Particle ID Away from the Bragg Peak using $\frac{dE}{dx}$

Isabella Ginnett 2 August 2019

Outline

- 1. What are neutrinos? What is MicroBooNE?
- 2. Why are particle ID methods away from the Bragg peak useful?
- 3. How can we use $\frac{dE}{dx}$ to create such a technique?
- 4. How does the technique work?
- 5. What are its results?

• Small $(m < 2 eV/c^2)!$

[1]

=

- Small $(m < 2 eV/c^2)!$
- Abundant!

- Small $(m < 2 eV/c^2)!$
- Abundant!
- Fascinating!

[3]

MicroBooNE

- Large liquid argon time projection chamber (LArTPC) experiment
- Previous experiment MiniBooNE found a significant excess of neutrino interactions producing lower energy photons and/or electrons
- <u>MicroBooNE's goal</u>: to probe the cause of this excess

MicroBooNE Detector

MicroBooNE Detector

- Contains 90 tons of liquid argon
- Cathode has a potential of -100 kV
- Light produced from the interaction is collected by PMTs and gives start time
- Wire planes give y-z spatial resolution
- Time ionized electrons take gives x spatial resolution

MicroBooNE Detector

<u>Important question</u>: how do we identify the particles created in the detector?

PID at the Bragg Peak

- Relies on two important quantities:
 - 1. Pattern of energy losses
 - 2. Track of particle (especially end)

PID at the Bragg Peak

- Relies on two important quantities:
 - 1. Pattern of energy losses
 - 2. Track of particle (especially end)

PID at the Bragg Peak

- Relies on two important quantities:
 - 1. Pattern of energy losses
 - 2. Track of particle (especially end)

Big problems! The particle would need to come to a gradual stop in the detector for the method to work!

Proton ($p = 0.3 \ GeV/c$)

[6]

MIPs and HIPs have different average energy losses even in the middle of their tracks!!!*

*This still depends on the starting KE of the particles though

Proton ($p = 0.3 \ GeV/c$)

MIPs and HIPs have different average energy losses even in the middle of their tracks!!!*

*This still depends on the starting KE of the particles though

Proton ($p = 0.3 \ GeV/c$)

[6]

MIPs and HIPs have different average energy losses even in the middle of their tracks!!!*

*This still depends on the starting KE of the particles though

Proton ($p = 0.3 \ GeV/c$)

MIPs and HIPs have different average energy losses even in the middle of their tracks!!!*

*This still depends on the starting KE of the particles though

KANSAS STATE

Proton ($p = 0.3 \ GeV/c$)

1. Take a track

 \equiv

2. Divide it in half and take N points before and after the halfway point (N = 5)

1. Take a track

2. Divide it in half and take N points before and after the halfway point (N = 5)

3. Calculate the truncated mean energy loss per length, $\left\langle -\frac{dE}{dx} \right\rangle_T$, of those points

Algorithm results on MC-Truth simulation data with 800 muons $(p_i = 400 \text{ MeV}/c)$ and 800 protons $(p_i = 1.2 \text{ GeV}/c)$ and $\theta = \phi = 0$

χ^2_{MIP} Cut	Muon Efficiency from Muon Sample	Proton Efficiency from Proton Sample
1	55.9%	99.7%
4	87.1%	97.8%
9	93.1%	91.9%
16	95.6%	74.2%

$$\chi^{2}_{MIP} < \left(\chi^{2}_{MIP} Cut\right) \rightarrow \mu$$
$$\chi^{2}_{MIP} > \left(\chi^{2}_{MIP} Cut\right) \rightarrow p$$

 $efficiency = \frac{(\# of \ correctly \ identified \ particles)}{(total \ \# \ of \ particles)}$

Summary

- PID techniques away from the Bragg peak are useful!
- The technique compares the truncated mean $\frac{dE}{dx}$ of a particle in the middle of its track to a MIP
- It is effective for one test track with a length around 130 cm
- <u>Future inquiry</u>: how does the method behave at different track lengths?

Acknowledgements

- Dr. Tim Bolton
- Dr. Glenn Horton-Smith
- Harry Mayrhofer
- Norman Martinez
- The MicroBooNE Collaboration
- Kansas State University*
- National Science Foundation

References

[1] Mucha, C., and Sandbox Studio Chicago (2017), "How Heavy is a neutrino?" Online; accessed July 27, 2019.

[2] Universe Review, (2019), "Mass composition of the universe," Online; accessed July 27, 2019.

[3] Mucha, C., and Sandbox Studio Chicago (2018), "Game-changing neutrino experiments," Online; accessed July 27, 2019.

[4] Brookhaven National Laboratory, (2019), "LArTPC Signal," Online; accessed June 7, 2019.

[5] MicroBooNE Collaboration, "Selection of ν_{μ} charged-current induced interations with N>0 protons and performance of events with N=2 protons in the final state in the MicroBooNE detector from the BNB," MICROBOONE-NOTE-1056-PUB (2018).

[6] Tanabashi, M., et al. (Particle Data Group) (2018), Phys. Rev. D 98, 030001.

[7] MicroBooNE Collaboration, "Detector calibration using through going and stopping muons in the MicroBooNE LArTPC," MICROBOONE-NOTE-1048-PUB (2018).

Extra Slides

Definitions

- MIP: minimum ionizing particle (practically speaking, μ^- with $p_i = 400 MeV/c$)
- HIP: highly ionizing particle (practically speaking, protons)
- $\left\langle -\frac{dE}{dx} \right\rangle_T$: truncated mean from track data
- $\left\langle -\frac{dE}{dx} \right\rangle_{T_{MIP}}$: mean of Gaussian fit of MIP truncated mean distribution
- Width of $\left\langle -\frac{dE}{dx} \right\rangle_T$: standard deviation of Gaussian fit of MIP truncated mean distribution

Truncated Mean (MeV/cm)

