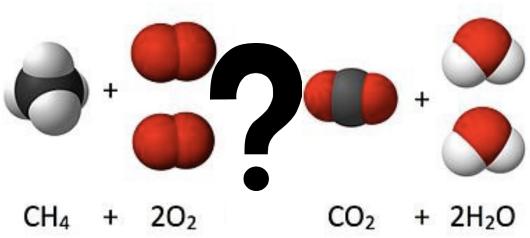
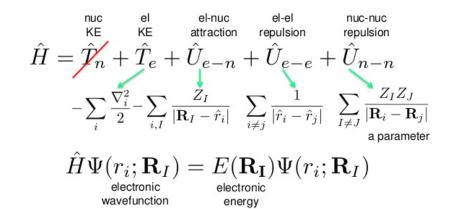
Theoretical Computational Ultrafast Dynamics For Thiophenone

Jeremy Kamman

Department of Physics


Kansas State University

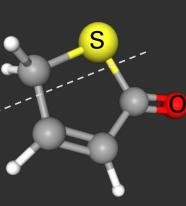
Chemistry's Missing Link


What happens during photoionization?

- > Are there local minimums to trap it?
- What state does it fall into?
- > Can you predict what state it ends in?
- The hope is to create a better picture of the overall process using thiophenone's potential energy throughout fragmentation

How Do You Find The Potential?

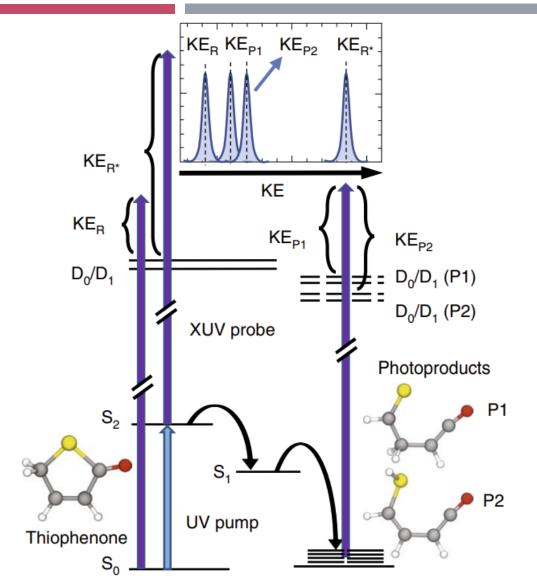
Ę



Computational Methods

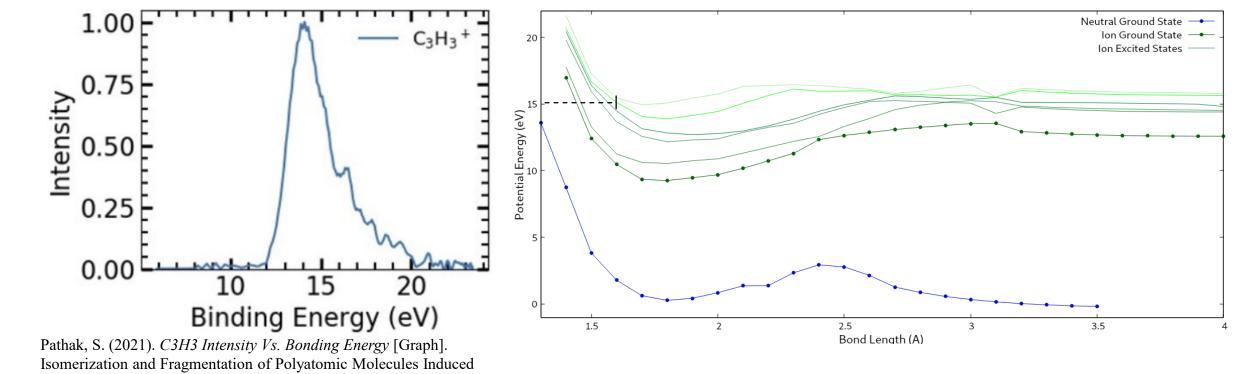
- Utilize Cori supercomputer to run calculations
- Create z-matrix to model molecular geometry
- Slowly pull apart molecule
- Perform Hartree-Fock and geometry optimization
- Finish with MCSCF to the fifth excited state

CC CC CS DI CC CS DI CC CS DI
OC DI HC DI HC DI HC DI HC DI HC
HC DI s1 c2 c3 c4 c5 o6 h7 h8 h9 h1 }


S2	=	2.0		ANG		
СЗ	=	{{CC3}}		ANG		
CS3	=	107.58	5	DEGR	EES	
S4	=	{{CS4}}		ANG		
SC4	=	90.34	9	DEGR	EES	
IH4	=	0.00	0	DEGR	EES	
C5	=	2.0		ANG		
SC5	=	102.59	3	DEGR	EES	
IH5	=	0.0		DEGR	EES	
C6		1.1302		ANG		
CS6	=	118.93	0	DEGR	EES	
IH6	=	180.00	0	DEGR	EES	
C7	=	1.0789	24	ANG		
CC7	=	131.07	8	DEGR	EES	
IH7	=	180.00	0	DEGR	EES	
C 8	=	1.0851	71	ANG		
CC8	=	115.78	5	DEGR	EES	
IH8	=	180.00	0	DEGR	EES	
C9	=	1.0884	36	ANG		
CS9	=	104.83	0	DEGR	EES	
IH9	=	-121.66	8	DEGR	EES	
C10	=	1.0884	36	ANG		
CS10)=	104.83	0	DEGR	EES	
IH10)=	121.66	8	DEGR	EES	
eom=	₹{					6
1						
2		s1 cs2				
3		c2 cc3			CC	
4 5		s1 cs4			CS	
		c4 cc5			CS	
6		c4 oc6			OC	
7		c5 hc7		c3		
8 9		c3 hc8		c2		
		c2 hc9		s1		
10		c2 hc10		s1	hc	s10

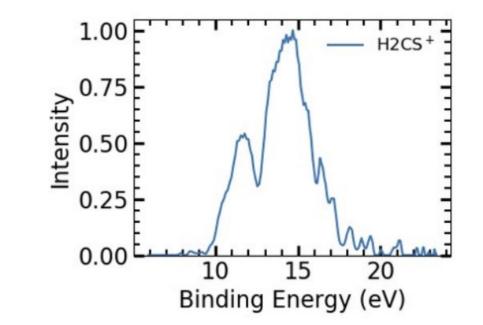
c3 dih4 c2 dih5 c2 dih6 c2 dih7 s1 dih8 c4 dih9 c4 dih10

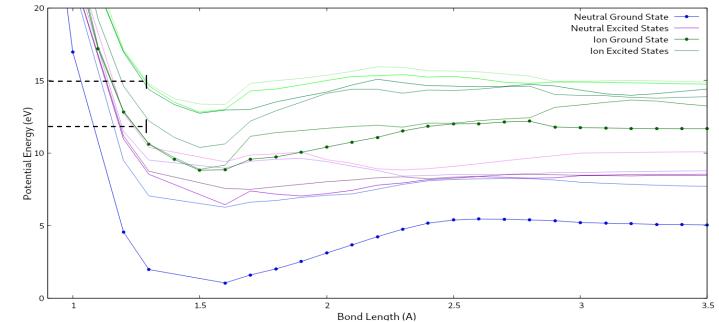
Experimental Results

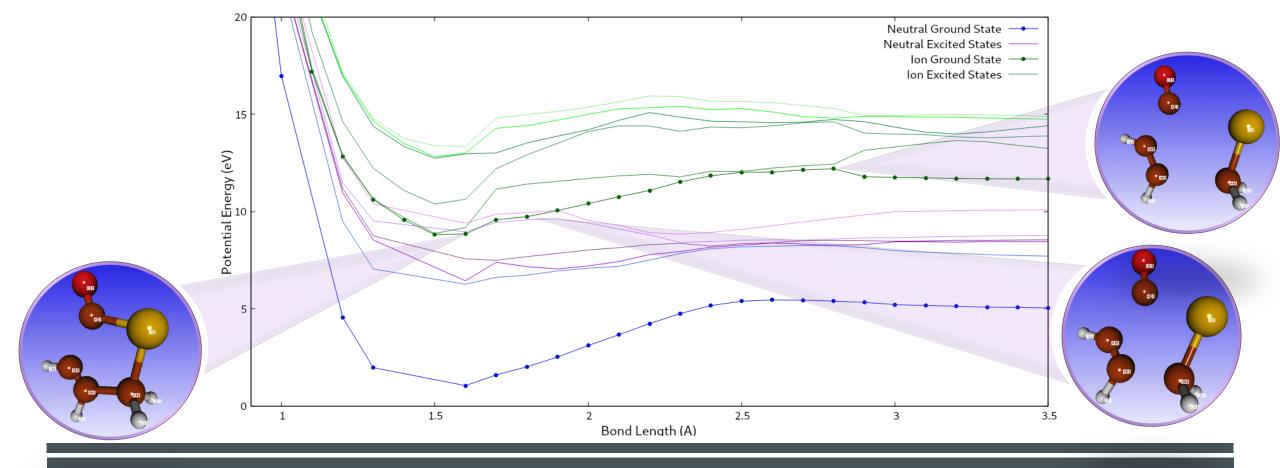

- I will be comparing my results to Dr. Shashank
 Pathak's, a former grad student.
- Thiophenone was excited and fragmented with laser pulses
- They caught the jettisoned electron and the charged fragment

Pathak, S. (2021). Schematic of the UV excitation, ring opening and photoionization of thiophenone [Graph]. Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light.

C₃H₄⁺ Potential Energy (eV) Vs. Bond Length (Å)

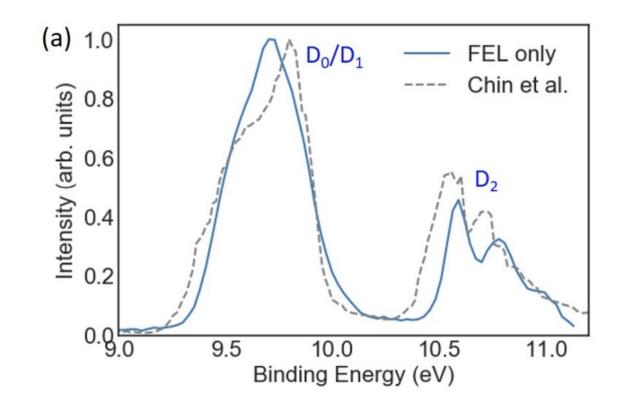

- > Experimental data shows fragmenting at 14 eV
- > Theoretical fifth excited state data has a shallow well at 15 eV
- > The similar energies seem to correspond to each other


by Ultraviolet and Extreme UV Light.

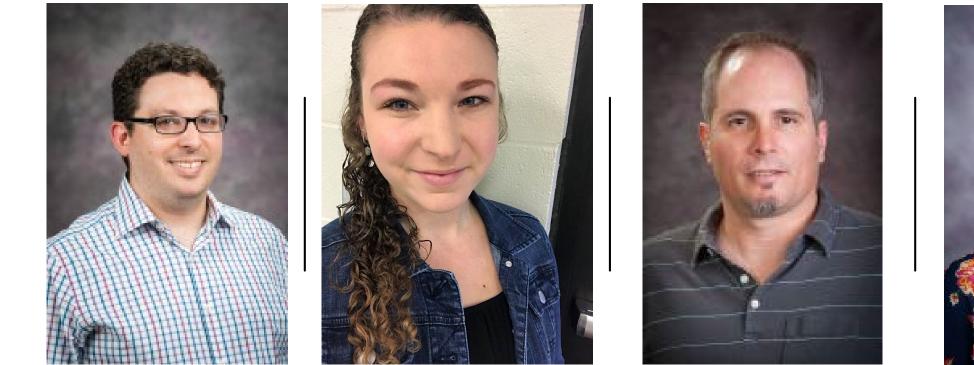

H₂CS⁺ Potential Energy (eV) Vs. Bond Length (Å)

- Experimental data shows fragmenting at 12 and 15 eV
- Theoretical data shows shallow wells at:
 - Second excited state (11 eV)
 - > Fifth and sixth excited states (14 15 eV)

Pathak, S. (2021). *H2CS Intensity Vs. Bonding Energy* [Graph]. Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light.



H₂CS⁺ Potential Energy (eV) Vs. Bond Length (Å)


- > The first image is at the equilibrium point, the best optimized geometry
- > The second image is near the critical point, the point at which fragmentation occurs
- > The third image confirms fragmentation

Creating a Thiotheory

- The black line is the accepted photoelectric spectrum, without fragments
- The blue line is the result of the experimental data
- Future calculations may lead to the possibility of predicting photoionization outcomes

Acknowledgements

College of Arts & Sciences Department of Physics

NSF Grant No. 175778

Sources Used

- Angry Parsely, & Neutrality. (2007, March 9). Question mark alternate [Illustration]. File:Question Mark Alternate.Svg. <u>https://commons.wikimedia.org/wiki/File:Question_mark_alternate.svg</u>
- Jynto, Rhode, R., FH, J., & Jynto. (2013, March 2). A stoichiometric diagram of the combustion reaction of methane [Illustration]. Stoichiometry. <u>https://en.wikipedia.org/wiki/Stoichiometry</u>
- Pathak, S. (2021). C3H3 Intensity Vs. Bonding Energy [Graph]. Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light. <u>file:///C:/Users/18477/Downloads/ShashankPathak2021.pdf</u>
- Pathak, S. (2021). H2CS Intensity Vs. Bonding Energy [Graph]. Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light. <u>file:///C:/Users/18477/Downloads/ShashankPathak2021.pdf</u>
- Pathak, S. (2021). Schematic of the UV excitation, ring opening and photoionization of thiophenone [Graph]. Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light. <u>file:///C:/Users/18477/Downloads/ShashankPathak2021%20(1).pdf</u>
- Snow, A. Basics of Quantum Chemistry Adrea's Notebook and Journal [Illustration]. Adrea's Notebook and Journal. https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc <a href="https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc https://adreasnow.com/Undergrad/Notes/Sem%205.%20Comp%20Chemistry/03.%20Basics%20of%20Quantum%20Mechanics/#sc