Assembly and Commissioning of a New Multi-hit Charged-Particle Detector for Experimental Studies of Laser-Matter Interactions

Taylor McClain 4 August 2017 Kansas Wesleyan University Mentors: Artem Rudenko and Daniel Rolles

Laser-Matter Interaction Experiments

Pump probe experiments

• Coulomb explosion experiments

- These experiments can make "molecular movies"

How do we study these particles?

• Spectrometer and detectors

- VMI (Velocity Map Imaging)

Image retrieved from: https://www.imperial.ac.uk/a-z-research/quantum-optics-and-laser-science/research/laser-consortium/current-research/attosecond-electron-dynamics/coupling-of-charge-migration-and-nuclear-dynamics/

Kansas Atomic and Molecular Physics (KAMP)

- There are both ion and electron detecting sides (2 detectors)
- Detectors are multi-hit compatible
- Detector assembly consists of:
 - Microchannel plates (MCP)
 - Position sensitive delay-line detectors (PSDs)
 - Quad and hex-anode (4-sided and 6-sided)

Microchannel Plates (MCPs)

- Creates a cascade of electrons, generating a signal
 - Usually a set of 2 plates in chevron configuration or a set of three plates in a 'z' configuration

Image retrieved from: Maharjan, Chakra M. "Momentum Imaging Studies of Electron and Ion Dynamics in a Strong Laser Field." Kansas State University, 2007.

Delay-line Position Sensitive Detectors

- 2 wires for each direction: signal and reference, kept at 50 volts apart
- The time it takes for a signal to propagate to each of the corners of the detector is mathematically converted into a position

Why do we need KAMP?

Superior detection capability

- Hex-anode adds a layer of redundancy that makes it possible to resolve signals that land near the same location around the same time
- Detects both ions and electrons simultaneously
 - This leads to new and more data that can be used in Coulomb explosion and other molecular imaging experiments

Assembly of the Detector

- Location: Clean room in JRML
- Rough procedure:
 - 1) Get all parts and make sure they are in order
 - 2) Practice assembling detector plates with "dummy" MCP
 - 3) Clean all parts when ready for real assembly
 - 4) Put together the detector, wire it, and install into the test chamber
 - 5) Test dark counts from the detector with oscilloscope

KAMP Main Chamber

"Dummy" MCP Installation of Detectors

• Quad-anode side

"Dummy" MCP Installation of Detectors

• Hex-anode side

True Assembly and Putting into Test Chamber

MCP wire hookups

Delay-line quad detector

True Assembly and Putting into Test Chamber

Venting the chamber

Mounting the delay-line

True Assembly and Putting into Test Chamber

Complete MCP/Delay-line Assembly!

Vacuum Technology

- To achieve very high vacuum (on the order of 10⁻⁹ Torr):
 - 1) Must be pumped down to about 10⁻³ Torr with roughing pump
 - 2) Pumped down further with turbo pump
 - 3) Baking chamber allows water to evaporate, bringing the pressure down the rest of the way
 - For our purposes (in the interest of time), we will only do the first two steps now

Pumping Down the Chamber

Dark Count Testing

- What are dark counts?
 - Signals generated by the MCP automatically when voltage is applied
 - Can be used to test detectors without needing a laser or a sample

Typical Pulse Shape from MCP

Dark Count Testing: Seeing the MCP Signal

Te	k	K Run																			Trig'd			
		: :	:		: :	: :		: : :		: :	: :		: : :						: : :		: :			•
														-										•
														-										••
														-										
	i													Ŧ										
								· : :					~		Λ	\sim	\sim							
<u>_</u>															• •			~	\sim					
														V										
														:										
														·†:										
														:‡:										
	···													·										
														·‡:										
	Ļ	: :	:	. :	: :		: :	: : :	÷	: :					: : :		: : : :	: :	: : :	: :		<u> </u>	: :	
		1)	- 50).On	nV								400ns	S			2.50GS	/s	1	<u>)</u>		1	Aug	2017
														-60	.0000	Ins	10k poi	nts	-1	5.0m'	V	儿 20:	: 28: ()9

Summary and Looking Forward

- The main spectrometer chamber and quad-anode detector are assembled
- MCP signals were observed in the testing chamber
 - MCP is operational
- Same procedure needs to be repeated for hexanode detector side
- Eventually, both detectors will be mounted in the main KAMP chamber

Acknowledgments

- Artem Rudenko and Daniel Rolles
- Shashank Pathak and Javad Robatajazi
- Kim Coy, Kristan Corwin, and Bret Flanders
- JRML technical crew Chris Aikens and Justin Millette
- Physics machine shop crew
- Drs. Kristin and David Kraemer

References

- Cabanillas-Gonzalez et al. "Pump-Probe Spectroscopy in Organic Semiconductors: Monitoring Fundamental Processes of Relevance in Optoelectronics." Accessed: https://www.researchgate.net.
- Imperial College London. "Coupling of charge migration and nuclear dynamics." Accessed 25 July 2017.
- Maharjan, Chakra M. "Momentum Imaging Studies of Electron and Ion Dynamics in a Strong Laser Field." Kansas State University, 2007.
- Roentdek website and manuals