduced the common term 

among the capacitors: x∆ , which would become the infinitesimal term dx  when the separation 

became infinitesimally small. Exercise 4 generalized the case of exercise 3 for N  capacitors 

with the same separation between the plates x∆  but the plate sizes depended upon the position of 

the capacitor in the series as per an equation. Exercise 5 generalized the case of exercise 4, when 

the number of capacitor was infinite and the separation between the plates was infinitesimally 

thin. This last exercise was to help students learn that x∆  became dx  and the sum became the 

integral when the number of capacitor became infinite and the separation between their plates 

became infinitesimally small. 

The reason for choosing the capacitance of series capacitors as the context for this tutorial 

was that the equivalent capacitance of a series of capacitors was found by adding the inverse of 

the individual capacitance, i.e. 
1 2

1 1 1

eq
C C C

= + . So when each capacitor became an infinitesimal 

element of a larger capacitor, the equivalent capacitance be calculated by integrating the inverse 

of the infinitesimal capacitance, i.e. 
1 1

eq
C dC

= ∫ , instead of integrating dC∫  which was a 

common error that students made in our interviews in the fall 2009 study. So by working on our 

tutorial 2, students might learn that they must attend to how the infinitesimal quantities must be 

added up when doing an integral. 

In summary, our tutorial 2 aimed at helping students learn the physical meaning of the 

infinitesimal term dx  in the integral (i.e. the quantity it represented), the nature of the integral as 

an accumulation process, and the method for accumulating the infinitesimal quantities. The 

tutorial 2, therefore, targeted the most significant difficulties students expressed in our fall 2009 

study.  
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 6.2.2.1 Creation of the standard material 2 

The standard material 2 consisted of the problem on the capacitance of a capacitor whose 

plates are considerably far apart compared to their sizes and its solution (Figure  6.17 and Figure 

 6.18). With this set of material, students learned by attempting to solve the capacitor problem on 

their own, then referred to the solution and reflected on their own solution. 

 

Figure  6.17 Problem in the standard material 2 

 

Standard material 2 
 

Consider a capacitor of material, permittivity ε.  The capacitor consists of two circular plates 
of radii a and b placed at a distance L apart.  
Derive an expression for the capacitance of this capacitor in terms of its length L, radius a, 

radius b, and permittivity ε. 

a 
b 

x L 0 
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Figure  6.18 Solution to the problem in the standard material 2 

 

 

Solution – Standard material 2 
 
Imagine that there are several fictitious plates which are a distance dx apart in the region 
between the two plates of the capacitor.  The given capacitor is now a series combination of 
several capacitors made by the fictitious plates. 
 

a 
b 

x L 0 

r(x) 

x 
dx 

 

 
 
If dx is small enough, then the radii of two adjacent plates are almost equal, so the 
capacitance of the capacitor made by these two adjacent plates is: 

( )
2

0 0

r xA
dC

dx dx

π
ε ε

  = =  

Where: 

( )r x  is the radius of the two plates of the fictitious capacitor located at x.  

At  x = 0, r = a, and at x = L, r = b, so the expression of ( )r x  is: ( )
b a

r x a x
L

−
= +  

Then: 

2

0

b a
a x

L
dC

dx

π

ε

− 
+  =  

The given capacitor is a series combination of several fictitious capacitors, so its capacitance 
is the equivalent capacitance of all fictitious capacitors from x = 0 to x = L. 

( ) ( )

2

00

0
0

0 0 0

1 1 1 1

1 1 1

L

L
dx L

b aC dC b ab a a xa x
LL

L L b a L

C b a b a b a ab ab

ε π
ε π

ε π ε π ε π

 
 

= = = − −−−   ++    

−   
= − + = =   

− −   

∫ ∫
 

 

So the capacitance of the given capacitor is: 
0 ab

C
L

ε π
=  
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 6.2.3 Creation of the tutorial 3 and standard material 3 

 6.2.3.1 Creation of the tutorial 3 

The tutorial 3 consisted of two physics problems. The topic of the tutorial 3 was finding 

the total current I  in a wire from the current density j . The current in a wire could be calculated 

by the equations I jA=  if j const= , and I jdA= ∫  if j const≠ , in which A  was the cross-

sectional area of the wire through which the current flew. We found from our fall 2009 

interviews that the concept of current density was not easy to understand for many students, so 

they had difficulties interpreting the equations mentioned above. Students in our fall 2009 

interviews were not familiar with calculating the cross-sectional area of some shapes, e.g. the 

cylindrical shell, so many of them needed help calculating the cross-sectional area A  of the wire. 

The first problem in the tutorial 3 aimed at targeting these difficulties. In part a of this 

problem, students were asked to calculate the cross-sectional area of a cylindrical shell having 

the inner radius R  and thickness R∆ . Part b of this problem asked students to calculate the total 

current in the cylindrical shell given the constant current density 0j j= . With these two parts, 

the problem 1 in the tutorial 3 was intended to familiarize students with the concept of current 

density, the area of a cylindrical shell, and the method of finding the total current from the 

current density and the cross-sectional area. 

The problem 2 of the tutorial 3 was similar to the tutorial 2. It consisted of a sequence of 

exercises that led students from finding the current in an individual cylindrical shell to finding 

the current in the circular wire by adding up the current in each infinitesimal shell. The first 

exercise in the sequence asked students to calculate the total current in a wire that was made of 

two separate, coaxial cylindrical shells. The shells had inner radii 1R , 2R , same thickness R∆ , 

and carried currents with different current densities 1j , 2j  but in the same direction. In the next 

exercise, the radius of the smaller shell was increased such that there was no gap between the 

shells but the shells were insulated from each other so they still had different current densities. 

The last exercise generalized the case in exercise 2 to several infinitesimal shells having inner 

radius ranging from 0 to R  and the thickness R∆  of each shell was very small that the current 

density in each shell could be considered constant. Working through this sequence of exercises, 

students were introduced the idea of modeling the cylindrical wire or shell as a combination of 
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several infinitesimally thin shells on which the current density could be considered constant, so 

the total current in the wire or the shell was the sum of the current in each of these shells, which 

became an integral when the shells became infinitesimally thin. 

In summary, our tutorial 3 aimed at helping students learn the physical meaning of the 

infinitesimal term dx  in the integral (i.e. the quantity it represented), the nature of the integral as 

an accumulation process, and the method of accumulating the infinitesimal quantities. The 

tutorial 2, therefore, targeted the most significant difficulties students expressed in our fall 2009 

study. 

 

Figure  6.19 Problem 1 of the tutorial 3 

 

 

Problem 1 – Tutorial 3 
 
a. What is the cross-sectional area of a cylindrical shell which has inner radius R and 

thickness ∆R? 

 

R 

∆R 

 
 

b. This shell carries a current which is distributed uniformly over the cross section of the 

shell with current density 0j j= . What is the total current in the shell? 
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Figure  6.20 Problem 2 of the tutorial 3 

 

 6.2.3.1 Creation of the standard material 3 

The standard material 3 consisted of two problems on finding the currents from the 

current density and their solutions. These problems were similar to the last exercises in each of 

the two sequences of exercise in the tutorial 3 and were typical textbook problems on the topic. 

Problem 2 – Tutorial 3 
 
A wire is made of two coaxial cylindrical conducting shells which have inner radii R1, R2 and 

the same thickness ∆R. These shells are carrying two currents flowing in the same direction 

with current densities 1j  and 2j  respectively ( 1j , 2j  are constants). 

a.  What is the total current in these two wires? 
 

R1 

∆R 

R2 

 
 

b.  What is the total current in the wire if there is no gap between the shells? (the shells are 
insulated from each other) 

 

R1 

∆R 

R2 

 
 

c. What is the total current in the wire if the wire is made of several infinitesimally thin 

shells, each has inner radius r, thickness dr and current density ( )j r . (Note that dr is 

small enough that the current density within a shell can be considered constant across) 
 

r 

dr 

 



145 

 

All of the problems and their solutions in the standard material 3 are presented in Figure  6.21 

through Figure  6.24 below. 

 

Figure  6.21 Problem 1 of the standard material 3 

 

 

Figure  6.22 Solution to problem 1 of the standard material 3 

 

 

Solution to Problem 1 – Standard material 3 
 

The cross-sectional area of the shell is: ( )2 2 2 2

2 1 2 1A R R R Rπ π π= − = −  

The total current in the shell is then: ( )2 2

0 2 1.totalI j A j R Rπ= = −  

 

Problem 1 – Standard material 3 
 
A long, cylindrical conducting shell has inner radius R1 and outer radius R2. It carries a 
current which is distributed uniformly across the cross-sectional area of the shell with current 

density 0j j=  going into the page. What is the total current in the shell? 

 

R1 

R2 
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Figure  6.23 Problem 2 of the standard material 3 

 

 

Figure  6.24 Solution to problem 2 of the standard material 3 

 

Solution to Problem 2 – Standard material 3 
 
Consider an infinitesimally thin ring which has inner radius r and thickness dr small enough 
that the current density j(r) is almost constant across the cross section of this ring. 
 

 

R1 

R2 
r 

 
 

The cross sectional area of this ring is: 

( ) ( )2 2 2 2 22 . 2dA r dr r r r dr dr r rdrπ π π π π= + − = + + − =  (note that dr is very small so 

2 0dr ≈ ) 

The current through this cross sectional area is: ( ) 22 2dI j r dA r rdr r drα π α π= = =  

The total current in the shell is then the integral of this infinitesimal current: 

( )
22

1 1

3 33
2 3 32 1

2 1

2
2 2 2

3 3 3

RR

total

R R

R Rr
I dI r dr R Rα π α π α π απ

 −
= = = = = − 

 
∫ ∫  

 

Problem 2 – Standard material 3 
 
A long, cylindrical conducting shell has inner radius R1 and outer radius R2. It carries a 
current which has current density j rα=  going into the page. What is the total current in the 

shell. 
 

R1 

R2 
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 6.3 Experimental design 

In the fall 2010 semester, we tested the effectiveness of our tutorials in comparison with 

the standard materials on students enrolling in the Engineering Physics 2 course, which covered 

electricity and magnetism. An important portion of this course was the studio session, which was 

an integrated session of problem solving and hands-on experiments. All students in the course 

met for two 2-hour studio sessions per week. In each studio session, the first 40 minutes was for 

problem solving and the rest of the time for hands-on experiment. 

The focus group learning interviews (FOGLI’s) in the spring 2010 study were conducted 

as an independent activity outside of the course. That limited the number of students 

participating in our study, because the students had to meet outside of the course. So in order to 

involve all students in the course in our study in the fall 2010, we decided to conduct our 

experiments during the problem solving sessions in the studio. Students worked in group of 3 or 

4 during the studio sessions, so it was similar to conducting a FOGLI, but with 10 groups instead 

of a few groups at a time. However, conducting the FOGLI during the studio sessions also put a 

constraint on the length of the FOGLI and hence the length of the treatments, because we had to 

ensure adequate time for regular activities of the studio sessions. For this reason, each FOGLI in 

the fall 2010 study lasted for only 40 - 50 minutes, instead of 90 minutes as in the spring 2010 

FOGLI. 

We also employed the pretest-posttest control group experimental design as in the spring 

2010 study. There were a total of 220 students divided into 6 studio sections, so 3 sections 

(approximately 110 students) served as the control group, and the other 3 sections 

(approximately 110 students) served as the treatment group. In each of the 50-minute FOGLI’s, 

for the first 10 minutes, students worked individually on a pre-test which was a problem 

involving integration on the topic of the FOGLI. In the next 30 minutes, the students in the 

treatment group worked with their peers (3 to 4 students) on our tutorial, while the students in the 

control group worked with their peers on the standard material. Students in both groups were 

encouraged to discuss with their partners while doing the exercises. After completing each of the 

exercises in the tutorial or the standard material, the students in the control group were provided 

with a printed solution of the exercise they had just completed. Students then discussed with their 

partners about the printed solution and compared it with their own solutions. Students might also 

ask the facilitators to clarify information in the printed solution. The students in the treatment 
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group were required to check-in with the facilitator after they had completed an exercise in the 

tutorial, which was a part of a larger problem. The facilitator then engaged in a short 

conversation with the students to elicit their ideas on solving the exercise and how they 

perceived the exercise as relevant to the previous exercises. The facilitator might ask some 

questions to help them recognize their errors if there was any, but did not tell the students the 

correct answer to the exercise. The exercises in our tutorial were simple enough that all students 

were able to solve them correctly without assistance. So the role of the facilitator in the FOGLI 

was mostly to ensure that the students were on the right track. In the last 15-20 minutes, students 

individually attempted the post-test which was the same problem as in the pre-test with minor 

modifications on surface features of the problem. 

Table 6.1 below summarizes the similarities and differences in the experimental 

procedures of the control and the treatment groups. 

 

Table  6.1 Comparison of the experimental procedures of the control and the treatment 

groups 

Group 
Treatment group 

(N ~ 110) 

Control group 

(N ~ 110) 

Similarities 

- Students worked on the pre-test and post-test problems 

individually. 

- Students worked in small groups on the exercises in the 

exercise sets of the tutorials or the standard materials. 

- Students were asked to notify the facilitator after they had 

completed each exercise in the set. 

Differences 

- Students worked on the 

tutorials. 

- Short conversation with 

facilitator after each exercise. 

- The facilitator elicited 

students’ ideas and provided 

hints if needed, but did not tell 

the answer. 

- Students worked on the 

standard materials. 

- Printed solution provided after 

each exercise. 

- The facilitator clarified the 

solutions if needed, but did not 

tell the answer. 
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 6.4 Data sources and analysis 

Students’ worksheets of the pre-test, post-test, and the tutorial were collected. Unlike 

mechanics problems in the spring 2010 study in which there were two separate aspects: physics 

and representations, the electricity problems in the fall 2010 study did not have such 

discrimination. The physics of the problem must be understood in order to set up the correct 

integral for the problem. The integral was the mathematical representation of the physical 

situation described in the problem. The solution to the problem, therefore, consisted of only the 

integral representing the quantity being asked. The solutions to the pre-test and post-test 

problems in the fall 2010 study were as simple as setting up and computing an integral. For these 

reasons, we did not grade these problems using a rubric, but instead categorized students’ 

solutions as correct or incorrect, depending on the correctness of the integral they set up. 

Students were provided the integral formulae for the kinds of integral they encountered in the 

problems, so we did not include students’ computation of the integral in the analysis. 

Because of the binomial categorization of students’ solutions in the pre-tests and post-

tests, and because of the purpose of testing the significance of the difference between two 

groups, the appropriate statistical test for our study was the Fisher’s exact test (Field, 2009). The 

null hypothesis was that the two groups were from the same population. The errors that students 

made in their solutions to the pre-test and post-test of each FOGLI were also recorded. These 

errors were then collapsed into categories corresponding to the steps in applying the integral 

concept to physics problems discussed in chapter 3, i.e. errors in recognizing the need for an 

integral in the problem, errors in setting up the infinitesimal quantity, errors in accumulating the 

infinitesimal quantity, errors in computing the integral. 

 6.5 Results 

In this section, we present the pre-test and post-test problems, the number of students 

having the correct and incorrect integrals in each group, and the results of the Fisher’s exact test 

in each of the three FOGLI’s. Students’ errors in each category will also be discussed. 
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 6.5.1 Results of the FOGLI session 1 

 6.5.1.1 Result of the pre-test and post-test 

There were 107 students in the control group and 112 students in the treatment group in 

the FOGLI session 1. Students in both control and treatment groups worked with the same 

partners as in their regular studio sessions. 

In the first 10 minutes of the FOGLI session, all students in both control and treatment 

groups worked independently on the pre-test which was a problem on finding the net electric 

field due to a charged rod at one end of the rod. The statement and solution of the pre-test 

problem are presented in Figure 6.25 and Figure 6.26 below. 

In the next 30 minutes, the students in the control groups worked on the standard material 

1. Students were required to notify the facilitator after they had completed each exercise. The 

facilitator then provided the students with the solution to the exercise they had just completed. 

The students in the treatment group worked on our tutorial 1. Students were asked to check-in 

with the facilitator after they completed each exercise. The facilitator then engaged in a 

conversation with the students to elicit their ideas about the exercise and provided hints to help 

students solve the problem if needed, but did not tell them the solution. All students in both the 

control and the treatment groups were able to solve the exercises. The facilitator did not have to 

provide any hint to help students with the exercises of the tutorial 1. 

In the last 10 minutes of the FOGLI session, students in both the control and the 

treatment groups worked individually on the post-test, which was the same problem as the pre-

test. 
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Figure  6.25 Pre-test problem in the FOGLI session 1 

 

Figure  6.26 Solution to the pre-test problem in FOGLI session 1 

 

 

The integral representing the net electric field at the x = 0 end of the rod was 

2

0

2netE kxdx= ∫ . The number of students obtaining the correct and incorrect integral in the pre-

test problem is presented in Table  6.2.  

 

Solution to the pre-test problem – FOGLI session 1 
 

 

x x = 0 x = 2 

?E =
��

 

dx 

dE
���

 

 

Consider a small segment dx along the rod, which carries a charge: ( )dq x dxλ=  

This charge causes at the origin an electric field: 2

dq
dE k

r
= . 

The distance from dq to the origin is also the location x of the charge, so: 

( ) 3

2 2 2

2
2

x dxdq x dx
dE k k k kxdx

x x x

λ
= = = =  

Because x is positive along the rod, λ(x) is also positive, which means that the charge on the 
rod is positive. So, The fields due to all charges along the rod at the origin are in the –x 
direction and has a magnitude: 

( )
22 2

9 10

0 0

2 2 4 4 9 10 3.6 10 /
2

x
E dE kxdx k k x x x N C

 
= = = = = = 

 
∫ ∫

 

Pre-test problem – FOGLI session 1 
 
A thin non-conducting rod is lying along the x axis with the two ends at x = 0.0 m and x = 2.0 
m. The charge on the rod is distributed as per the following function: 

( ) 3
x xλ α=  

where λ(x) is the charge density at location x; α is a positive constant. 
Find the electric field due to the rod at the left end of the rod, located at x = 0.0 m. 

 

x x = 0 x = 2 

?E =
��
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Table  6.2 Number of students getting the correct and incorrect answer in the pre-test 

problem of FOGLI session 1  

 Correct Incorrect Total 

Control 27 80 107 

Treatment 35 77 102 

Total 62 157 219 

 

The p-value from the Fisher’s exact test performed on this contingency table was  

p = 0.37, which meant we could not reject the null hypothesis: the two groups were from the 

same population. In other words, there was no statistically significant difference between the 

control and the treatment group in the pre-test of FOGLI session 1. 

The post-test problem was identical to the pre-test problem, so the integral for the electric 

field was the same: 

2

0

2netE kxdx= ∫ . The number of students obtaining the correct and incorrect 

integral in the post-test problem is presented in Table  6.3.  

 

Table  6.3 Number of students getting the correct and incorrect answer in the post-test 

problem of FOGLI session 1 

 Correct Incorrect Total 

Control 38 69 107 

Treatment 58 54 112 

Total 96 123 219 

 

The p-value from the Fisher’s exact test performed on this table was p = 0.02, so we 

could reject the null hypothesis: the two groups were from the same population. In other words, 
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there was a statistically significant difference between the control and the treatment group in the 

post-test of FOGLI session 1. 

 6.5.1.2 Analysis of errors in the pre-test and post-test 

Table  6.4 below summarizes the number and percentage of students making each kind of 

errors in the pre-test and post-test of the FOGLI session 1. Note that the number of students in 

each group in this table does not add up to the total number of students in that group (and the 

percentage does not add up to 100%) because one student might make more than one mistake 

and there were students who did not make any error. 

 

Table  6.4 Number and percentage of students making each kind of error in FOGLI 1 

 
Control  

Pre-test 

Control  

Post-test 

Treatment 

Pre-test 

Treatment 

Post-test 

Not recognizing the need for an 

integral 

31 

(29%) 

12 

(11%) 

16 

(14%) 

3 

(3%) 

Incorrect expression for the 

infinitesimal quantity 

23 

(22%) 

16 

(15%) 

17 

(15%) 

5 

(5%) 

Incorrect accumulation of the 

infinitesimal quantities 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Incorrect computation of the 

integral 

19 

(18%) 

12 

(11%) 

36 

(33%) 

18 

(16%) 

 

Overall, the number of students making each error decreased from the pre-test to the 

post-test. The students who did not recognize the use of the integral in the problem attempted to 

use the relation 
Q

L
λ =  to find the total charge Q  on the rod and plugged Q  in the Coulomb’s 

equation, or claimed that the net electric field at 0x =  was zero because ( )0 0λ = . The students 
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who set up incorrect expression for the infinitesimal quantity integrated ( )xλ  only and plugged 

the result into Coulomb’s equation with r  as a constant. Students in both groups made a lot of 

errors when manipulating the integral. Some of these errors were: treating r  in Coulomb’s 

equation as a constant or having incorrect expression for r , treating λ  as a constant, having 

wrong limits of the integral. In the pre-test and post-test problems of this FOGLI session, the 

electric field due to each charge element on the rod pointed in the same direction, so the net field 

was the algebraic sum of all the fields due to element charges. So there were no errors on 

accumulating the infinitesimal quantities. 

 6.5.1.3 Conclusion from the FOGLI session 1 

The treatment group did not outperform the control group in the pre-test but they did in 

the post-test. The error analysis presented in Table  6.4 above shows that our tutorial 1 reduced 

the percentage of students making each kind of errors from the pre-test to the post-test more than 

the standard material 1 did. These results indicated that the students learning with our tutorial 1 

improved their ability to apply the integral to problems on electric field more than the students 

learning with the standard material 1. In other words, students seemed to learn more from the 

segmented exercises than from the same (not segmented) practice exercises and solutions.  

Although there were more students in our treatment group succeeded in the post-test than 

in the pre-test, the percentage was only about 50% in the post-test. This suggests that although 

our tutorial 1 has a positive impact on students’ learning, it still needs to be improved to help a 

larger portion of students learn about integral. 

 6.5.2 Results of the FOGLI session 2 

 6.5.2 Results of the pre-test and post-test 

There were 105 students in the control group and 106 students in the treatment group in 

the FOGLI session 2. In the first 10 minutes of the FOGLI session 2, all students in both control 

and treatment groups worked independently on the pre-test problem which asked for the 

equivalent resistance of a conductor in the shape of a truncated cone. The problem statement and 

solution are presented in Figure  6.27 and Figure  6.28 below. 

In the next 30 minutes, the students in the control groups worked on the standard material 

2 described in Figure  6.17. Students were required to notify the facilitator after they had 
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completed each exercise. The facilitator then provided the students with the solution to the 

exercise, presented in Figure  6.18. 

The students in the treatment group worked on our tutorial 2. Students were asked to 

check-in with the facilitator after they had completed each exercise. The facilitator then engaged 

in a conversation with the students to elicit their ideas about the exercise and provided hints to 

help students solve the problem if needed, but did not tell them the solution. 

Similar to the FOGLI session 1, students in both the control and the treatment groups did 

not have significant difficulties solving the exercises in our tutorial. So the facilitator did not 

have to provide any hint to help students with the exercises of tutorial 2. 

In the last 10 minutes of the FOGLI session, students in both the control and the 

treatment groups worked individually on the post-test problem, which differed from the pre-test 

problem in the shape of the conductor (the expression for the shape of the conductor was given). 

 

Figure  6.27 The pre-test problem in the FOGLI session 2 

 

 

Pre-test problem – FOGLI session 2 
 
Consider a wire of length L in the shape of a truncated cone. The radius of the wire varies 

with distance x from the narrow end according to 
b a

r a x
L

−
= + , where 0 < x < L. 

Derive an expression for the resistance of this wire in terms of its length L, radius a, radius b, 

and resistivity ρ. 

 
 

a 
b 

x L 0 
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Figure  6.28 Solution to the pre-test problem in FOGLI session 2 

 

The correct integral for the resistance in the pre-test and post-test was 
( )

2

0

L
dx

R
r x

ρ

π
=

  
∫  

where ( )
b a

r x a x
L

−
= +  was the radius of the cross-section of the conductor at location x . The 

number of students getting the correct and incorrect integral in the pre-test problem is presented 

in Table  6.5 below. 

 

Table  6.5 Number of students getting the correct and incorrect answer in the pre-test 

problem of FOGLI session 2 

 Correct Incorrect Total 

Control 8 97 105 

Treatment 8 98 106 

Total 16 195 211 

 

Solution to the pre-test problem – FOGLI session 2 
 
Consider a thin resistor whose thickness dx is small enough that over this thickness, the 
resistivity changes very little and hence can be considered constant, then its resistance is: 

( )
2

dx dx
dR

A r x

ρ
ρ

π
= =

  
 where r(x) is the radius of the resistor at the location x, whose 

function can be found using the coordinate system as drawn: ( )
b a

r x a x
L

−
= +  

So   2

dx dx
dR

A b a
a x

L

ρ
ρ

π

= =
− 

+ 
 

 

Then the resistance of the whole resistor is: 

2

0

0

1 1 1

L

L
dx L L L

R dR
b aa b a b b a abb a a xa x

LL

ρ ρ ρ ρ

π π π
π

 
= = = = − = −− −  −  ++ 

 

∫ ∫  
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The p-value from the Fisher’s exact test performed on this table was p = 1.00, which 

meant that the two groups were very likely to be recruited from the same population. In other 

words, there was no statistically significant difference between the control and the treatment 

group in the pre-test of FOGLI session 2. 

The post-test problem was similar to the pre-test problem except that the function for the 

radius of the conductor. The integral for the equivalent resistance was the same: 
( )

2

0

L
dx

R
r x

ρ

π
=

  
∫  

where ( ) 2

2

b a
r x a x

L

−
= +  was the radius of the cross-section of the conductor at location x . The 

number of students obtaining the correct and incorrect integral in the post-test problem is 

presented in Table  6.6.  

 

Table  6.6 Number of students getting the correct and incorrect answer in the post-test 

problem of FOGLI session 2 

 Correct Incorrect Total 

Control 33 72 105 

Treatment 49 57 106 

Total 82 129 211 

 

The p-value from the Fisher’s exact test performed on this table was p = 0.03, which 

meant that it was unlikely that the two groups were recruited from the same population. In other 

words, there was a statistically significant difference between the control and the treatment group 

in the post-test of FOGLI session 2. 

 6.5.2.2 Errors in the pre-test and post-test 

Table  6.7 below summarizes the number and percentage of students making each kind of 

error in the pre-test and post-test problems. 
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Table  6.7 Number and percentage of students making each kind of error in FOGLI 2 

 Control  

Pre-test 

Control  

Post-test 

Treatment 

Pre-test 

Treatment 

Post-test 

Not recognizing the need for an 

integral 

12 

(11%) 

0 

(0%) 

6 

(6%) 

1 

(1%) 

Incorrect expression for the 

infinitesimal quantity 

52 

(50%) 

53 

(50%) 

55 

(52%) 

27 

(25%) 

Incorrect accumulation of the 

infinitesimal quantities 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Incorrect computation of the 

integral 

36 

(34%) 

17 

(16%) 

55 

(52%) 

17 

(16%) 

 

The students who did not recognize the need for an integral in the problem just plug the 

expression for ( )xρ  into the formula for the resistance of a conductor with constant resistivity 

and claimed that as the final answer. The most common error that led to the incorrect expression 

for the infinitesimal quantity was the presence of the total length L  of the conductor in addition 

to the infinitesimal term dx  (i.e. 
L

dR dx
A

ρ
=  instead of dR dx

A

ρ
= ). Since the large conductor 

could be considered as a series of infinite number of infinitesimally thin resistors, the equivalent 

resistance could be found by adding up all of the infinitesimal resistance and not the inverse of 

resistance as in the case of capacitance (i.e. R dR= ∫ ). So there was no student making error in 

the accumulation step. The errors in computing the integral included incorrect variable of 

integration, incorrect limits of the integral, confusion between constants and variables. 

 6.5.2.3 Conclusion from the FOGLI session 2 

The results of the FOGLI session 2 were similar to those of the FOGLI session 1: the 

treatment group did not outperform the control group in the pre-test but they did in the post-test. 

The same trend was observed in the error analysis in FOGLI session 2 as in the FOGLI session 
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1: fewer errors were made in the post-test than in the pre-test. This implied that students learning 

either with our tutorial 2 or the standard material 2 had improved their ability to apply the 

integral to physics problems. Larger reduction was also observed in the treatment group than in 

the control group. These results indicated that our tutorial 2 helped students improve their ability 

to apply the integral to electricity problems more than the standard material 2 did. A possible 

explanation for this result was that as students worked on short, simple exercises and did not 

know the final goal of the sequence (i.e. they did not know what exercise would come next), they 

might attend more closely to every details of each exercise. This helped them learn the meaning 

of each term in the equations being used and the procedure being done. On the other hand, as 

students attempted the problem as a whole and then read the printed solution, they already had a 

final goal to look forward to. That might make them overlook necessary information and skim 

through the solution to reach the final result quickly without noticing every details of the 

solution. In the particular problem of the FOGLI session 2, as students in the treatment group 

worked through the sequence of exercises, they were led from the case when there were a few 

capacitors to the case when there was infinite number of capacitors. Through this process, 

students learned how the sum of a few capacitance became the integral of capacitance of each 

individual capacitor, and what the infinitesimal term dx  meant (i.e. the separation x∆  between 

the plates of the capacitor became dx  when the number of capacitors became infinite). On the 

other hand, as students in the control group attempted the problem, they started with the equation 

for capacitance of a capacitor with small separation and had to find the capacitance of a capacitor 

with large separation, with no hints on the intermediate steps or procedures. When these students 

read the solution, since they already had the final goal of finding the capacitance, they might just 

look at the equations and the final answer without careful investigation of the strategy described 

in the text of the solution. So these students might not get all of the information presented in the 

solution as they read it. 

Although there were more students in our treatment group succeeded in the post-test than 

in the pre-test, the percentage of students getting the correct answer was still less 50% in the 

post-test. This result was similar to the FOGLI session 1, which implied that our tutorial needed 

to be strengthened to make a positive effect on a larger population of students. 
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 6.5.3 Results of the FOGLI session 3 

 6.5.3.1 Results of the pre-test and post-test 

There were 100 students in the control group and 103 students in the treatment group in 

the FOGLI session 3. In the first 10 minutes of the FOGLI session 3, all students worked 

independently on the pre-test problem which asked for the net current in a wire made of a 

cylindrical wire of radius 1R  at the core, which was coated by a coaxial conducting cylindrical 

shell of inner radius 1R  and outer radius 2R . The core and the shell were carrying electric current 

with different current densities and in opposite directions. The problem statement and solution 

are presented in Figure  6.29 and Figure  6.30 below. 

In the next 30 minutes, the students in the control groups worked on the standard material 

3 described in Figure  6.21 and Figure  6.23. Students were required to notify the facilitator after 

they had completed each exercise. The facilitator then provided the students with the solution to 

the exercise, presented in Figure  6.22 and Figure  6.24. 

The students in the treatment group worked on our tutorial 3 described in Figure  6.19 and 

Figure  6.20. The exercises in the tutorial and the standard material were simple, so all students in 

both the control and the treatment groups were able to solve them correctly without assistance. 

In the last 10 minutes of the FOGLI session, students in both the control and the 

treatment groups worked individually on the post-test problem which was identical to the pre-test 

problem. 
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Figure  6.29 The pre-test problem in the FOGLI session 3 

 

Figure  6.30 Solution to the pre-test problem in the FOGLI session 3 

 

 

The number of students getting the correct and incorrect results in the pre-test problem is 

presented in Table  6.8 below. 

Solution to the pre-test problem – FOGLI session 3 
 
Consider an infinitesimally thin ring which has inner radius r and thickness dr small enough 
that the current density j(r) is almost constant across the cross section of this ring. 
The cross sectional area of this ring is: 

( ) ( )2 2 2 2 22 . 2dA r dr r r r dr dr r rdrπ π π π π= + − = + + − =  (note that dr is very small 

so 
2 0dr ≈ ) 

The current through this cross sectional area is: ( )dI j r dA=  

The current in the inner shell (going into the page) is: 
11 4

3 4

1

0 0

2 2
4 2

RR

inner

r
I dI r dr R

απ
α π α π= = = =∫ ∫  

The current in the outer shell (going out of the page) is: 

( )
22

1 1

3 33
2 3 32 1

2 1

2
2 2 2

3 3 3

RR

outer

R R

R Rr
I dI r dr R Rβ π β π β π βπ

 −
= = = = = − 

 
∫ ∫  

The net current in the wire is then: 

( )4 3 3

1 2 1

2

2 3
net inner outer

I I I R R R
απ

βπ= − = − −  

Pre-test problem – FOGLI session 3 
 
A long, straight wire has a radius R1 and carries a current with current density 

( ) ( )2

1 1j r r r Rα= ≤   going into the page. This wire is coated by a coaxial cylindrical shell 

which has inner radius R1 and outer radius R2, and carries a current with current density 

( ) ( )2 1 2j r r R r Rβ= ≤ ≤  going out of the page. Find the net current in the wire. 

 

R1 

R2 
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Table  6.8 Number of students getting the correct and incorrect answer in the pre-test 

problem of FOGLI session 3 

 Correct Incorrect Total 

Control 33 67 100 

Treatment 42 61 103 

Total 75 128 203 

 

The p-value from the Fisher’s exact test performed on this table was p = 0.31, which 

meant that there was no statistically significant difference between the control and the treatment 

group in the pre-test of FOGLI session 3. 

The number of students obtaining the correct and incorrect integral in the post-test 

problem is presented in Table  6.9.  

 

Table  6.9 Number of students getting the correct and incorrect answer in the post-test 

problem of FOGLI session 3 

 Correct Incorrect Total 

Control 42 58 100 

Treatment 55 48 103 

Total 97 106 203 

 

The p-value from the Fisher’s exact test performed on this table was p = 0.12, which 

meant that there was no statistically significant difference between the control and the treatment 

group in the post-test of FOGLI session 3. 

 6.5.3.2 Analysis of errors in the pre-test and post-test 

Table  6.10 below summarizes the number of students making each kind of error in the 

pre-test and post-test problems. 
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Table  6.10 Number and percentage of students making each kind of error in FOGLI 3 

 
Control  

Pre-test 

Control  

Post-test 

Treatment 

Pre-test 

Treatment 

Post-test 

Not recognizing the need for an 

integral 

20 

(20%) 

7 

(7%) 

27 

(26%) 

8 

(8%) 

Incorrect expression for the 

infinitesimal quantity 

30 

(30%) 

18 

(18%) 

38 

(37%) 

17 

(17%) 

Incorrect accumulation of the 

infinitesimal quantities 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Incorrect computation of the integral 
49 

(49%) 

40 

(40%) 

37 

(36%) 

28 

(27%) 

 

Some of the students who did not use integral in the pre-test and post-test problems in 

FOGLI the session 3 just plugged the expression of current density into the equation I jA=  

where A  was the total area of the wire, and claimed the final expression as the final answer. 

Some other students plugged the radius of the wire into the expression for the current density and 

multiplied by the total area (i.e. ( ) 2I j R Rπ=    ). The incorrect expressions for the 

infinitesimal quantity that students set up were ( )A j r⋅  or ( )A j r dr⋅  instead of ( )j r dA . The 

errors in computing the integral included: confusion between variables and constants, incorrect 

expression for the infinitesimal area dA , incorrect limits of the integral, inappropriate variable of 

integration. 

 6.5.3.3 Conclusion from the FOGLI session 3 

The results of the Fisher’s exact tests indicated that there was no statistically significant 

difference between the control and the treatment groups in both the pre-test and the post-test. The 
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error analysis showed a reduction in the percentage of students making each kind of error in both 

groups. Although a slightly larger reduction was observed in the treatment group than in the 

control group, that was not sufficient to make a significant difference in the number of students 

getting the correct answer in the two groups. 

Taking a closer look at the errors students made, we might find a possible explanation for 

the insignificant result in this FOGLI session. There were three errors that many students in both 

groups made. First, students took the integral of ( )j r  itself and multiplied the result with the 

total area A  of the wire, i.e. ( )I A j r dr= ∫  while the correct integral must be ( )I j r dA= ∫ . 

Twenty eight students in the control group and 33 students in the treatment group made this error 

in the pre-test, while there were still 18 students in the control group and 15 students in the 

treatment group made this error in the post-test. The second error was that students had incorrect 

expression for the infinitesimal area dA . In the pre-test, 34 students in the control group and 27 

students in the treatment group were not able to write the correct expression for dA . In the post-

test, there were still 22 students in the control group and 17 students in the treatment group made 

this error. The third error was the incorrect limit of the integral. Ten students in each group made 

this error in the pre-test, while these numbers in the post-test were 11 students in the control 

group and 10 students in the post-test. We see that there were many students making these three 

errors and there was not much improvement on these errors between the pre-test and post-test in 

both groups. Except for the first error which was similar to the error in the infinitesimal quantity 

in FOGLI session 2, the other two errors were closely related to the fact that students were 

integrating with respect to area. We observed from the individual interviews in the fall 2009 

study that most of the students were having significant difficulty making sense of an integral 

with respect to area, i.e. ( )j r dA∫ . It seemed that students were so familiar with integrating with 

respect to positional variables such as dx , dr , dθ , … so it did not make sense to them to 

integrate with respect to area dA . Almost all of the students in the fall 2009 interviews were not 

able to interpret the meaning of dA  and hence, they failed to derive an expression for dA  and to 

determine the limits of integration. The same difficulties were observed in the FOGLI session 3 

of the fall 2010 study. The fact that there was not much improvement on these errors between the 

pre-test and post-test indicated that our tutorial 3 as well as the standard material 3 seemed to be 
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insufficient in training the students to work with this kind of integral. Therefore, there was no 

significant improvement in the results of the pre-test and post-test. 

 6.6 Conclusion 

In this study, we created three tutorials to facilitate students’ learning to solve electricity 

problems involving the integral concept. Each tutorial consisted of a sequence of exercises and a 

protocol for the conversation between the facilitator and the students after they had completed 

each of the exercises. The exercises in the sequence were designed to lead students from a simple 

case of adding up discrete quantities to the more abstract case of integrating continuous 

quantities. Working through the sequence of exercise, students might learn how an individual 

object became an infinitesimal part of a larger object, and how a sum became an integral. 

Through this process, students learned or reinforced their knowledge of the accumulative nature 

of the integral and the meaning of the integrand as well as the infinitesimal term. All of the 

exercises in the tutorials were pretty simple so all groups were able to get the correct answers. 

Therefore the conversation between the facilitator and the students that took place after each 

exercise was mostly to elicit students’ ideas about the exercise and how they perceived the 

exercises to be related. The facilitator did not have to provide hints to help students solve the 

exercises in the tutorial. 

We conducted focus group learning interviews (FOGLI’s) to test the effectiveness of our 

tutorials in comparison to standard materials. The standard materials consisted of typical end-of-

chapter exercises and solutions that covered the same concepts as the exercises in the tutorials. 

We found that the first two tutorials on the electric field and the resistance problems improved 

students’ ability to apply the integral into physics problems significantly more than the standard 

materials did. However, the percentage of students being able to obtain the correct answer in the 

post-test in these two FOGLI sessions was still less than 50%. So our tutorials must be 

strengthened to facilitate more students to learn about integration in electricity problems. Our 

third tutorial did not provide promising results as the other two. The major reason for this might 

be that the students were unfamiliar with the type integral in the third tutorial. This tutorial 

needed to be revised to teach students even more about integrating with respect to area. 
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 6.7 Limitations and future work 

This study overcame the limitation encountered in the spring 2010 study on the sample 

sizes. Our tutorials in the fall 2010 were administered to all students (about 200+) enrolling in 

the course. However, because the tutorials were administered as part of the studio sessions of the 

course, they were limited on the amount of time and hence the amount of training via the 

tutorials. Each tutorial in this study was much shorter than the tutorials in the spring 2010 study. 

This was the major limitation of our tutorials in this study. 

Although our tutorials had provided some promising results, there was still about half of 

the students who were not able to learn effectively from our tutorials. So we plan on improving 

the training power of the tutorials by extending its length and revising the exercises to better 

address students’ difficulties. 
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Chapter 7 - Investigating the Development of Students’ Application 

of Mathematical Concepts in Physics Problem Solving –  

Two Case Studies 

 7.1 Introduction 

In the spring 2009 semester, we conducted 80 interviews with 20 students on mechanics 

problems involving the integral and the area under the curve concepts. These interviews provided 

us with a close look at students’ difficulties in applying these concepts to mechanics problems 

and the hints that might help students overcome those difficulties, as presented in Chapter 3. The 

findings from these interviews also constituted the basis for the development of tutorials to 

facilitate students’ learning apply the integral and the area under the curve concepts in mechanics 

problems, as presented in Chapter 5. 

The fact that we interviewed the same students for several times on the same concepts 

over a semester also makes it possible to trace the conceptual development of individual students 

over time. In this chapter, we will exploit the longitudinal aspect our study described in Chapter 

3. The transfer in pieces framework by Wagner (Wagner, 2006), which is introduced in sub-

section 2.3.4 of the literature review in this dissertation, will be employed to interpret and trace 

the development of an individual student as he progresses through our interviews. In this 

framework, Wagner introduced the term concept projection, which was “a specific combination 

of knowledge resources and cognitive strategies used by an individual to identify and make use 

of a concept under particular contextual conditions.” (Wagner, 2006, p. 10) 

In order to determine whether a concept is applicable in a certain context, a student has to 

activate and combine the relevant knowledge resources from his/her knowledge structure. These 

knowledge resources constitute a knowledge base on which the student bases his/her reasoning 

about the applicability of the concept. Different students may activate different resources to 

determine whether a concept is applicable in a certain situation. The activation of an 

inappropriate resource or the missing of an appropriate resource in the knowledge base may lead 

the student to perceive a concept as applicable while in fact it is not, and vice versa. 

We define three terms that will used in the following analysis: knowledge frame, 

knowledge base, and concept projection. The knowledge frame refers to how the student frames 
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the situation by putting together the relevant information read out from the situation. For 

example, when an expert is asked to solve one of the algebraic problems of our interviews, he is 

likely to frame the problem as follows: I have a non-constant force presented in algebraic 

representation and I must calculate the work done by that force. I know that the total work is the 

sum of the incremental work on small segments of the path, which becomes an integral when the 

segments become very small. Mathematically, this is done by integrating F ds⋅ . A schematic 

representation of this knowledge frame is presented in Figure  7.1. A knowledge base is a 

collection of knowledge resources that a student puts together in order to reason about the 

applicability of a concept in a certain situation. A concept projection is a “particular set of 

knowledge elements and readout and reasoning strategies that permit a concept to be perceived 

as applicable to a situation having particular characteristics or affordances.” Affordance, 

according to Wagner, is “the support offered by any aspect of a situation that the individual 

perceives as being relevant to the (problem-solving) activity at hand.” (p. 11) 

In this chapter, we present two case studies. The first case study investigates the 

knowledge resources that a student – Alex (pseudonym) – activated to recognize the applicability 

of the integral concept in calculating the work done by non-constant forces in the algebraic 

problems of interviews 2, 3, and 4 in the Spring 2009 study. The research questions in this case 

study are: 

• What resources did Alex use to recognize the applicability of the integral concept 

in calculating the work? 

• How did Alex’s concept projection of the integral concept change as he 

progressed through the interviews? 

The second case study investigates the knowledge resources that another student – Eric 

(pseudonym) – activated to recognize the applicability of the area under the curve concept in 

calculating the work done by non-constant force in the graphical problems of interviews 2, 3, and 

4 of the Spring 2009 study. The research questions in this case study are: 

• What resources did Eric use to recognize the applicability of the area under the 

curve concept in calculating the work? 

• How did Eric’s concept projection of the integral concept change as he progressed 

through the interviews? 
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 7.2 Case study #1 – Algebraic Representation 

 7.2.1 The interview problems 

The algebraic problems in interview 2 (Figure  7.2) and interview 3 (Figure  7.4) involved 

finding the work done by non-constant forces. The force functions ( )F x  were provided as 

algebraic expressions of x . Students had learned from the lecture that the formula for the work 

done by a constant force .F d  became the integral ( )F x dx∫  when the force was not constant 

over the whole distance, but there were no homework or exam problems involving non-constant 

forces. So, students did not have any formal practice in finding the work using the integral prior 

to our interviews. 

A student is most likely to recognize the use of the integral concept in calculating the 

work done by a force if he is able to activate all of the following knowledge resources: 

• The total work W is the sum of incremental work dW on small segments of the 

trajectory, which in turn becomes an integral of the infinitesimal work dW∫  

when the segments are infinitesimally small. 

• The work equals the integral of force. (Note: There is no mention here of what the 

variable of integration is.) 

• The integral must be that of the product of force and the length of a segment, i.e. 

the integral of ( )F x dx . 

These resources constitute a complete knowledge base for the concept projection of the 

integral concept for calculating work. Although these resources seem to be overlap with each 

other, they are treated as separate resources in our analysis for two reasons. 

First, students might activate just one of these resources, which might lead them to an 

inappropriate application of the integral concept in the problem. The activation of the first 

resource – the total work is the sum of incremental works on small segments of the trajectory – is 

productive only if students know the formula for the infinitesimal work on each segment. 

However, our study on students’ understanding of integration in mechanics presented in Chapter 

3 of this dissertation indicates that students usually do not know the formula for the infinitesimal 

quantity. So, it is unlikely that this resource could be spontaneously activated by the students 

when solving the problems. The second resource – the work equals the integral of force – is 
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applicable only to the problems in which the forces are provided as functions of linear 

displacement. If the force is given as a function of time, for instance, then the integral of force 

does not represent the work, but instead the impulse of the force during a certain time interval. 

The second resource needs to be complimented by the third resource to make a complete 

knowledge set for applying the integral concept to calculating the work done by a force. 

The second reason for treating the resources as separate is that some of these resources 

are explicitly presented to the students either in lecture or in the text, so students might just recall 

them without understanding their underpinnings. Oftentimes, such a resource is an equation that 

is provided to the student on an equation sheet during an exam. For example, the knowledge that 

work equals integral of the force was explicitly taught in the course from which our interviewees 

were recruited. Hence, when a student talked about “work equals the integral of force,” it was 

possible that he was just recalling what he had learned from the lecture. 

The algebraic problem of interview 4 (Figure  7.6) also involved calculating the work 

done by a non-constant frictional force, but the force function given was ( )F θ  where θ  was the 

angular displacement of the object on a circular track. The integral ( )F dθ θ∫  is the sum of the 

product of force and angle, but this is not equal to the work done. The total work done is the sum 

of the works on small segments of the track, which is the product of the force and the length of a 

segment of the track. This sum is the integral ( )F dsθ∫  when the length ds  of each segment 

became infinitesimally small. This integral could be written in terms of θ  as ( )F Rdθ θ∫ , 

because of the relation ds Rdθ= . To solve this problem, students must have a concept projection 

of the integral which consists of all three knowledge resources as mentioned above. Without the 

last resource, students might claim any integral of force, such as the integral with respect to angle 

dθ, as the value of the work done by the force. 

Figure  7.1 below shows a representation of a possible knowledge frame that is likely to 

be used by an expert to calculate the work done by non-constant forces in the algebraic problems 

of interviews 2 through 4. We have adapted Wagner’s schematic representation in which the 

knowledge resources used by an individual to frame the problem at hand were highlighted. 

 



171 

 

Figure  7.1 A possible expert’s knowledge frame for calculating the work done by a non-

constant force when the force is provided in graphical representation. 

 

 

We will now analyze the performance of a student, Alex (pseudonym), as he calculated 

the work done by non-constant forces using integrals. This analysis will reveal his concept 

projections for the integral in the work problems and their relation with his success or failure on 

the tasks. 

 7.2.2 Results of case study #1 

 7.2.2.1 Interview 2 – Algebraic problem 

The algebraic problem in this interview is presented in Figure  7.2 below. The velocity of 

the bullet at the end of the muzzle could be obtained by using the work-kinetic energy theorem, 

in which the work done by the spring force is calculated by integrating the force function with 

respect to linear displacement. In this interview, Alex did the algebraic problem prior to the 

graphical problem. He was able to set up the equation for the work-kinetic energy theorem quite 

easily. Then he attempted to find the work done by the spring force. 

Non-constant forces 

Algebraic representation 

Work done by force 

Total work is the sum of incremental works 
 
Work equals the integral of force 

 

The integral must be that of force versus 

linear displacement Fds∫  
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Figure  7.2 The algebraic problem in interview 2 

 

 

Interviewer: So how do you find the work done by the spring force? 

Alex: Work is force time distance [writes F d⋅ ] 

Interviewer: What value of force would you use to plug in? 

Alex: Umm … this one [points at 21000 3000F x x= + ] 

Interviewer: That’s not a value, it’s a function. That means for each value of x you have a 

different value of force. 

Alex: Oh .. okay … force is not constant … so I have to do the integral then. 

Interviewer: What quantity does the integral represent here? 

Alex: Integral of force is work. 

Interviewer: Okay, let’s do it. 

Alex first attempted to use the equation for the work done by a constant force (W F d= ⋅ ) 

to calculate the work done by the spring. Upon realizing that the spring force was not constant, 

he was able to recognize that the “the integral of force is work.” In the language of the transfer in 

pieces framework, we could say that Alex started out not having a concept projection for the 

integral concept for finding the work done by a non-constant force. 

A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) compressing a spring to a maximum 
of 0.2 m as shown.  The gun is then tilted at an angle of 30° and fired.  
 

 
 

The only information you are given about the gun is that the barrel of the gun is frictionless and 
that the gun contains a non-linear spring such that when the gun is held horizontally, the net 
force F (N) exerted on a bullet by the spring as it leaves the fully compressed position varies as 
a function of the spring compression x (m) as given by:   

230001000 xxF +=  
What is the muzzle velocity of the bullet as it leaves the gun, when the gun is fired at the 30° 
angle as shown above? 
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As he was guided to think of the non-constant nature of the force, he was able to recall 

the knowledge that “integral of force is work” which then allowed him to see the use of the 

integral in finding the work.  He then had a concept projection of the integral concept which 

consisted of only one knowledge resource: the work equaled the integral of force. The 

knowledge frame for Alex’s concept projection in interview 2 is presented in Figure  7.3. 

 

Figure  7.3 Alex’s knowledge frame that guides his thinking in the algebraic problem in 

interview 2 

 

 

 7.2.2.2 Interview 3 – Algebraic problem 

The algebraic problem in this interview is presented in Figure  7.4 below. Similar to 

interview 2, the algebraic problem in interview 3 also requires the application of the work-kinetic 

energy theorem with the work done by a frictional force being calculated by an integral of force. 

In this interview, Alex also attempted the algebraic problem prior to the graphical problem. He 

had no difficulty setting up the equation for the work-kinetic energy theorem as well as 

recognizing the integral concept for finding the work done by the frictional force. 

Non-constant forces 

Algebraic representation 

Work done by force 

Work equals the integral of force 
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Figure  7.4 The algebraic problem in interview 3 

 

 

Alex: I have an equation for the frictional force, so I’m gonna take integral of it. 

Interviewer: What does that integral represent? 

Alex: Integral is the work by the frictional force. 

In this problem, Alex no longer struggled with finding the work done by the frictional 

force. He easily recognized that he had to integrate the force function by invoking the knowledge 

resource that “integral is the work.” This was the only knowledge resource that Alex used to cue 

integration in this problem. Although he did not mention that the integral must be of the force 

function with respect to displacement, he wrote down the integral ( )
5

0

F x dx∫  on his worksheet, 

which implied that by “integral”, he meant “integrating ( )F x  with respect to x .” This integral 

was actually the correct integral for the work done by the resistance force of the liquid. So the 

only knowledge resource that “the work equals the integral of force” was adequate for Alex to 

perceive the integral concept as applicable in this problem. In other words, the concept projection 

A 0.1 kg bullet is loaded into a gun compressing a spring which has spring constant k = 6000 
N/m. The gun is tilted vertically downward and the bullet is fired into a drum 5.0 m deep, filled 
with a liquid. 

 

The barrel of the gun is frictionless. The frictional force F(N) provided by the liquid changes 
with depth x(m) as per the following function.   

26.010 xxF +=  

The bullet comes to rest at the bottom of the drum 
What is the spring compression x? 
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of the integral concept which consists of only the second resource in the expert’s frame in Figure 

 7.1 was productively used by Alex in this problem.  

Figure  7.5 below describes the knowledge frame that guided Alex’s thinking about the 

integral concept in this problem. This is identical to the frame he used in the algebraic problem in 

interview 2. 

 

Figure  7.5 Alex’s knowledge frame that guides his thinking in the algebraic problem in 

interview 3 

 

 7.2.2.3 Interview 4 – Algebraic problem 

The statement of the algebraic problem in interview 4 is presented in Figure  7.6 below. 

Similar to the algebraic problems in interviews 2 and 3, this problem also involved the work-

kinetic energy theorem in which the work done by the frictional force was calculated from the 

force function. However, the frictional force in this problem was provided as a function of 

angular displacement instead of linear displacement as in the other two interviews. The integral 

of force, ( )
/ 2

0

F d

π

θ θ∫ , was therefore no longer the value of the work. The correct integral of 

work in this problem must be ( )
/ 2

0

R

F ds

π

θ∫  in which ds Rdθ=  was the length along the track of 

radius R  spanning the angle dθ . In the graphical problem that Alex attempted prior to this 

algebraic problem, he needed hints from the interviewer to recognize that the area under the 

curve was not yet the value of work and that he had to multiply it by the radius of the track. As 

he moved on to the algebraic problem, he easily recognized the use of the integral in calculating 

work by relating this problem with the graphical problem. However, there was a mismatch 

between the integral and the area that made his attempt a failure. 

Non-constant forces 

Algebraic representation 

Work done by force 

Work equals the integral of force 
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Figure  7.6 The algebraic problem in interview 4 

 

 

Interviewer: So what are the similarities and differences between this problem and the 

graphical one? 

Alex: They are the same, I would say. But now you have an equation instead of a graph, 

so I have to do an integral instead of the area under the curve. 

Interviewer: What will your integral look like? 

Alex: [writes down ( )F θ∫ ] 

Interviewer: What variable are you taking integral with? 

Alex: Umm … θ maybe. 

Interviewer: So you must have the differential term … I mean dθ  … to indicate that. 

Alex: Okay [writes ( )
90

0

F dθ θ∫ , starts computing the integral and gets 267.5] 

Interviewer: What is that number? 

Alex: It’s work. 

Interviewer: What is the unit of that number? 

Alex: Unit of work is Joule. 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown.  It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. 
The rolling friction on the straight section is negligible. 
 

 

θ 
R 

vi 

A

 
 

The magnitude of the rolling friction force Froll (N) acting on the sphere varies as angle θ 

(radians) as per the following function 

5.42.17.0)( 2 +−−= θθθrollF  

What is the launch speed of the sphere as it leaves the curve at point A? 
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Interviewer: Let’s look carefully at what quantity you are integrating. You integrate force 

time angle, so what is the unit then? 

Alex: Oh … so Newton time … degree? 

Interviewer: Yes, Newton time degree. But what is the unit of work? 

Alex: Joule. 

Interviewer: But what is one Joule? 

Alex: One Joule is one Newton time meter. So I have to convert degree to meter 

somehow. 

Interviewer: How would you do that? 

Alex: Umm … the sphere travels a quarter of the circle, so the angle is 90 degrees … and 

the length is … a quarter of a circumference is … 2 Rπ  over 4. 

Interviewer: So what is your conversion factor? 

Alex: 90 degrees over 2 Rπ  over 4 meter [writes 
90 180

2

4

R Rπ π
=  degree over meter] 

Interviewer: Are you doing it the other way around? 

Alex: Oh yes, I need meter over degree … so it would be 
180

Rπ
 [does the unit conversion 

and gets 4.67 Joules] 

Right at the beginning of the problem, by comparing the algebraic problem with the 

graphical one, Alex easily recognized that he had to integrate the force function. His written 

integral indicated that by “do an integral,” Alex meant to integrate ( )F dθ θ∫ , i.e. integrate the 

given force function with respect to its variable.  By ignoring the term dθ , Alex demonstrated 

his lack of understanding of the components of an integral, which disabled him from thinking 

about the total work as the sum of infinitesimal work. Further, he did not even have the correct 

expression for the infinitesimal work. Consequently, this prevented him from noticing that the 

expression inside the integral must be ( )F dsθ , i.e. invoking the third knowledge resource in the 

expert’s knowledge frame for the integral concept for calculating the work. In fact, Alex used 

only one knowledge resource from this frame – integral of force was work – together with 

another knowledge resource that “the area under the curve equaled the integral” to decide on the 

applicability of the integral concept in this problem. 
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Figure  7.7 below shows the knowledge frame that Alex used in this problem. As analyzed 

earlier, missing the third knowledge resource from the expert’s knowledge frame led students, 

such as Alex, to perceive any integral of force as the value of work. Alex’s concept projection 

for the integral concept, which consisted of only the second resource in the expert’s frame, 

spanned only the problems in which the force functions ( )F x  were given. So it led to a failure 

when Alex attempted to use it in interview 4 when the force was not given as a function of linear 

displacement. 

 

Figure  7.7 Alex’s knowledge frame that guides his thinking in the algebraic problem in 

interview 4 

 

 

 7.2.3 Summary of Case Study #1 

At the first time Alex encountered the task of calculating the work done by a force using 

the integral concept (i.e. in interview 2), he did not have a concept projection of the integral 

concept so he struggled to find the work done by the force. Upon being guided to think about the 

non-constant nature of the force, he was able to activate the resource that “the integral of force 

was the work,” which was true for the function provided in that interview. This knowledge 

resource also constituted Alex’s concept projection for the integral concept for finding the work 

in the algebraic problem of interview 3. He carried the same concept projection into interview 4, 

where he combined with it one more knowledge resource that “the area under the curve equaled 

the integral.” This development in the knowledge base led to the extension of the span of Alex’s 

concept projection: it then spanned not only problems in which the force was given as a function 

of linear displacement but also as a graph of force versus linear displacement. However, the 

Non-constant forces 

Algebraic representation 

Work done by force 

Work equals the integral of force 

 

Integral equals the area under the curve 
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knowledge base for Alex’s concept projection in interview 4 was missing an important 

knowledge resource: “the integral must be that of ( )F x dx .” Without this resource, his concept 

projection did not span the type of problems in which the force function provided was not that of 

force versus linear displacement. This explained Alex’s failure when he used his concept 

projection in the algebraic problem of interview 4. 

We answer our the research questions in this study as follows: 

• What resources did Alex use to determine the applicability of the integral concept 

in calculating the work? 

Most of the times in our interviews, Alex activated the knowledge resource that “the 

integral of force was the work” to determine use of the integral concept in calculating the work 

done by non-constant forces. In interview 4, Alex did the graphical problem before the algebraic 

problem, so he also activated another resource – “the area under the curve equaled the integral” – 

as a cue for using integral to calculate the work. However, he failed activate the resource that 

“the integral must be that of ( )F x dx ” so he did not recognize that the integral of force in 

interview 4 did not yield the value of work. 

• How did Alex’s concept projection of the integral concept change as he 

progressed through the interviews? 

The first time Alex encountered the algebraic problem, he did not have a concept 

projection for the integral concept in calculating the work. In most of the later instances in the 

interviews, Alex attended to the given function and the knowledge resource that “the integral of 

force was the work” to determine that the integral concept is applicable in the problems. In 

interview 4, he attended to these information and also the integral-area relation to perceive the 

integral concept as applicable. This was a development in his concept projection of the integral 

concept which allowed him to perceive the graphical and the algebraic problems to be similar. 

His concept projection of the integral at that time spanned the problems in which the function of 

force was given in not only the algebraic representation but also the graphical representation. 

However, Alex did not attend to the variable of the force function provided, so his concept 

projection did not span the type of problems in which the force provided was not a function or a 

graph of force versus a variable other than linear displacement. 
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 7.3 Case study #2 – Graphical representation 

 7.3.1 The interview problems 

The graphical problems presented to students in interviews 2 and 3 (Figure  7.9 and 

Figure  7.11) involved finding the work done by non-constant forces from the graphs of force 

versus linear displacement. Students had learned from the lecture that the work done by a force 

equaled the area under the curve of force versus displacement, but there were no homework or 

exam problems in which this knowledge was required. So students did not have any prior 

experience of finding work using the area under the curve prior to our interviews. 

A student is most likely to recognize the use of the area under the curve concept in 

calculating the work done by a force if he possesses the following knowledge resources: 

• The total work is the sum of incremental works on small segments of the 

trajectory; 

• The work equals the area under the curve; 

• The curve must be on a graph of force versus linear displacement, i.e. the graph of 

( )F x  vs. x . 

These resources constitute a complete knowledge base for the concept projection for the 

area under the curve method for calculating the work. These resources could be combined to 

make a more complete resource: the total work is the sum of incremental works on small 

segments of the trajectory which was equivalent to the sum of all incremental areas under the 

curve of force versus linear displacement, i.e. the total area under the curve of ( )F x  vs. x . 

However, we treat them as separate resources in our analysis because of the same two reasons 

mentioned in the case study 1. First, students might activate just one of the resources when 

solving a problem. The activation of only the knowledge resource that “the work equals the area 

under the curve” might lead students to perceive the area under the curve of any graph of force as 

the work done by that force. For example, the area under the curve of force versus time might be 

claimed as the value of work while it is in fact the value of impulse. Therefore, the concept 

projection that allows the recognition and appropriate application of the area under the curve 

concept in finding the work done by a force must include the knowledge resource that “the graph 

must be that of force versus linear displacement.” Second, students might activate a knowledge 
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resource that had been taught explicitly in the lecture without understanding its underpinnings or 

underlying assumptions. The idea that “the work equals the area under the curve” was taught 

explicitly in the lecture, so when students talked about finding work using the area under the 

curve, it was possible that they were recalling this knowledge without understanding the 

underlying accumulation process. 

The graphical problem of interview 4 also involved calculating the work done by friction 

force by the graphical method, but the graph given was that of force versus angular displacement 

of the object on a circular track. The area under the curve was then the sum of the product of 

force and angle, which was not the value of work. To solve this problem, students must have a 

concept projection for the graphical method which consists of all three knowledge resources 

mentioned above. Without the last resource, students would claim that the area under the curve 

was the value of the work done by friction. 

Figure  7.8 below shows a possible knowledge frame that is likely to be used by an expert 

to calculate the work done by non-constant forces in the graphical problems in our interviews. 

 

Figure  7.8 A possible expert’s knowledge frame for calculating work in the graphical 

problems in our interviews 

 

 

We will now analyze the performance of a student, Eric (pseudonym) as he calculated the 

work done by non-constant forces using the area under the curve concept. This analysis will help 

Non-constant forces 

Graphical representation 

Work done by force 

The total work is the sum of incremental works 
 
The work equals the area under the curve 

 

The curve must be that of force versus 

linear displacement 
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identify Eric’s concept projections for the method and their relation with his success or failure on 

the task. 

 7.3.2 Results of case study #2 

 7.3.2.1 Interview 2 – Graphical problem 

The graphical problem in this interview is presented in Figure  7.9 below. The strategy for 

finding the velocity of the bullet is the same as in the algebraic problem, except that the work 

done by the spring force could be now calculated using the area under the curve of force (i.e. the 

triangular section on the graph). With a few hints given by the interviewer, Eric was able to set 

up the equation for the work-kinetic energy theorem. Then he started struggling with the graph. 

 

Figure  7.9 The graphical problem in interview 2 

 

 

A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) compressing a spring as shown.  
The gun is then tilted at an angle of 30° and fired. 

 
 
The only information you are given about the gun is that the barrel of the gun is frictionless 
and when the gun is held horizontally, the net force F (N) exerted on a bullet by the spring as 
it leaves the fully compressed position varies as a function of its position x (m) in the barrel as 
shown in the graph below. 

 
What is the muzzle velocity of the bullet as it leaves the gun, when the gun is fired at the 30° 
angle as shown above 
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Eric: We are not given k and x though. 

Interviewer: What do you need k and x for? 

Eric: Because work done by the spring is 21

2
kx . 

Interviewer: Yes, but can you think of a way to find work done by the spring without 

knowing k and x explicitly? 

Eric: … I don’t know. 

Interviewer: The main source of information about the spring is the graph, so let’s 

explore it. What information can you extract from this graph? 

Eric: The slope. 

Interviewer: What does the slope tell you about the spring? 

Eric: Um … slope is … maybe k … or … work … 

Interviewer: What other information can you read out from the graph? 

Eric: Ummm … I don’t know … I’m not good at graphs though. 

Interviewer: Okay. Did you learn how to find work from graph in the lecture? 

Eric: Ummm … oh, I can find area under the curve … yeah. 

Interviewer: What does the area represent then? 

Eric: It’s work of the spring, right? 

Interviewer: Alright, so let’s do that. 

This was the first time Eric encountered a physics problem involving the area under the 

curve (as he said after the interview). He started out trying to find the values for k  and x  to plug 

in the formula for the work done by the spring force. Upon being hinted to exploit the graph, he 

thought of the slope of the graph though he was not sure what physical quantity the slope 

represented. Although he had learned from the lecture that the work done by a force could be 

obtained by finding the area under the curve of force versus displacement, he failed to recognize 

it in this problem. However, he was eventually able to recall that knowledge resource when 

being asked to think of what he had learned in the lecture that was related to the graph. He also 

found the method applicable to the problem at hand (“I can find the area under the curve”). In 

the language of the transfer in pieces framework, we say Eric had developed a concept projection 

for the area under the curve. Eric’s realization of the applicability of the area under the curve 

concept to this problem was based solely upon a single knowledge resource: “the work equals 
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area under the curve.” He mentioned neither the accumulating of incremental works nor the 

condition under which the area was the value of work (i.e. the graph must be that of force versus 

linear displacement). The knowledge frame that guided Eric as he calculated the work done by 

the spring using the area under the curve in interview 2 is presented in Figure  7.10. 

 

Figure  7.10 Eric’s knowledge frame that guided his thinking in the graphical problem in 

interview 2 

 

 

Next, we will see how Eric’s concept projection for the area under the curve developed as 

he went through the later interviews. 

 7.3.2.2 Interview 3 – Graphical problem 

The graphical problem in this interview is presented in Figure  7.11 below. The initial 

spring compression could be obtained by using the work-kinetic energy theorem, in which the 

work done by the spring was the value of the area under the curve (i.e. the triangular section on 

the graph). 

Eric was presented this problem after he had completed the algebraic problem in this 

interview. The strategy to solve this graphical problem was identical to the previous algebraic 

problem. The only difference was that in the algebraic problem, the work done by the resistance 

force was calculated by computing the integral ( )F x dx∫ , while in the graphical problem, the 

work was calculated by finding the area under the curve of force. 

Since Eric had completed the algebraic problem, he had no difficulty setting up the 

equation for the work-kinetic energy theorem in the graphical problem. He also easily recognized 

that the work done by the resistance force was the area under the curve by relating to the integral 

in the algebraic problem. The following excerpt is from the beginning of the problem. 

Non-constant forces 

Graphical representation 

Work done by force 

Work equals area under the curve 
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Figure  7.11 The graphical problem in interview 3 

 

 

Interviewer: What are the similarities and differences between this problem and the 

previous one? 

Eric: Just that the frictional F is given in a graph instead of an equation. Everything else 

is the same. All I'll have to do is to find the area of the graph. 

Interviewer: What physical quantity does the area represent? 

A 0.1 kg bullet is loaded into a gun compressing a spring which has spring constant k = 6000 
N/m.  The gun is tilted vertically downward and the bullet is fired into a drum 5.0 m deep, 
filled with a liquid. 
 

 
 
The barrel of the gun is frictionless.  The resistance force provided by the liquid changes with 
depth as shown in the graph below.  The bullet comes to rest at the bottom of the drum. 
What is the spring compression x ? 
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Eric: It's the same thing as the integral in the previous problem. It will give me the work 

done by the frictional force. 

In this interview, Eric easily recognized the applicability of the area under the curve in 

finding the work done by the resistance force. There were two knowledge resources that Eric 

explicitly mentioned in his reasoning: “the integral equals the area under the curve” and “the 

work equals the area under the curve.” In the language of the transfer in pieces framework, we 

say that Eric had the concept projection of the area under the curve, which consisted of two 

knowledge resources compared to only one resource as in interview 2. This expansion in the 

knowledge base of Eric’s concept projection of the area under the curve allowed him to easily 

see the similarities between the graphical and the algebraic problems, and hence, see the 

applicability of the area under the curve concept by recognizing its relationship with the 

algebraic integral. Figure  7.12 below shows the knowledge frame for Eric’s concept projection 

for the area under the curve in interview 3. 

 

Figure  7.12 Eric’s knowledge frame that guided his thinking in the graphical problem in 

interview 3 

 

  

 7.3.2.3 Interview 4 – Graphical problem 

The graphical problem in this interview is presented in Figure  7.13. Similar to the 

graphical problems in the previous interviews, this problem could be solved using the work-

kinetic energy theorem. However, the graph given in this problem was the graph of force versus 

angular displacement, so the area under the curve was not the value of work. To find the work 

Non-constant forces 

Graphical representation 

Work done by force 

Integral equals area under the curve 

 

Work equals area under the curve 
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done by the frictional force, students had to convert this graph to the graph of force versus linear 

displacement, or to multiply the area under the given curve by the radius of the track. These 

strategies were equivalent to calculating the integrals ( )
/ 2

0

R

F ds

π

θ∫  and ( )
/ 2

0

R F d

π

θ θ∫ , 

respectively. 

 

Figure  7.13 The graphical problem in interview 4 

 

 

Prior to this problem, Eric had completed the algebraic problem in which the work done 

by the frictional force was calculated by the integral ( )
/ 2

0

R

F ds

π

θ∫ . When he started the graphical 

problem, he was able to relate it with the algebraic problem but in inappropriate ways. 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown. It hits a curved section (radius R = 1.0 m) and is launched vertically at point 
A. The rolling friction on the straight section is negligible. 

 

 

θ 
R 

vi 

A

 
 

The magnitude of the rolling friction force acting on the sphere varies as angle θ as per the 
graph shown below. What is the launch speed of the sphere as it leaves the curve at point A? 
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Interviewer: What are the similarities and differences between this problem and the 

previous problem? 

Eric: Same principles apply.  All the values are the same except instead of an equation 

you are given a graph to find the friction.  So I need to figure out how to do the integral so I'll 

need the area under this graph. [calculated the area and got 267.5] 

Interviewer: What quantity does the area under this graph represent? 

Eric: It’s work, isn’t it? 

Interviewer: What’s the unit of your area? 

Eric: Shouldn’t it be Joule? 

Interviewer: You find the area, which means you multiply the quantities on the vertical 

and horizontal axes. Their units must be multiplied too. 

Eric: So … Newton times degree. 

Interviewer: Is that the unit you expect for work? 

Eric: No, I want Joule … or Newton times meter. 

Interviewer: So how do you convert degree to meter? 

Eric: One revolution would be 360 degrees but I don't know where meter comes in. 

Interviewer: What unit should the conversion factor carries then? 

Eric: Meter over degree. 

Interviewer: So how many meters correspond to how many degrees? 

Eric: I don’t know. 

Interviewer: Let’s consider a circle. What are the angles and circumference? 

Eric: One revolution is 360 degrees … or 2π … and circumference is 2πR. 

Interviewer: So what is the conversion factor then? 

Eric: 2πR meters over 360 degrees. [did the unit conversion and got the correct value of 

work] 

At the beginning of the problem, Eric stated that the area under the curve was the value of 

the work done by friction by invoking two knowledge resources: the integral equaled the area 

under the curve (“So I need to figure out how to do the integral so I'll need the area under this 

graph”); and the work equaled the area under the curve of force (“It’s work, isn’t it?”). 

However, these two knowledge resources were not appropriately used in this case. First, Eric 

recognized the use of the area under the curve by relating it with the integral he encountered in 
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the algebraic problem, though there was a difference between them. The integral in the algebraic 

problem was ( )
/ 2

0

R

F ds

π

θ∫  which corresponded to the area under the curve of force versus length 

along the curve while the graph provided was that of force versus angle. Second, the area under 

the curve equaled the value of work only if the curve was of force versus linear displacement, 

which was not the case of the graphical problem at hand. So the concept projection consisting of 

these two knowledge resources, which Eric successfully used in the graphical problem in 

interviews 2 and 3, is not applicable in this problem. In the transfer in pieces language, Eric’s 

concept projection for the area under the curve did not span the type of problems in which the 

graph provided was not that of force versus linear displacement. The missing of the knowledge 

resource that the area under the curve was the value of work only in the case that the curve was 

on a graph of force versus linear displacement in Eric’s concept projection for the area under the 

curve led to his overuse of the concept. Figure  7.14 below shows the knowledge frame for Eric’s 

concept projection for the area under the curve in interview 3 

 

Figure  7.14 Eric’s knowledge frame that guided his thinking in the graphical problem in 

interview 4 

 

  

 7.3.3 Summary of Case Study 2 

In interview 2 through interview 4, Eric developed and applied his concept projections 

for the area under the curve method for calculating the work done by non-constant forces. At his 

first encounter with the task, Eric did not have a concept projection for the area under the curve, 
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Work equals area under the curve 
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so he did not spontaneously recognize the applicability of the area under the curve concept in the 

graphical problem of interview 2. Only upon being hinted to recall the strategy for finding the 

work from a graph that he had learned in the lecture was Eric able to invoke the knowledge 

resource that “the work equaled the area under the curve of force.” This knowledge resource by 

itself constituted the entire knowledge base for Eric’s first concept projection for the area under 

the curve. This rudimental concept projection was adequate for Eric to solve the graphical 

problem in interview 2, because the graph provided was that of force versus linear displacement 

and the area under the curve was the value of work. 

In interview 3, Eric added another knowledge resource – “the integral equaled the area 

under the curve” – to the knowledge base for his concept projection for the area under the curve 

by relating it with the integral in the algebraic problem. This expansion in the knowledge base of 

the concept projection allowed him to perceive the algebraic and graphical problems as very 

similar (“All I'll have to do is to find the area of the graph”) although they were presented in 

different representations. Having carried his concept projection consisting of those two 

knowledge resources into interview 4, Eric spontaneously recognized that finding the area under 

the curve was a way of doing the integral which would result in the value of work. However, the 

graph provided in interview 4 was that of force versus angular displacement and hence the area 

under the curve was not yet the value of work. The knowledge base of Eric’s concept projection 

contained the resource that “work is the area under the curve”, but did not contain the resource 

that “the curve must be on a graph of force versus linear displacement.” Thus Eric failed to 

recognize that the area under the curve in interview 4 was not the value of work. 

We answer our research questions for this case study as follows: 

• What resources did Eric use to recognize the applicability of the area under the 

curve concept in calculating the work? 

At the first time Eric encountered the graphical problem, he was not able to activate the 

resource that “the work equaled the area under the curve of force.” As he progressed through the 

interviews, he was able to activate that resource, as well as the resource that “the integral equaled 

the area under the curve.” However, he was not able to recognize that “the curve must be on a 

graph of force versus linear displacement” so he failed to recognize that the area under the curve 

of force in interview 4 was not yet the value of work. 
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• How did Eric’s concept projection of the integral concept change as he progressed 

through the interviews? 

The first time Eric encountered the graphical problem, he did not have a concept 

projection for the area under the curve concept in calculating the work. Upon being prompted, 

Eric attended to the fact that he was provided a graph and needed to calculate the work, which 

cued the activation of the resource that “the work equaled the area under the curve of force.” In 

interview 3, Eric did the algebraic problem before the graphical problem so he also attended to 

the integral-area relation and used it as a cue for finding the work using the area under the curve 

concept. This was a development in his concept projection of the area under the curve concept 

which allowed him to perceive the graphical and the algebraic problems as similar. However, 

Eric did not attend to the variable on the graph of force provided, so he did not recognize that the 

area under the given curve was not the value of work. In other words, Eric’s concept projection 

did not span the type of problems in which the force was provided as a graph of force versus a 

variable other than linear displacement. 

 7.4 Conclusions 

We have utilized Wagner’s theoretical framework of concept projection to interpret and 

trace the development of individual students’ application of the integral and the area under the 

curve concepts to physics problems. We found that at the first time the students encountered the 

task, they usually did not have a concept projection for the integral and the area under the curve 

concepts. Hence, they did not recognize the use of these concepts in the problems at hand. 

Instead, they relied on pre-determined formulae (W F d= ⋅  in the case of Alex and 21

2
W kx=  in 

the case of Eric) to calculate the desired quantities. With the hints provided by the interviewer, 

these students were able to recall one knowledge resource they had learned in the course, which 

constituted the first, rudimental knowledge base for their concept projections for the concepts.  

Activating this resource helped students recognize the use of those concepts in the problems at 

hand. As students progressed through the interviews, they gradually enriched the knowledge 

bases for their concept projections by adding more knowledge resources, which allowed them to 

perceive the concepts as applicable to a broader range of problems. In other words, students 

expanded the span of their concept projections as they progressed through the interviews. 
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This finding aligns with Wagner’s transfer in pieces framework as per which “transfer is 

understood … as the incremental growth, systematization, and organization of knowledge 

resources that only gradually extend the span of situations in which a concept is perceived as 

applicable.” (Wagner, 2006, p. 10). However, we also found from our studies the instances when 

students’ concept projections did not span the problems asked in our interview. In such 

situations, students either did not perceive the concept as applicable in the problem when it was 

in fact applicable, or conversely they perceived it as being applicable when it was in fact not 

applicable. We found the latter behavior in our studies. Alex claimed the integral of the force 

function ( )
/ 2

0

F d

π

θ θ∫  as the work done by the force while it was not. In this case, the missing of 

one important knowledge resource, Alex’s concept projection for the integral – “the integral 

must be that of force versus linear displacement Fds∫ ” – led to his overuse of the integral 

concept. Similarly, Eric claimed that the area under the curve of  ( )F θ  vs. θ  was the work done 

by the force when, in fact it was not so. The missing of an important knowledge resource Eric’s 

concept projection for the area under the curve – “the curve must be that of force versus linear 

displacement, i.e. ( )F x  vs. x ” – led to his overuse of the area under the curve concept. 

 7.5 Implications for instruction 

The two case studies presented in this chapter revealed the resources, readout and 

reasoning strategies that students used to determine the applicability of the integral and the area 

under the curve concepts in calculating the work done by non-constant forces in work-energy 

problems. Students’ success and failure on integration tasks were also explained based on the 

resources activated, the readout and reasoning strategies used. These studies suggested that 

students’ success or failure in recognizing the applicability of a concept depended upon the 

resources and the cognitive strategies the students’ used. When a student did not activate a 

certain resource that was necessary in the situation, it was possible that he did not have that 

resource (lack of a resource) or he was unaware of the type of information given (lack of a 

readout strategy). The case studies presented in this chapter suggested a strategy for facilitating 

students’ problem solving. The strategy required physics instructors to be aware of the resources 

students are possessing and/or missing, and be prepared to provide appropriate prompting that 
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might cue students to activate the necessary resources and prompting that guides students 

attention to certain features of the situation at hand. 

In our tutorials, the sequence of math and physics exercises in tutorial 3 prepared students 

with the appropriate resources necessary for work-energy problems involving non-constant 

forces. The math and physics exercises in tutorial 4 prepared the students with the resources and 

also prompted students’ attention to the variable of the given force function. The promising 

results of these tutorials in helping students learn to apply the integral and the area under the 

curve concepts in work-energy problems indicated that the strategy we proposed above might be 

an effective strategy to facilitate students’ problem solving. 
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Chapter 8 - Summary and Conclusions 

 8.1 Summary of this research project 

The research project presented in this dissertation has two phases. In phase 1 of the 

project, we investigated the difficulties students encountered in applying the integral and the area 

under the curve concepts in physics problem solving, and the hints that might help them 

overcome those difficulties. Based on the findings of phase 1, in phase 2 of the project, we 

created tutorials to facilitate students’ learning to solve physics problems with integral and the 

area under the curve, and tested their effectiveness in comparison to typical textbook problems. 

We summarize the results of each phase of the project below. 

 8.1.1 Results from phase I of the project 

The application of the integral and the area under the curve concepts in physics problem 

solving can be broken up into four steps: 

- Step 1: recognize the need for an integral 

- Step 2: set up the expression for the infinitesimal quantity 

- Step 3: accumulate the infinitesimal quantities 

- Step 4: compute the integral 

We investigated students’ difficulties with each of these steps in the context of mechanics 

and electricity. In mechanics, our interview problems involved calculating the work done by a 

non-constant force from the force function. We found that not many students were able to 

recognize the relation ( )W F x dx= ∫  although they had learned about it in the course. Students’ 

unfamiliarity with the task might explain for this result. We also found that most of the students 

did not think about the integral as an accumulation of small quantities to obtain the total quantity, 

so they had difficulties setting up the correct integral for the work done by a force when the force 

was given as a function of angular displacement. 

Our interview problems in electricity involved calculating several physical quantities 

(e.g. electric field, resistance, capacitance, electric current) from other non-constant quantities 

(e.g. charge distribution, resistivity, current density). We found that students did not have 
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significant difficulties recognizing the need for an integral in a physics problem, although there 

were still a few students who did not recognize it. The non-constant nature of a physical quantity 

provided in the problem statement was found to be the major cue for students to think of using 

integration in the problem. We found the real stumbling block to be the step 2: setting up the 

expression for the infinitesimal quantity. Most of the students in our study did not indicate an 

understanding of the accumulation process underlying the integral. Students did not think of the 

total quantity as a sum of infinitesimal quantities, even when being prompted by the interviewer. 

Most of them were unable to set up the correct expression for the infinitesimal quantity because 

they did not understand what the “infinitesimal quantity” meant, and could not interpret the 

meaning of the infinitesimal term (i.e. dx , dr , …) in the integral. Once the expression for the 

infinitesimal quantities was set up, students usually integrated it immediately without noticing 

how the quantities should be added up. This tendency led students to errors when the quantities 

to be accumulated were vector quantities (e.g. electric field) or quantities that must be added 

reciprocally (e.g. capacitance of a series of capacitors). We also found that students had 

difficulties computing the integrals that were set up. These difficulties included determining 

variables and constants in an integral, determining the limits of the integral, converting one 

variable to another. 

Most of the students’ difficulties described above were due to students not understanding 

the accumulation process underlying the integral. So the hints that helped them overcome those 

difficulties guided them to think about the integral as a sum of infinitesimal quantities. This 

could be done by analyzing the structure of the integrand and interpreting the meaning of each of 

the terms and symbols in the integral. 

We also investigated students’ application of the area under the curve concept in physics 

problems in mechanics and electricity. In these problems, the integrals must be evaluated 

graphically using the area under the curve concept. In mechanics, the problems involved 

calculating the work done by a non-constant force from the graph of force versus displacement. 

Only a few students could recognize that the work equaled the area under the curve of ( )F x  vs. 

x , although they had learned about it. Students failed to recognize that the area under the curve 

of ( )F θ  vs. θ  was not the value of work. This error indicated that students might not know 

what quantity was being accumulated when calculating the area under the curve. Asking students 
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about the structure of the Riemann sum underlying the calculation of the area under the curve 

helped students understand the physical meaning of the area under the curve. 

In electricity problems, students had to compute the integrals set up from the problem 

statements by calculating the area under the curve when there were several graphs provided. We 

found that many students had significant difficulties relating an integral with the corresponding 

are under the curve. Asking students to label a graph knowing that the area under the curve in 

that graph equaled a certain integral was the strategy that helped students recognize the correct 

graph to find the area. 

 8.1.2 Answers to the research questions in phase I of the project 

 8.1.2.1 Students’ application of the integral concept in mechanics 

RQ1: To what extent did students recognize the use of the integral in physics 

problems? 

Most of the students were not able to recognize the use of the integral in calculating the 

work done by non-constant forces. Instead, they attempted to use pre-derived formulas to 

calculate the work. Students’ inability to recognize the use of the integral might be attributed to 

their unfamiliarity with the task (since students did not have any problems involving integral 

prior to our interviews) and their strong inclination to using the pre-derived formulas rather than 

attempting an unfamiliar strategy or inventing a new strategy. 

RQ2: To what extent did students understand what quantity was being accumulated 

when calculating an integral? 

The fact that some students knew that they had to calculate the derivative or the integral 

of force but did not know which one suggested that these students did not understand the 

physical meaning of the operators. Therefore, students’ application of the integral in finding 

work might simply be the recall of the previously learned knowledge (i.e. the work equaled the 

integral) rather than an understanding of how the work was being accumulated. 

The fact that most of the students claimed the integral ( )F dθ θ∫  in interview 4 as the 

value of force indicated that these students did not understand what quantity was being 

accumulated when they performed the integral. 

RQ4: What verbal hints may help students overcome those difficulties? 
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For students who attempted to use pre-derived formulas they learned from the course to 

calculate the work, the hints were to help them recognize that those formulas were not applicable 

to the problems at hand. For example, when a student attempted to find the spring constant using 

F
k

x
=  to plug in the formula 21

2
W kx= , the hint was to ask them whether the spring constant 

was actually a constant, which helped them recognize that the concept of “spring constant” did 

not apply for non-linear spring and hence the formula 21

2
W kx=  did not apply either. The hints 

that guided students to think of the non-constant nature of the force triggered students’ thinking 

of integration. The hints on the accumulation of the infinitesimal work to get the total work also 

helped some students to set up the correct integral for the work in interview 4, although the hints 

on units seemed to be easier to understand for the students. 

 8.1.2.2 Students’ application of the integral concept in electricity 

RQ3: What are the common difficulties that students encounter when solving problems 

in electricity involving integration?  

Students generally did not have significant difficulty recognizing the need for integration 

in a problem. However, students did have significant difficulties setting up and computing the 

desired integral. These difficulties included setting up an incorrect expression for the 

infinitesimal quantity and/or accumulating the infinitesimal quantities in an inappropriate 

manner. Determining the limits of the integrals, relating variables in an integral, and computing 

the integrals algebraically were also the difficulties faced by some of the students. 

 8.1.2.3 Students’ application of the area under the curve concept 

RQ1: To what extent did students recognize the use of area under the curve in physics 

problems?  

The majority of students in our interviews did not spontaneously recognize the use of 

area under the curve in calculating work from the graph of force. There were two possible 

explanations: (i) students were not familiar with the method; and (ii) students held strong 

preference on algebraic method. The fact that more students were able to recognize that work 

equaled the area under the curve as they progressed through the interviews suggested that 

students gained familiarity with the concept. Some students, while talking to the interviewer after 
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the interviews, stated that they had not seen any problem using the area under the curve in their 

physics homework or exam. On the other hand, students also expressed an inclination to an 

algebraic approach even when a graph was provided. They attempted to use pre-derived 

formulae for work and just used the graph to collect data on the values of spring constant or 

coefficient of friction to plug in those formulae. Some students explicitly told the interviewer 

that they hated problems with graphs and preferred working with equations. These facts 

supported the second explanation. 

RQ2: To what extent did students understand what quantity was being accumulated 

when calculating the area under a curve?  

In the graphical problems in interviews 2 and 3, the area under the curve itself was the 

value of work. So when a student recognized that work equaled the area under the curve, we did 

not know whether he understood how work was accumulated when calculating the area or he just 

applied what he was taught in the lecture. There were four students in interview 2 stated that the 

area had some meaning but were not able to tell what the meaning was, and three students in 

interview 3 stated that the slope of the line was the coefficient of friction. These were evidence 

that these students did not understand what quantity the slope and the area represented. 

In the graphical problem in interview 4, finding the area meant accumulating the product 

of force and angle, which did not yield the total work. Six out of 9 students spontaneously stated 

that work equaled the area under the curve, but only one of them recognized the need for the 

radius factor without assistance from the interviewer. This was further evidence that although 

students could invoke the knowledge of “work equaled the area under the curve of force,” they 

might not understand what quantity was being accumulated when calculating such an area. 

Therefore, they failed to apply that knowledge in novel situations. 

RQ3: To what extent did students understand the relationship between a definite 

integral and area under a curve?  

Almost all of the students indicated knowledge of “the integral equaled the area under the 

curve,” but only half of them (four students in interview 5, eight in interview 6, and nine in 

interview 7) were able to select the graph corresponding to a pre-determined integral when 

several graphs were present. The errors other students made – choosing a graph based on part of 

the integrand or on the simplicity of the area calculation – indicated that these students did not 

completely understand the relationship between a definite integral and area under a curve. 
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 8.1.3 Results from phase II of the project 

In phase 2 of the project, we created tutorials to facilitate students’ learning to solve 

physics problems involving integration in mechanics an electricity. In mechanics, the tutorials 

aimed at helping students solve problems on work-energy, in which the work done by a force 

must be calculated by the integral or the area under the curve of force. The tutorial consisted of a 

sequence of math and physics exercises, a debate problem, and two problem posing tasks. The 

sequence of math and physics exercises provided students with the opportunity to activate a 

mathematical model or knowledge in a context-free math exercise and then apply it to a simple 

physics context. The debate problem prepared students with the physics background necessary to 

solve problems on the topic. The problem posing tasks were intended to help students practice 

putting together a mathematical model in a physics context. We compared the effectiveness of 

our tutorials in comparison with textbook-style problems (which we called “standard materials”). 

In this dissertation we discussed two tutorials on the topic of work-energy. We found that for 

both tutorials, students in the treatment group learning with our tutorial materials outperformed 

students in the control group learning with standard materials on integral related tasks, although 

there was no difference between the two groups on physics related tasks. This result suggested 

that out tutorials helped students learn about integration better than standard material did, but 

post-test scores around 50% indicate that there is still room for improvement.  The tutorials still 

needed to be enhanced to better prepare students with the physics background of the problems. 

The tutorials in electricity employed a different strategy. For most problems in 

introductory electricity, setting up the integral describing the physical quantities was the major 

part of the solution, and the integrals were more complicated than those in mechanics. For these 

reason, the tutorials in electricity aimed at helping students set up the integrals by braking up the 

process in smaller steps so that students could learn how complicated integrals were formed by 

translating the physical situation described in the statement to mathematical notations. Each of 

the tutorials in electricity consisted of a physics problem in which a physical quantity was 

calculated using the integral. This problem was broken up into several steps or smaller exercises, 

through which students were led from the simple case with discrete quantities to more and more 

complicated cases where there were several quantities or infinites number of infinitesimal 
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quantities. We also tested our tutorials in comparison to textbook-type problems (standard 

materials). We found that two out of the three tutorials that we created in this study helped 

students learn to set up an integral in a physics problem more than the standard material did, but 

the third tutorial did not make a significant improvement. The reason for this might be that the 

students were unfamiliar with the type of integral in the third tutorial. Analysis of the types of 

errors students made in this tutorial implementation supported this hypothesis. Although the 

students in the treatment group learning with our tutorials outperformed the students in the 

control group learning with standard materials, there were still fewer than half of the students 

who could solve the problems in the post-test. This implied that our tutorials needed to be 

improved to help a larger proportion of students learn about integral in electricity problems. 

 8.1.4 Answers to the research questions in phase II of the project 

 8.1.4.1 Tutorials in mechanics 

To what extent did our tutorials help students improve their ability to apply the integral 

and the area under the curve concepts in work – energy problems, compared to standard 

instruction (i.e. sample problems and solutions)? 

Both of our tutorials on the topics of work – energy for a point mass and for a rigid body 

significantly improved students’ ability to calculate a physical quantity using the integral and the 

area under the curve concepts in a physics problem, although they were not so effective in 

preparing students with the physics background of the work – energy problems. These results 

suggested that the tutorials should be improved to better prepare students with the physics 

background of the problems. 

 8.1.4.2 Tutorials in electricity 

To what extent did our tutorials help students improve their ability to apply the integral 

concept to electricity problems, in comparison to standard materials (i.e. sample problems and 

solutions)? 

The first two tutorials on the electric field and the resistance problems improved students’ 

ability to apply the integral into physics problems significantly more than the standard materials 

did. However, the percentage of students being able to obtain the correct answer in the post-test 

in these two FOGLI (Focus Group Learning Interview) sessions was still less than 50%. So our 
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tutorials must be improved to facilitate more students to learn about integration in electricity 

problems. The third tutorial did not provide promising results as the other two. The major reason 

for this might be that the students were unfamiliar with the type integral in the third tutorial. This 

tutorial needed to be revised to teach students even more about integrating with respect to area. 

 8.2 What’s new in my research? 

There have been many studies in physics education research on students’ problem solving 

with multiple representations (e.g. numerical, algebraic, graphical, tabular). Most of these studies 

focus on which representations students choose to use, how they use the representation when 

solving physics problems, and the correlation between the representation students use and their 

success in solving the problems. My research also involves several representations (e.g. 

numerical, algebraic, graphical), but the focus is on how students extract information and 

calculate physical quantities from the representations. 

There have been many studies on how students use integration in physics problems. 

However, these studies mostly discuss the first step (recognizing the need for an integral) and the 

last step (computing an integral, e.g. confusing between variables and constants, incorrect 

limits,). The new idea in my study is that I break up the application of the integral into four steps 

and investigate students’ difficulties with each of the steps. Therefore, my study provides a 

closer look and more detailed insights into student’s difficulties when applying the integral to 

physics problems. 

There have been a few studies on students’ interpretation of graphs in kinematics (e.g. 

McDermott, 1986) and thermodynamics (e.g. Pollock, 2007). My study investigates how 

students use graphs in many other topics of physics, including work done by a force and 

electricity. The new idea in my study is that I also investigate how students use graphs to 

evaluate definite integrals by providing the students with several graphs instead of just the graph 

related to the integral. This helps reveal students’ understanding of the integral-area relation. 

There have been many tutorials created to help students learn physics (e.g. Tutorials in 

Introductory Physics, Activity-Based Tutorials, Open-Source Tutorials). These tutorials aim at 

improving students’ conceptual understanding in physics. However, there are no tutorials 

focusing on helping students learn to apply mathematical concepts in solving physics problems. 
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In my study, I have created tutorials that aim at helping students’ learn to apply one of the most 

important mathematical concepts – the integral – in physics problems. 

 8.3 Implications for instruction  

My research has revealed the common difficulties students encountered in applying the 

integral and the area under the curve concepts in physics problems. Based on these findings, we 

created tutorials to facilitate students’ application of these concepts in physics problem solving. 

These works have many implication for both mathematics and physics instruction, and open new 

directions for future research. 

All of the participants in our research were students in the Engineering Physics course 

sequence at Kansas State University. At least one and two semesters of calculus were required 

for enrolling in the Engineering Physics 1 and 2 courses, respectively. This means that students 

have had quite intensive training in calculus before participating in our research. However, 

students’ performance on integration related tasks in our research indicated that such training in 

calculus did not prepare them well enough to apply their calculus knowledge to physics problems 

solving. Our research found that students did not think of integration as an accumulation process 

and did not understand the meaning of the integrand and the infinitesimal term in the integral, 

therefore they had difficulties setting up the integral from the physics situations. So we suggest 

that instruction in calculus should focus more on the accumulation process underlying 

integration. This could be done by providing the students with problems which ask students to 

compute the integrals using the Riemann sum method rather than using pre-determined integral 

techniques. Calculus homework and examination should include more application problems to 

provide students with the opportunities to apply the calculus concept to physics problems right 

after students have learned about it in calculus. This is similar to the sequence of math and 

physics exercises in our tutorials, which have been proven to improve students’ application of 

integration in physics problems. 

As discussed above, students entering calculus-based physics courses might not have 

satisfactory understanding of calculus concepts and their calculus knowledge might not be ready 

to be applied to physics. Therefore, physics instruction should include tutorials on calculus 

concepts to provide students the opportunity to enhance their calculus knowledge and more 

importantly, to learn how calculus concepts are applied to solve physics problems. The tutorials 
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we created in this research give an example of the kind of mathematics tutorials that have been 

proven to be helpful. Due to time limitation, our tutorials were pretty short and therefore could 

only focus on particular types of physics problems. Physics instructors should create more 

tutorials covering a broader range of topics and problem types, and implement those tutorials as a 

regular activity during recitation or problem solving sessions in the course. 

 8.4 Possibilities for further research 

One of the limitations of the research presented in this dissertation is the small number of 

students participating in the studies of phase I of the project. There were only 20 participants in 

comparison to more than 200 students enrolled in the course. So, further research with larger 

sample sizes is needed to verify the results of these studies. Our study has suggested a four-step 

model for investigating students’ application of the integral in physics problems. This model 

might serve as a lens for other researchers to look at students’ performance on integration tasks 

in physics. 

The tutorials we created in this project are limited in quantity and topics (two tutorials on 

work-energy and three tutorials on electricity), in the types of problems, and in the amount of 

learning experience they provide. However, the results from implementing these tutorials are 

promising. These results encourage researchers to develop more tutorials that cover a broader 

range of topics and problem types, and also increase the amount of learning experience students 

might have from using the tutorials. 

Integration is a dynamic process, in the sense that a large object is chopped into 

infinitesimal pieces on which the physical quantity is evaluated and then is accumulated over all 

pieces to obtain the total quantity. Therefore, computer simulation might be employed to 

demonstrate the chopping and accumulating process happening when an integral is performed. 

Developing computer simulations on the application of calculus concepts in physics is a 

promising direction for future research. 
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