

The Mathematical Modeling of the Photo-ionization of Dichloromethane

Stephen Tivenan

Outline

1. Introduction

- Experimental Background
- Goal

2. Calculations

- Potential Energy Curves
- Born-Oppenheimer Approximation
- Hartree Fock Approximation

3. Results

- Conclusion
- Moving Forward

Physical Experiment

Specific Channels:

$$CH_2CL_2 \rightarrow CH_2 + Cl_2^+ + e^-$$

 $CH_2CL_2 \rightarrow CH_2^+ + Cl_2^+ + e^-$

Question: Which of these two specific channels is preferred?

Answer: Examining Multiple Potential Energy Curves

Potential Energy Curves

Inter-nuclear Bond Length

Energy

 The energy of the molecule is the lowest Eigenvalue of our Molecular wavefunction at specific internuclear distance

Born-Oppenheimer Approximation

Assume Nuclei is stationary to electron

$$\widehat{\mathcal{H}} \ \psi(r, r_1, r_1, r_2...r_N, R_1, R_2...R_M) \longrightarrow \widehat{\mathcal{H}} \psi(r, r_1, r_1, r_2...r_N)$$

Hartree-Fock Approximation

- $\widehat{\mathcal{H}} \ \psi(r, r_1, r_1, r_2, r_N) \longrightarrow \widehat{\mathcal{H}} \ \psi(r) = E \ \psi(r)$
- Find Eigen Energy Value of Electron
 - Approximation for Eigen Energy for the Molecule for different Symmetries
 - Symmetries-Orbital and Spin

 $\{\psi(r)\} = \{\psi(r), \psi(r), \psi(r) \dots\}$

 $\widehat{\mathcal{H}}\{\psi(r)\} = E\,\psi(r\,)$

Calculation

- Set both Carbon Chloride's bond length (distance between nuclei) at specific values.
- Use Hartree-Fock to calculate the optimal Energy Eigenvalues for different symmetries
 - Dichloromethane
 - Methylene
 - Chlorine

CH₂Cl₂

Optimal Potential Energies for Methylene and Chlorine

CH2	CH2+
-1.0498 KeV	-1.0585 KeV

CI2	Cl2+
-24.8121 KeV	-24.7977 KeV
-24.8098 KeV	-24.7976 KeV

Potential Energy Curve Dichloromethane

Potential Energy Curve Dichloromethane

Conclusion

For different symmetry, Dichloromethane fragments and ionizes to

•
$$CH_2CL_2 \rightarrow CH_2 + Cl_2^+ + e^-$$

 Moving Forward produce more Potential Curves varying the symmetry of the molecule, different approximations

Produce more fragment energy values with different symmetries

Citations

[1] "Organic Chemistry - Caffeine Lab." *Science Forums*, 30 Sept. 2015, www.scienceforums.net/topic/91351-organic-chemistry-caffeine-lab/.

[2] *The Sherrill Group: Notes,* vergil.chemistry.gatech.edu/notes/index.html.

Acknowledgments

- Dr. Greenman
- Dr. Sorenson
- Jessy Changstrom
- Dr. Flanders
- Kansas State Reu
- National Science Foundation
- NERSC
- Julian Suarez

