Median Statistics Analysis of Deuterium Abundance and KANSAS STATE **Spatial Curvature Constraints** UNIVERSITY

College of Arts & Sciences Department of Physics

Penton, J.^{1,2}, Peyton, J.¹, Zahoor, A.^{1,3}, & Ratra, B.¹ ¹ Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA ². Department of Physics, Fort Hays State University, 225 Tomanek Hall, Manhattan, KS 67601, USA ^{3.}Department of Mechanical Engineering, National Institute of Technology - Karnataka, NH 66, Srinivas Nagar, Surathkal, Mangaluru, Karnataka 575025, India

Abstract

Deuterium abundance in interstellar gas clouds, recorded as the ratio of Deuterium to Hydrogen (D/H), has been measured by many cosmologists. A recent paper analyzed its and other's own D/H measurements and calculated a weighted mean of $(2.544 \pm 0.025) \times 10^{-5}$. However, there is evidence supporting the use of median statistics to find a central estimate for D/H. Using the same set of D/H measurements, we calculate a median central estimate of $2.48^{+0.05}_{-0.08}$ ×10⁻⁵. D/H values are correlated to, and can be used to determine, the average baryonic density of the universe, $\Omega_{\rm b}h^2$. When our median value is compared to current CMB measurements, it is found to only deviate by $(0.267-2.142)\sigma$ as opposed to the $(1.354-4.140)\sigma$ deviations of the weighted mean value. This is further proof that median statistics is a viable means of calculating central estimates for D/H measurements.

Introduction

- Big Bang Nucleosynthesis (BBN) created all light elements up to lithium in the moments just after recombination
- Deuterium, created during BBN, has been the focus of many research projects
- Deuterium abundance is measured as the ratio of deuterium to hydrogen (D/H)
- D/H is correlated to the ratio of photons to baryons, $\Omega_{\rm b}h^2$
- $\Omega_{\rm b}h^2$ helps determine the curvature of the universe
- We want to find an accurate D/H central estimate in order to get $\Omega_{\rm b}h^2$ values that are consistent with current CMB predictions

Data

- Zavarygin et al. (2018), hereafter Z18, compiled a list of D/H measurements (found in Table 1)
- Z18 also used the Least Trimmed Squares method to remove two outliers from the list (Srianand et al. 2010 & Pettini et al. 2001)
- This created a set of measurements, known as Truncated 13, that Z18 estimated to have a weighted mean of $(2.545 \pm 0.025) \times 10^{-5}$
- We find this weighted mean to be 2.544 instead of 2.545

Balashev, S. A., Zavarygin, E. O., Ivanchik, A. V., Telikova, K. N., & Varshalovich, D. A., 2016, MNRAS, 458, 2188 [arXiv:1511.01797] Cooke, R. J., Pettini, M., Jorgenson, R. A., Murphy, M. T., & Steidel, C. C. 2014, ApJ, 781, 31 [arXiv:1308.3200] Cooke, R. J., Pettini, M., Nollett, K. M., & Jorgenson, R. 2016, ApJ, 830, 148 [arXiv:1607.003900] Cooke, R. J., Pettini, M., & Steidel, C. C. 2018, ApJ, 855, 102 [arXiv:1710.11129] Fumagalli, M., O'Meara, J. M., & Prochaska, J. X. 2011, Science, 334, 1245 [arXiv:1111.2334]

Table 1. D/H measurements from Z18				
Quasar	D/H(×10 ⁵)	References		
HS 0105+1619	2.58 ^{+0.16} -0.15	Cooke et al. (2014)		
J0407-4410	2.8 ^{+0.8} _{-0.6}	Noterdaeme et al. (2012)		
Q0913+072	2.53 ^{+0.11} -0.10	Cooke et al. (2014)		
Q1009+2956	2.48 ^{+0.41} -0.13	Zavarygin et al. (2018)		
J1134+5742	2.0 ^{+0.7} -0.5	Fumagalli et al. (2011)		
Q1243+3047	2.39 ±0.08	Cooke et al. (2018)		
J1337+3152	1.2 ^{+0.5} -0.3	Srianand et al. (2010)		
SDSS	2.62 ±0.07	Cooke et al. (2016)		
J1358+6522	2.58 ±0.07	Cooke et al. (2014)		
J1419+0829	2.51 ±0.05	Cooke el al. (2014)		
J1444+2919	1.97 ^{+0.33} -0.28	Balashev et al. (2016)		
J1558-0031	2.40 ^{+0.15} -0.14	Cooke et al. (2014)		
PKS1937-1009	2.45 ^{+0.30} -0.27	Riemer-Sørenson et al. (2015)		
PKS1937-101	2.62 ±0.05	Riemer-Sørenson et al. (2017)		
Q2206-199	1.65 ±0.35	Pettini et al. (2001)		

Analysis

- We analyze Z18's Truncated 13 data set as well as the entire set, known as All 15, which includes the outliers
- We create error distributions based on the weighted mean and the median
- Median statistics can be used to analyze non-Gaussian distributions
- We utilize the Kolmogorov-Smirnov Test (KS Test) to check for Gaussianity in the error distributions
- The *p*-Value is the probability that the error distribution doesn't not come the distribution it's tested against
- Once a central estimate is decided, it is used in the fit equation below to determine $\Omega_{\rm b}h^2$

determine $\Omega_{\rm b}n^2$ $(D/H)_p = (2.45 \pm 0.04) \times 10^{-5} \left(\frac{\Omega_b h^2}{0.02225}\right)$ 1.657

0.604

 Table 2. KS Test Probabilities
Truncated Distribution $\left(0 \right)$ Median 0.999 Gaussian 0.385 Cauchy Weighted Mean 0.997 Gaussian

Cauchy

13	All 15		
	p		
	0.809		
	0.921		
	0.613		
	0.950		

- values are non-Gaussian
- a median central estimate of $\Omega_{\rm h}h^2 = 0.02209$

Table 3 The σ invariance of central estimates compared to CMR data

Table 3. The orinvariance of central estimates compared to UNB data				
	CMB Prediction			
Prediction	$\Omega_b h^2$	WM σ	Median σ	
Flat ACDM	0.02225 ±0.00023	1.472	0.361	
Nonflat ACDM	0.02305 ±0.0002	4.061	2.122	
Flat XCDM	0.02229 ±0.00023	1.590	0.446	
Nonflat XCDM	0.02305 ±0.0002	4.061	2.122	
Flat ¢CDM	0.02221 ±0.00023	1.354	0.276	
Nonflat ¢CDM	0.02303 ±0.0002	3.998	2.078	
	CMB w/ Other Cosmological Data			
Flat ACDM	0.02232 ±0.00019	1.815	0.530	
Nonflat ACDM	0.02305 ±0.00019	4.140	2.142	
Flat XCDM	0.02233 ±0.00021	1.776	0.542	
Nonflat XCDM	0.02238 ±0.0002	4.061	2.122	
Flat ¢CDM	0.02238 ±0.0002	1.968	0.656	
Nonflat ¢CDM	0.02304 ±0.0002	4.029	2.100	

- The All 15 dataset is clearly Non-Gaussian
- consistent with CMB predictions

Noterdaeme, P., Lo´pez, S., Dumont, V., et al. 2012, A&A, 542, L33 [arXiv:1205.3777] Pettini, M., & Bowen, D. V. 2001, ApJ, 560, 41 [arXiv:astro-ph/0104474] Riemer-Sørensen, S., Webb, J. K., & Crighton, N., et al. 2015, MNRAS, 447, 2925 [arXiv:1412.4043] Riemer-Sørensen, S., Kotus, S., Webb, J. K., et al. 2017, MNRAS, 468, 3239 [arXiv:1703.66656 Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P., & Ledoux, C. 2010, MNRAS, 405, 1888 [arXiv:1002.4620] Zavarygin, E. O., Webb, J. K., Dumont, V., & Riemer-Sørensen, S. 2018, MNRAS, 477, 5536 [arXiv:1706.09512]

Results

Table 2 shows that the Truncated 13 values are Gaussian and the All 15

• We performed the $\Omega_{\rm b}h^2$ calculations on the weighted mean for Truncated 13, as Z18 does, and the median for All 15, due to its non-Gaussianity • We calculated a weighted mean central estimate of $\Omega_{\rm b}h^2 = 0.02175$ and

Table 3 shows the results of calculating the σ invariance between our measured central estimates and multiple CMB predictions

Conclusion

Using median statistics allows us to take all data points The weighted mean central estimate computed by Z18 not only omits data points, but is also less-consistent with CMB predictions The median central estimate we measure is, in all cases, more This research was funded by the NSF grant number PHY-1461251