

College of Arts & Sciences Department of Physics

Phenomenology of the Semi-Leptonic Double Higgs Channel

Curtis McLennan, Dr. Andrew Ivanov

August 5, 2022

Introduction

Introduction

The Higgs

- Higgs was experimentally discovered in 2012
- Confirmation of Standard Model predictions
- Parameterized Higgs self coupling term in the Higgs potential important to electroweak symmetry breaking, but weakly bound experimentally

Source

(a) Double Higgs decay

Introduction Background Process

Singular background process 100,000x larger than signal [4]

Introduction

Separating the sheep from the goats

- ▶ How do we differentiate between the signal and the background?
- Kinematic variables!
- Based off work on the di-leptonic channel [3] which is considered much better

Methods

Methods Procedure

Methods Procedure

Total Generated Events

Significance =
$$\frac{S_{exp}}{\sqrt{B_{exp}}}$$

$$\mathsf{N}_{exp} = \mathsf{Acc}() \underbrace{\cdot \sigma \cdot \int L \, dt \cdot \mathsf{BR}()}_{\mathsf{Fixed}}$$

Results New Kinematic Variables

Figure 3: Parton Level ΔR_{lj} : angular separation between the lepton and one of the light jets

Results New Kinematic Variables

Figure 4: Parton Level ΔR_{lb} : angular separation of the lepton and one of the b-jets

Results New Kinematic Variables

Figure 5: Reconstructed invarient masses based off high level variables Higgsness and Topness

Results Significance

	N _{sig}	N _{bknd}	σ
Low Level (10) BDT from [2]	134.34	866,990.56	0.13
Low Level (10) NN	73.29	90,111.28	0.24
High Level (14) NN	54.63	31,897.80	0.31
Extra Variables (21) NN	78.87	40,669.67	0.39

Table 1: Comparison of Neural Networks with different inputs. N_{sig} and N_{bknd} calcuated using Eq. (1). We follow [1] and [3] for applying the high level variables to semi-leptonic channel.

Thank You!

Research Experiences For Undergraduates

Thank you NSF for the opportunity!

Thanks to Dr. Jeong Han Kim and collaborators for sharing their code

Thank you Dr. Ivanov!

Low Level Kinematic Variables				
m _{jj}	Invariant mass of jets	m _{bb}	Invariant mass of the b-jets	
P_{T_l}	Transverse momentum of lepton	Ĕ⊤	Missing transverse momentum	
ΔR_{jj}	Angular separation between jets	$P_{T,ljj}$	Transverse momentum of <i>ljj</i>	
$P_{T,bb}$	Transverse momentum of b-jets	$\Delta \phi_{bb}$ Ijj	Angle between <i>bb</i> and <i>ljj</i> system	
ΔR_{bb}	Angle between b-jets	ΔR_{ljj}	Angle between <i>l</i> and <i>ljj</i> system	
ΔR_{bb}	Angular separation between b-jets	$\Delta R_{l jj}$	Angular separation of <i>l</i> and <i>bb</i>	
ΔR_{lj}	Angular separation of <i>l</i> and one <i>j</i>	ΔR_{lb}	Angular separation of <i>l</i> and one <i>b</i>	
Mid Level Kinematic Variables				
$m_{l\nu}^{H}$	Hness reconstructed $l u$ system	$m_{l\nu}^{T}$	Tness reconstructed $l u$ system	
$m^{H_{l u jj}}_{l u jj}$	Hness reconstructed $l u jj$ system	12		
High Level Kinematic Variables				
Tness	Consistent with <i>t</i> ¯ production?	Hness	Consistent with <i>hh</i> production?	
$\sqrt{\hat{s}_{min}^{(ljjbb)}}$	Minimum COM energy for <i>lbbjj</i>	$\sqrt{\hat{s}_{min}^{(ljj)}}$	Minimum COM energy for <i>ljj</i>	
Tness_T	Top Hypothesis Tness			

$$\chi_{ij} \equiv \min_{\vec{P}_{z}^{\nu}} \left[\frac{\left(m_{b_{i}l\nu}^{2} - m_{t}^{2}\right)^{2}}{\sigma_{t}^{4}} + \frac{\left(m_{l\nu}^{2} - m_{W}^{2}\right)^{2}}{\sigma_{W}^{4}} + \frac{\left(m_{b_{j}qq}^{2} - m_{t}^{2}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{qq}^{2} - m_{W}^{2}\right)^{2}}{\sigma_{W}^{2}} \right]$$

$$T \equiv \min(\chi_{12}^2, \chi_{21}^2)$$

$$H \equiv \min_{\vec{P}_{z}^{\nu}} \left[\frac{\left(m_{l\nu qq}^{2} - m_{2}\right)^{2}}{\sigma_{hl}^{4}} + \min\left(\frac{\left(m_{l+\nu}^{2} - m_{W}^{2}\right)^{2}}{\sigma_{W}^{4}} + \frac{\left(m_{l-\overline{\nu}} - \left(m_{W^{*}}^{peak}\right)^{2}\right)^{2}}{\sigma_{W^{*}}^{4}}, \frac{\left(m_{l-\overline{\nu}}^{2} - m_{W}^{2}\right)^{2}}{\sigma_{W}^{4}} + \frac{\left(m_{l+\overline{\nu}} - \left(m_{W^{*}}^{peak}\right)^{2}\right)^{2}}{\sigma_{W^{*}}^{4}}\right)\right]$$

References I

Higgsness and Topness plots for non-resonant HH production in the single lepton bbWW decay channel.

Technical report, CERN, Geneva, Oct 2019.

All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-040.

A. Adhikary, S. Banerjee, R. K. Barman, B. Bhattacherjee, and S. Niyogi. Revisiting the non-resonant higgs pair production at the HL-LHC. *Journal of High Energy Physics*, 2018(7), jul 2018.

References II

- J. H. Kim, M. Kim, K. Kong, K. T. Matchev, and M. Park. Portraying double higgs at the large hadron collider. *Journal of High Energy Physics*, 2019(9):1–36, 2019.
- A. Papaefstathiou, L. Yang, and J. Zurita.
 Higgs boson pair production at the lhc in the bb w+w- channel.
 Physical Review D, 87, 01 2013.