# Harmonic Generation for Photoionization Experiments

**Christian J. Kornelis** 

Physics **REU** 

Kansas State University







# The Basic Setup for the KLS Photoionization Experiment







#### **Femtosecond Pump-Probe Spectroscopy**

I. Vishik, P. Kamat

Uses of Pump-Probe Spectroscopy

This process allows us to measure processes that occur at a picosecond timescale.

Necessity of High Harmonic Generation
 The use of Extreme Ultraviolet light
 for Photoionization Experiments is
 ideal



Picture located at: <a href="https://www.guora.com/How-are-ultrafast-dynamics-identified-in-femtosecond-laser-spectroscopy">https://www.guora.com/How-are-ultrafast-dynamics-identified-in-femtosecond-laser-spectroscopy</a>

#### Supersonic Jet Expansion

- The use of the jet is to create the nonlinear medium for high harmonic generation
- The velocity increases past the nozzle
- Zone of Silence
- Skimmer

Picture available at: http://iopscience.iop.org/article/10.1088/0957-0233/23/10/105901



#### **Detectors: The Use of Microchannel Plates**

Hamamatsu





MCP Assembly manual available at: http://www.triumf.ca/sites/default/files/Hamamatsu%20MCP%20guide.pdf



Hamamatsu

- The phosphor screen is made up of phosphor material coated onto a glass plate or a fiber optic plate
- Phosphor plates are used to convert output signals from an MCP into visible image
- The phosphor screen is placed about 1 mm away from the screen
- The images observed on the phosphor screen can be imaged using a CCD camera, as well as by eyesight

MCP Assembly manual available at: http://www.triumf.ca/sites/default/files/Hamamatsu%20MCP%20guide.pdf

#### **Phosphor Screen**



Harmonic Generation With Vinod Kumarappan, and Tomthin Nganba Wangjam





## High Harmonic Generation

- High harmonics are generated in a gas or solid medium
- How the high harmonic photons are generated
  - 1. The electromagnetic laser pulse penetrates a gas.
  - 2. The coulomb potential and the laser potential combine to allow tunnel ionization
  - 3. The electron is accelerated by the electric field generated by the electromagnetic pulse
  - 4. The electron is forced back into the atom
  - 5. Due to conservation of energy the kinetic energy gained is released as high harmonic pulses



The maximum harmonic photon energy is given:  $E_c = I_p + 3.17U_p$ Where  $I_p$  is the ionization potential, and  $U_p$  is the

ponderomotive energy

 $U_p[eV] = E_0^2/4\omega_0^2 = 9.337 \times 10^{-14} I [W/cm^2] (\lambda [\mu m])^2$ With  $E_0$ , I, and  $\lambda$  being the strength, intensity, and wavelength of the driving field, respectively.

Ren, X. (2013) Laser Driven Rotational Dynamics of Gas-Phase Molecules: Control and Applications Manhattan, KS Kansas State University





## High Harmonic Chamber 3D design





# Low Harmonic Generation

 Parametric and "instantaneous" nonlinear optical phenomena, in which the optical fields are not too large, can be described by a Taylor series expansion of the dielectric polarization density (dipole moment per unit volume) P(t) at time t in terms of the electrical field E(t):

 $\mathbf{P}(t) = arepsilon_0(\chi^{(1)}\mathbf{E}(t)+\chi^{(2)}\mathbf{E}^2(t)+\chi^{(3)}\mathbf{E}^3(t)+\ldots),$ 

 Nonlinear optics (NLO) is the branch of optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. The nonlinearity is typically observed only at very high light intensities (values of atomic electric fields, typically 108 V/m) such as those provided by lasers.



# 3<sup>rd</sup> Harmonic Setup



## 5<sup>th</sup> Harmonic Setup



# Third Harmonic Generation In Argon Gas





#### **Future Steps:**

Refurbish the vacuum chamber that will allow me to create high harmonics.

Several step process

- Alignment
- Vacuum Differential
- Electronic testing

The next goal would then to mount the MCP/HH Chamber

Acknowledgements:

Vinod Kumarappan

Tomthin Nganba Wangjam

National Science Foundation



Miller. D (1988) Atomic and Molecular Beam Methods (Volume one) New York, NY: Oxford University Press, Inc.

Hillenkamp. M, Keinan. S, Even. U (2003). Condensation limited cooling in supersonic expansions. Journal of Chemical Physics, 118(19), 8699-8705