Dark Matter Deficient Galaxies in the Illustris TNG Simulation

Claire Riggs August 2, 2019

Recall:

- What is a galaxy?
 - Large collection of gravitationally bound stars, gas, dust, and dark matter
- Milky Way:
 - $M_{total} = 15 \ge 10^{11} \,\mathrm{M_{\odot}}$
 - $M_{baryonic} = 1.2 \ge 10^{11} \mathrm{M}_{\odot}$
 - Therefore ~ 90% dark matter
 - This is a typical value!

Sparke and Gallagher, Galaxies in the Universe: An Introduction (2nd Edition), Figure 1.8 pg. 26

Motivation

- Recently discovered galaxies with no dark matter
 - *Van Dokkum et al. 2018*: NGC1052–DF2
 - *Van Dokkum et al. 2019*: NGC1052—DF4
- Raised some questions:
 - How common are these galaxies?
 - How are these galaxies formed?
 - What are their common properties?

NGC 1052-DF2

Galaxy Simulations

- Observations are difficult, so we use simulations:
 - Look at number density of galaxy populations
 - Look at formation histories

Visualization of the stellar structure in the Illustris TNG100-1 simulation

Formation – what do we know?

- External Formation (Ploeckinger et al. 2017, Haslbauer et al. 2018)
 - Form from pre-existing galaxies
 - Galaxies merge
 - Tidal forces eject gas and stars
 - Ejected material unable to capture dark matter
 - Result: dark matter deficient galaxy

My Project

- Build on past research using newer *Illustris TNG* simulations
- Focus: determine some common properties of dm-deficient galaxies to help guide observational expectations

Illustris TNG Simulations

TNG Collaboration – *www.tng-project.org*

• Illustris-1 (Old):

KANSAS STATE

- Resolution: 2×1820³ particles
 - L_{box} = 75 cMpc h⁻¹
 - $M_{baryon} = 1.6 \times 10^6 M_{\odot}$

- TNG 100-1 (New):
 - Resolution: 2x1820³ particles
 - $L_{box} = 75 \text{ cMpc } h^{-1}$

•
$$M_{\text{baryon}} = 1.4 \times 10^6 M_{\odot}$$

•
$$M_{dm} = 7.5 \times 10^6 M_{\odot}$$

Visualization of gas particles in the simulation

Springel, Volker. MNRAS 401 (2) (2010), pp. 791-851.

My Results

Illustris-1 Subhalo Mass Distribution 10⁵ ----- $M_{dm}/M_{star} = 10$ ----- $M_{dm}/M_{star} = 1$ 104 ----- $M_{dm}/M_{star} = 0.1$ ----- $M_{dm}/M_{star} = 0.01$ 10³ Dark Matter Mass $[M_{\odot}]$ 10_{1} 10_{1} 10⁰ 10-2 10-3 10^{-4} 10-3 10^{-1} 10⁰ 10¹ 10² 10-2 10³ Stellar Mass $[M_{\odot}]$

	Illustris	TNG100
Total Galaxies	126,254	79,068
DM- Deficient Galaxies	177	3,438
Percent DM- Deficient	0.14%	4.34%

Analyzing DM Deficient Galaxies

Current progress: analyzing different properties of these DM-deficient galaxies

Metallicity: fraction of all elements heavier than He

$$Z = \frac{M_{>He}}{M_{tot}}$$

DM Deficient Galaxies:

- Form from pre-existing galaxies, therefore already metal enriched
- Result: higher metallicity than normal

Distance Distribution

- Host galaxy:
 - Closest galaxy with the most mass
- Where do we expect DMdeficient galaxies in relation to the host?
 - Closer...

Distance Distribution of TDGCs (sample 1) 175 median = 159.44810462Number of TDGCs mean = 319.6062758425 2000 2500 3000 3500 1000 1500 500 Distance from $R_{0.5 stellar}^{host}$

Summary

Goal: Identify galaxies in simulations with no dark matter

- Motivation: NGC1052-DF2
 - How common are they?
 - How do they form?
 - Common properties?
- Moving Forward:
 - Continue working on project
 - Focus on histories of subhalos

Illustris vs. Illustris-TNG

project.org/movies/tng/tng100 vs illustris sb0 stars 1080p.mp4

Stellar content from redshift z=1.3 to z=0 (z=0 corresponds to present day)

Acknowledgements

Research Group

- Dr. Bharat Ratra
- Hai Yu
- Harish Murali

The TNG Collaboration

KSU REU Program Directors

- Dr. Bret Flanders
- Dr. Loren Greenman

And of course...

Research Experiences For Undergraduates

