Visual Cueing and Feedback Influencing Undergraduate Students’ Reasoning Resources on Conceptual Physics Problems

Jeffrey Murray

N. Sanjay Rebello, Amy Rouinfar, Lester C. Loschky, and Adam Larson

Department of Physics & Department of Psychological Sciences
Kansas State University, Manhattan, KS, 66506

Abstract

Research has demonstrated that attentional cues overlaid on diagrams and animations can help students attend to the pertinent areas of a diagram and to facilitate problem solving. In this study we investigate the influence of individually interviewed. During each interview students solved four problem sets each containing an initial problem, six isomorphic training problems, and a transfer problem. The cued conditions were given visual cues on the training problems, and the feedback conditions were told whether their responses (answer and explanation) were correct or incorrect, but the interviewer did not distinguish whether the source of their incorrectness was because of their explanation, or their answer. We found that the combination of both correctness feedback and visual cueing, were the most effective means to assist participants in not only the activation of the proper reasoning resources to successfully solve the problems, but also in the coordination of those resources.

What is Visual Cueing?

Method of facilitating a learner to attend to specific visual information.

Rationale

• Many students have difficulties in physics problem solving even after completing a physics course.
• Particular difficulty is utilization of the cognitive resources that they currently possess.

Research Questions

• To what extent can visual cueing and correctness feedback train students to correctly reason through conceptual physics problems?
• To what extent can students who have been thus trained correctly reason through a different subsequent (transfer) problem with neither cues nor feedback?

Materials Used

Four problem sets

Methods

• Algebra-based introductory mechanics course (N=90).
• Individual eye-tracking interviews lasting about 50 minutes.
• Students randomly assigned to one of four conditions.

Each condition completed four problem sets, each of which:
• Started with an initial problem
• Followed by six training problems
• Ended with a transfer problem

Results

Across all problem sets, we found that the combination of cueing and feedback promotes the greatest performance on the training problems as well as on the transfer problems.
• Further investigation into the effectiveness of visual cueing and correctness feedback in other contexts should be undertaken.
• The applicability of visual cueing and correctness feedback for online learning environments will be explored.

Conclusions & Future Work

What is Visual Cueing?

Two balls roll along the paths shown. A snapshot of the position of the balls is taken every second. At what point in time does Ball B have the same speed as Ball A?

Two balls roll along the paths shown. A snapshot of the position of the balls is taken every second. At what point in time does Ball B have the same speed as Ball A?

Ball A begins riding down in an elevator at the same time as Ball B is dropped from the roof of an adjacent building. A snapshot of the balls is taken every second. At what point in time does Ball B have the same speed as Ball A?