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After removal of an applied magnetic field, artificial square spin ice can be left in a metastable
remanent state, with nonzero residual magnetization and excess energy above the ground state.
Using a model of magnetic islands with dipoles of fixed magnitude and local anisotropies, the
remanent states are precisely determined here, including all long-range dipole interactions. Small
deviations away from remanent states are analyzed and the frequencies of modes of oscillation
are determined. Some modes reach zero frequency at high symmetry wave vectors, such that the
stability limits are found, as determined by the local anisotropy strength relative to the dipolar
coupling strength.
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I. REMANENT STATES IN SQUARE
ARTIFICIAL SPIN ICE

Artificial spin ice on a square lattice [1] has attracted a
lot of attention as a system exhibiting frustration [2, 3],
a doubly-degenerate ground state [4], and monopole-like
topological excitations [5–7] out of a degenerate ground
state [8–10]. These properties result from the geometry-
induced demagnetization anisotropy of magnetic islands
fabricated on a nonmagnetic substrate [11]. Protocols us-
ing applied magnetic fields have been developed to nudge

x

y x Iy I

A
B

FIG. 1: Square spin ice in a remanent state magnetized along
a principal nn-direction xI. Dots indicate the vertices, each
surrounded by four islands. A and B represent the two sub-
lattices for the two island orientations. The island lattice
constant along diagonal directions is aI = av/

√
2, where av is

the vertex lattice constant along the original xy coordinates
of the square lattice of vertices, see Eq. (2).
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the system towards a ground state [12–16], which is dif-
ficult due to the energy barriers associated with frustra-
tion. In a ground state (gs) of artificial square ice, the
island dipoles satisfy the two-in, two-out ice rule at each
vertex to minimize the dipolar energy, also refered to as
Type I, with pairs of opposing dipoles both inward or
both outward across the centers of the vertices, see Fig.
1 of Ref. 17. If the system can be pushed into a ground
state, it should have a particular small-amplitude spin
wave spectrum, which has been investigated in varying
approximations [18–20]. The spectrum is expected to
help identify and characterize the ground state [21, 22].

A remanent state (rs) of spin ice, however, may be
more straightforward to obtain, as it requires application
of an applied field that is slowly reduced to zero. Fig. 1
shows a segment of square ice left in a remanent state,
after applying a field along a nearest-neighbor (nn) pri-
mary axis of the island lattice, labeled xI, which was then
turned off. The state is metastable, being a local energy
minimum but well above the ground state, and although
it also satisfies the ice rule, the vertices are of higher
energy and refered to as Type II [17] vertices.

Remanent states should possess distinct small-
amplitude oscillations or spinwave spectrum, that sig-
nals the presence of that state [21, 23]. The goal of the
present work is to estimate the stability properties of a
remanent state, by analysis of the linearized spin wave
modes about a remanent state, by assuming Heisenberg-
like dipole dynamics [24, 25] as opposed to Ising spins
[26, 27]. There is one dipole per island, of fixed length
but varying direction. This assumption ignores internal
magnetization dynamics within the islands. For isolated
thin islands with large in-plane aspect ratios, simulations
show that there is very little spatial variation in the in-
ternal magnetization, even under a reversal process [28].
This approximation will be valid if the dipolar interac-
tion fields are nearly uniform within an island affected
by those fields.

The Heisenberg-like island dipoles in the rs of Fig. 1
are tilted slightly from the islands’ long axes. This is
because dipolar interactions cause the dipoles on the two
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sublattices to tilt towards each other as they compete
with the shape anisotropy of the islands. The effects of
this tilting are taken into account here.
Long-range dipole interactions have been shown to be

highly relevant [29]. For clarity, we start from a nn

model and extend it to include all dipolar interactions
to unlimited range. The sum over infinite-range dipole
interactions is motivated by a calculation of the mode
spectrum for a one-dimensional chain of magnetic islands
[30]. The mode spectrum helps to determine the stability
properties and discriminates remanent states from other
configurations.

A. Heisenberg-like dipole model

In this model [25] the magnetic islands have single-
domain dipole moments of fixed magnitude µ whose time-
dependent directions are along Heisenberg-like unit spin
vectors µ̂i(t). The elongation of the islands produces
uniaxial anisotropy [28] along axis ûi of strength K1,
and their limited height produces planar anisotropy of
strengthK3 with axis ẑ. Both anisotropies are due to de-
magnetization or geometric effects. The anisotropy ener-
gies are very close to parabolic in the components of the
dipole [28], even though small deviations from uniform
magnetization can appear at the edges. The islands are
elongated either along the x or y directions of a square
lattice of vertices, and they are symmetrically located be-
tween vertices at locations (vx, vy)av, where the spacing
is av and vx, vy are integer locations. The Hamiltonian
for N islands can be written

H = −µ0

4π

µ2

a3I

N
∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/aI)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

where µ0 is the magnetic permeability of space, aI is the
nn-spacing of the islands and rij and r̂ij are center-to-
center distance and direction vectors between pairs of
islands [31]. The nn island separation is aI = 1√

2
av,

which determines the nn principal displacements (i.e.,
basis vectors of the island lattice),

xI =
1√
2
aI(x̂+ ŷ), yI =

1√
2
aI(−x̂+ ŷ), (2)

rotated 45◦ from the xy coordinate system of the ver-
tices, see Fig. 1. When indicating directions in this work,
the island nn principal directions along x̂I and ŷI are
used. For example, the net magnetization of the state
in Fig. 1 is along the [10] direction of the island lattice
(equivalent to the [11] direction of the vertex lattice).
A convenient energy unit is the nn dipolar coupling,

denoted with script D,

D ≡ µ0

4π

µ2

a3I
, (3)
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FIG. 2: The rs energy εNN(φA) given in Eq. (10) for various
values of in-plane anisotropy, K1/D. In all cases there is a
local minimum, which suggests real frequencies of oscillation
about that minimum, however, the nn-model requires K1 >
2.947D for stability, which limits the stable canting angle φA.

and farther neighbors have dipole interactions reduced
by the center-to-center distance cubed.

II. REMANENT STATES IN THE NN-MODEL

First we consider only nn dipole interactions, and later
include long-range interactions that are known to be im-
portant [32, 33] in the dynamics of spin ice. The system is
assumed to be uniform by sublattice. The islands aligned
along x̂ make up the A sublattice, with spins µ̂i=A, and
the islands aligned along ŷ comprise the B sublattice,
with spins µ̂i=B. A central A-site interacts with four nn
B-sites, and vice-versa. The dipole interactions depend
on the direction to the neighbors.
Taking the interaction of an A-site with its neighbors,

averaged with the interaction of a B-site with its neigh-
bors, leads to an effective two-sublattice Hamiltonian,
which is the energy per pair of A and B sites,

HAB = −2D [3(A · x̂I)(B · x̂I) + 3(A · ŷI)(B · ŷI)

−2 A ·B] +K1

(

2− A2
x −B2

y

)

+K3

(

A2
z +B2

z

)

. (4)

Inserting the nn unit vectors, this is

HAB = −2D (AxBx +AyBy − 2AzBz)

+ K1

(

2−A2
x −B2

y

)

+K3

(

A2
z +B2

z

)

. (5)

A local minimum of this Hamiltonian is a remanent state.
It should be minimized under the constraint of fixed spin
length for A and B. Lagrange’s method of undetermined
multipliers quickly shows that Az = Bz = 0 is required;
the dipoles remain within the xy-plane. Thus their equi-
librium directions are described by in-plane angles φA
and φB , taken as counterclockwise deviations away from
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FIG. 3: The rs equilibrium tilting angles φ0
A (left axis) given

in Eqs. 9, and the equilibrium energy per site ε (right axis)
in Eqs. 10, as functions of the islands’ uniaxial anisotropy
K1/D, comparing the nearest-neighbor couplings model with
the infinite-range couplings model in Sec. IVA.

the x̂ and ŷ directions, such that,

A = (cosφA, sinφA, 0), B = (− sinφB, cosφB , 0). (6)

In these coordinates the two-sublattice Hamiltonian is

HAB = −2D sin(φA−φB)+K1(2−cos2φA−cos2φB). (7)

This is minimized when sin 2φA = − sin 2φB, which im-
plies φB = −φA, together with the additional require-
ment,

∂HAB

∂φA
= −2D cos(φA − φB) +K1 sin 2φA = 0. (8)

The fourfold symmetry of the system implies four rs

solutions. We consider the primary one as that where the
system magnetization points at 45◦ between the x and y
axes (along xI), with energy-minimizing angles satisfying

tan 2φ0A = − tan 2φ0B =
2D
K1

. (9)

The 0 superscript indicates the equilibrium rs values.
With φ0A positive, and φ0B negative, as in Fig. 1, the sub-
lattices tilt inward towards the 45◦ diagonal direction,
attempting to minimize dipolar energy which competes
with an increasing uniaxial anisotropy energy. The in-
ward canting of the sublattices is small, unless K1 is
small. However, when K1 is too small the state will
destabilize, as is shown later. Thus there is a limited
amount of spin canting.
With φB = −φA, the energy per site is

εNN(φA) =
1
2HAB = −D sin 2φA +K1 sin

2φA. (10)

This is minimized when φA = φ0A, as seen in Fig. 2 for
various anisotropy strengths relative to dipole strength.
Stronger uniaxial anisotropy in the islands reduces the
spin canting, see Fig. 3, which shows the canting an-
gle φ0A and energy per site εNN for the nn-model and

for the model that includes infinite-range dipole inter-
actions, below. For comparison, the per-site energy in
a ground state of square ice is εgs = −3D when only
nn-interactions are included. Later we show that the
nn-model requires K1 > 2.947D for rs stability, hence
the nn canting angle is limited by φ0A < 17◦. Even so,
this angular deviation must be taken into account to ob-
tain correct normal mode oscillation frequencies around
a remanent state.

III. LINEARIZED OSCILLATION DYNAMICS
IN THE NN-MODEL

Still staying with the nn-model, the small amplitude
oscillations can be analyzed. The island dipoles are
now allowed to deviate slightly from their equilibrium rs

directions in Eq. (9), including out-of-plane deviations
µz
n = µ sin θn. An island is located at

n = nxI
xI + nyI

yI, (11)

in terms of the nn principal displacements xI,yI, letting
nxI

= 1, 2, 3, ...N1 and nyI
= 1, 2, 3, ...N2. The total en-

ergy is a sum over islands n, and counting the dipole
interactions with a nn bond to n+ xI and a nn bond to
n+ yI. The dipole interaction energies in these different
directions are not equivalent.
Based on (1), the dipole-dipole interaction energy of

an island at n on the A-sublattice with the neighbor at
n+ xI on the B-sublattice is

udd‖
= −D

[

3
2 (A

x
nB

y
n+xI

+Ay
nB

x
n+xI

) (12)

+ 1
2 (A

x
nB

x
n+xI

+Ay
nB

y
n+xI

)−Az
nB

z
n+xI

]

.

The parallel symbol (‖) indicates that the spins point
close to the bond direction. For the interaction of an A-
site with its neighbor at n+ yI on the B-sublattice, the
first term has the opposite sign,

udd⊥
= −D

[

− 3
2 (A

x
nB

y
n+yI

+ Ay
nB

x
n+yI

) (13)

+ 1
2 (A

x
nB

x
n+yI

+Ay
nB

y
n+yI

)−Az
nB

z
n+yI

]

.

The perpendicular symbol (⊥) indicates that the spins
point almost perpendicular to the bond direction. These
expressions also apply to the interaction of a B-island
with its principal direction neighbors on the A-sublattice
(interchanging A and B).
To analyze time-dependent fluctuations, the in-plane

angles are set to φA = φ0A+φn(t) on A-islands and φB =
φ0B + φn(t) on B-islands, where φn(t) are the deviations
from the equilibrium rs. There are nonzero out-of-plane
deviations θn(t), such that the spins’ (x, y, z) components
are written

An = (cn cos(φ0A + φn), cn sin(φ0A + φn), sn), (14)

Bn = (−cn sin(−φ0A + φn), cn cos(−φ0A + φn), sn),

where cn = cos θn, sn = sin θn.
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Then, the dipolar energies can be expanded to quadratic order in φn ≪ 1 and θn ≪ 1. For example,

udd‖

D ≈ − 3
2

[

1− φnφn+xI
− 1

2

(

φ2n + φ2n+xI
+ θ2n + θ2n+xI

)]

+ θnθn+xI

− 1
2

{

sin(2φ0A)
[

1 + φnφn+xI
− 1

2

(

φ2n + φ2n+xI
+ θ2n + θ2n+xI

)]

+ cos(2φ0A)(φn − φn+xI
)
}

. (15)

A similar expression gives udd⊥
, with the − 3

2 changed to + 3
2 . Combining udd‖

with udd⊥
, and summing over n

produces the net nn dipolar energy, ordered by zeroth, linear, and quadratic terms,

Udd ≈ −ND sin(2φ0A)−D cos(2φ0A)
∑

n

[

φn − 1
2 (φn+xI

+ φn+yI
)
]

+D
∑

n

{

3
2φn(φn+xI

− φn+yI
) + θn(θn+xI

+ θn+yI
) + sin(2φ0A)

[

φ2n + θ2n − 1
2φn(φn+xI

+ φn+yI
)
]}

. (16)

In the same way, the anisotropy energy after expansion is

UK ≈ NK1 sin
2φ0A + K1

2 sin(2φ0A)
∑

n

[

φn − 1
2 (φn+x + φn+y)

]

+
∑

n

[

K1 cos(2φ
0
A)φ

2
n +

(

K1 cos
2 φ0A +K3

)

θ2n
]

. (17)

The total system energy is the sum,

H = Udd + UK = H0 +H(1) +H(2), (18)

where the zeroth order term H(0) is the rs energy:

H(0) = N
(

−D sin 2φ0A +K1 sin
2φ0A

)

. (19)

The term H(1) linear in deviations is zero, and the
quadratic terms are separated into in-plane parts and
out-of-plane parts, H(2) = Hφ +Hθ, defined by

Hφ =
∑

n

{[

D sin 2φ0A +K1 cos 2φ
0
A

]

φ2n

− 1
2D sin(2φ0A) φn(φn+xI

+ φn+yI
)

+ 3
2Dφn(φn+xI

− φn+yI
)
}

, (20)

Hθ =
∑

n

{[

D sin 2φ0A +K1 cos
2φ0A +K3

]

θ2n

+Dθn(θn+xI
+ θn+yI

)} . (21)

A. Spin deviation energy in matrix form

Having expressed the small fluctuations by quadratic
Hamiltonians, now it is possible to extract the modes of
oscillation. To that end, the sub-Hamiltonians Hφ and
Hθ can be written in a matrix notation, from which the
spin dynamics is easier to follow. Generally, the spin
deviations form state vectors (written as row vectors),

ψ†
φ = (φ1, φ2, φ3, ...φN ),

ψ†
θ = (θ1, θ2, θ3, ...θN ), (22)

where the subscripts label the islands. There are only
sparse couplings (i.e., nearest neighbors) among the ele-
ments of each vector. The out-of-plane Hamiltonian can

be written in terms of an N ×N matrix Mθ as

Hθ = 1
2ψ

†
θMθψθ, (23)

where the matrix elements are either diagonal ones
(Mθ,n,n) or nn ones (Mθ,n,n±xI

and Mθ,n,n±yI
). From

(21), the nonzero elements are

Mθ,n,n =Mθ,1 ≡ 2
(

D sin 2φ0A +K1 cos
2φ0A +K3

)

,

Mθ,n,n±xI
=Mθ,n,n±yI

≡Mθ,2 = D. (24)

Mθ is symmetric: Mθ,n,m = Mθ,m,n. The in-plane
Hamiltonian can be written in the same form,

Hφ = 1
2ψ

†
φMφψφ, (25)

where (20) gives the nonzero matrix elements,

Mφ,n,n =Mφ,1 ≡ 2
(

D sin 2φ0A +K1 cos 2φ
0
A

)

,

Mφ,2 ≡ − 1
2D sin 2φ0A, Mφ,3 ≡ 3

2D,
Mφ,n,n±xI

=Mφ,2 +Mφ,3,

Mφ,n,n±yI
=Mφ,2 −Mφ,3. (26)

Mφ is also symmetric, but the couplings in the yI direc-
tion are different than those in the xI direction.

B. Spin dynamics from Hφ and Hθ

Assuming a gyromagnetic ratio γe, the undamped dy-
namics of an island’s magnetic moment is given by a
torque equation [34, 35],

dµn

dt
= γeµn ×Bn. (27)

The magnetic field that acts on an island is derived from
the total Hamiltonian, H = Hφ +Hθ, according to

Bn = − ∂H

∂µn

. (28)
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Each island’s unit spin µ̂n is nearly aligned to the equi-
librium magnetic field B0

n acting on it, except for the
small deviations caused by oscillations. The fluctuations
in Bn contribute to torque. Let µ̂0

n be the equilibrium
spin, and then let t̂n = ẑ×µ̂0

n be a unit vector transverse
to µ̂0

n in the xy-plane. The spin has transverse deviation
φnt̂n and z-deviation θnẑ, such that

µ̂n ≈ µ̂0
n + φnt̂n + θnẑ. (29)

The magnetic field can also be expressed as the equilib-
rium value plus transverse and z-deviations,

Bn = B0
n − 1

µ

∂H

∂φn
t̂n − 1

µ

∂H

∂θn
ẑ. (30)

Inserting into the torque equation (27), and keeping only
leading terms, gives

φ̇nt̂n+θ̇nẑ = γeµ̂
0
n×
(

B0
n − 1

µ

∂H

∂φn
t̂n − 1

µ

∂H

∂θn
ẑ

)

. (31)

Separating into transverse and z-components gives the
linearized Hamiltonian equations of motion,

φ̇n =
γe
µ

∂H

∂θn
, θ̇n = −γe

µ

∂H

∂φn
. (32)

These result more directly by realizing that out-of-plane
component µ̂z

n = θn is the momentum conjugate to φn.
WithH = Hφ+Hθ in separated form, the set of deriva-

tives can be expressed via matrix notation,

(

∂Hφ

∂φn

)

= Mφψφ,

(

∂Hθ

∂θn

)

= Mθψθ. (33)

The dynamic equations become a matrix problem with
2N degrees of freedom,

ψ̇φ =
γe
µ
Mθψθ, ψ̇θ = −γe

µ
Mφψφ. (34)

There are various ways to solve (34) for the dynamic
eigenmodes. One way that works only in the nn-model is
to find the eigenvalues and eigenvectors of Mθ and Mφ,
that satisfy

Mθψθ = λθψθ, Mφψφ = λφψφ. (35)

1. Eigenvalues of Mθ

Consider Mθ. The elements θn of an eigenvector are
identified by their position, n = nxI

xI + nyI
yI, in the nn

island coordinates. One row of the eigenvalue problem
for Mθ is

Mθ,1θn +Mθ,2(θn+xI
+ θn−xI

)

+Mθ,2(θn+yI
+ θn−yI

) = λθ θn, (36)
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λθ
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NN-model

K3= D
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FIG. 4: Energy eigenvalue λ+
θ vs. in-plane anisotropy, for the

most unstable wave vector qIaI = (π, π) in island coordinates,
showing that stability requires K1 > 1.5D when K3 = 0, or
anyK1 > 0 when K3 > D. The same results hold for λ−

θ (0, 0).

where the on-site (Mθ,1) and nn (Mθ,2) matrix elements
were defined in (24). The out-of-plane fluctuations for a
dipole are µz

n = µ sin θn ≈ µθn.
With periodic boundary conditions, wave solutions re-

sult. The elements of ψθ are either on the A or B sub-
lattice. Thus two amplitudes aθ, bθ are included, i.e.,

θAn = aθe
iq·n, A-sites,

θBn = bθe
iq·n, B-sites. (37)

The wave vectors q = (qxI
, qyI

) are quantized in the usual
way, with components in island coordinates,

qxI
=

2πkx
N1aI

, kx = 0, 1, 2, ...(N1 − 1),

qyI
=

2πky
N2aI

, ky = 0, 1, 2, ...(N2 − 1). (38)

For the wave solution, the sums over nn’s are

θn+xI
+ θn−xI

= 2θn cos qxI
aI,

θn+yI
+ θn−yI

= 2θn cos qyI
aI. (39)

The total q-dependent phase factor is

γ+q = 2(cos qxI
aI + cos qyI

aI) (40)

The system of equations (36) is split into two sets, de-
pending on whether n resides on the A or B sublattice,
producing a 2× 2 reduced system:

[

Mθ,1 Mθ,2γ
+
q

Mθ,2γ
+
q Mθ,1

] [

aθ
bθ

]

= λθ

[

aθ
bθ

]

. (41)

This matrix has symmetric and antisymmetric eigenvec-
tors, (aθ, bθ) = (ψ±)† ≡ 1√

2
(1,±1), with eigenvalues

λ±θ =Mθ,1 ±Mθ,2γ
+
q . (42)
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plane anisotropy, for various wave vectors in island coordi-
nates, Eq. 49, showing that stability requires K1 > K1,min ≈
2.947D.

In terms of the original constants in H and with full q-
dependence this is

λ±θ (q) =2
[

D sin 2φ0A +K1 cos
2φ0A +K3

±D (cos qxI
aI + cos qyI

aI)] . (43)

A negative eigenvalue implies that the rs can lower
its energy by excitation with the associated wave vec-
tor, which indicates instability. Specifically of interest,
λ+θ (π, π) is plotted in Fig. 4, which shows rs instability
for K1 > 1.5D when K3 = 0, and stability for all K1 > 0
when K3 > D. Note that wave vectors are denoted in
terms of their components and directions in the island
coordinates.

2. Eigenvalues of Mφ

Next, consider Mφ, which has the matrix elements in
(26). Fluctuations in φn are dipole components trans-

verse to the equilibrium directions, within the xy-plane.
One row of the eigenvalue problem is

Mφ,1φn + (Mφ,2 +Mφ,3)(φn+xI
+ φn−xI

)

+ (Mφ,2 −Mφ,3)(φn+yI
+ φn−yI

) = λφφn. (44)

Note that couplings along the yI direction are different
than along xI. Again a wave solution is present, with
amplitudes aφ, bφ on the sublattices, i.e.,

φAn = aφe
iq·n, A-sites,

φBn = bφe
iq·n, B-sites. (45)

Defining another phase factor,

γ−q = 2(cos qxI
aI − cos qyI

aI), (46)

the reduced 2× 2 system is

[

naa nab

nba nbb

] [

aφ
bφ

]

= λφ

[

aφ
bφ

]

.

naa = nbb ≡Mφ,1,

nab = nba ≡Mφ,2γ
+
q +Mφ,3γ

−
q . (47)

The eigenvectors are again symmetric and antisymmet-
ric, (aφ, bφ) = (ψ±)† = 1√

2
(1,±1) with eigenvalues

λ±φ =Mφ,1 ±
(

Mφ,2γ
+
q +Mφ,3γ

−
q

)

. (48)

The full dependence on q and parameters in H is

λ±φ (q) = 2K1 cos 2φ
0
A ± 3D(cos qxI

aI − cos qyI
aI)

+D sin 2φ0A[2∓ (cos qxI
aI + cos qyI

aI)]. (49)

This eigenvalue has considerable dependence on wave
vector, see Fig. 5. For example, λ+φ becomes the most

negative for qIaI = (π, 0), and additionally, it will not be-
come positive unless K1 > 2.947D, approximately. This
shows that a traveling mode along the xI axis destabi-
lizes the rs, and K1 > K1,min ≈ 2.947D is required for
stability in the nn-model. There is another instability
where λ−φ is less than zero for qIaI = (0, π) when K1 be-
comes less than 2.947D. Then, the stability requirement
for λ+θ > 0 in Fig. 4 is satisfied even for K3 = 0.

3. nn-model mode eigenfrequencies

For the nn-model only, the matrices Mθ and Mφ

have the same eigenvectors, (ψ±)† = 1√
2
(1,±1). A time

derivative of equations (34) separates φ and θ solutions,

ψ̈φ = −
(

γe
µ

)2

MθMφψφ, (50)

and similarly for ψ̈θ. Either eigenvector ψφ = ψ+ or ψφ =
ψ− is a separate solution to these equations. Assuming
e−iωt times dependencies, the eigenfrequencies in the nn-
model only, for both θ and φ oscillations, which remain
intrinsically coupled, are given by

ω±
NN(q) =

γe
µ

√

λ±θ (q)λ
±
φ (q), (51)

where the natural choice for frequency unit is

δ1 ≡ γe
µ
D. (52)

Some typical mode frequencies are shown in Fig. 6, first
for anisotropy at the stability limit, K1 = K1,min ≈
2.947D, with K3 = 0. The wave vectors are given in
the island coordinate system. The rs mode frequencies
in the [10] and [01] directions are different because the net
nonzero magnetization is along the [10] direction, break-
ing the symmetry. The most important feature is the
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FIG. 6: The mode frequencies ω±

NN in units of δ1 = γeD/µ,
in the nn-model, for the minimum value, K1 = K1,min ≈
2.947D, that insures rs stability, together with K3 = 0, for
wave vectors along directions in the island principal coordi-
nates.
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FIG. 7: The mode frequencies ω±

NN in units of δ1 = γeD/µ,
in the nn-model, for anisotropy K1 = 5D, well above that
needed for rs stability, together with K3 = 0, for wave vectors
given in the island principal coordinates.

softening of the modes in [10] and [01] directions towards
zero frequency as qIaI → π, signifying the rs instability.
When the anisotropy is increased to K1 = 5.0D, Fig. 7,
all modes oscillate well above zero frequency.
While the frequency spectrum might be useful for ex-

perimental detection of a state, it is important to go be-
yond the nn-model and include the modifications due to
longer range dipole interactions.

IV. EFFECTS OF LONG-RANGE-DIPOLE
(LRD) INTERACTIONS

To get a better description, dipole interactions beyond
nn must be included. Consider two islands’ dipoles,

one at a site n and another at displacement r, on site
m = n+ r. While the spins are written using their
(x, y, z) components, it is best to describe the displace-
ments in integer nn island coordinates, (xI, yI), i.e.

r = (xIx̂I + yIŷI) aI, (53)

in contrast to vertex coordinates (x, y), meaning

r = (xx̂ + yŷ) av. (54)

The transformation between the two is

x = 1
2 (xI − yI) , y = 1

2 (xI + yI) . (55)

When (xI + yI) is even (or x and y both integers), the
displacement stays on the same sublattice (AA or BB
bond). When (xI + yI) is odd (or x and y both half-
integers), the displacement goes from one sublattice to

the other (AB bond). The separation is r =
√

x2I + y2I aI.
The dipole interaction is reduced from its nn-strength D
by a factor

ρ3 ≡ r3/a3I = (x2I + y2I )
3/2. (56)

From (1), the island pair dipole interaction is

unm =− D
ρ3

[(

1
2 − 3xIyI

ρ2

)

µx
nµ

x
m +

(

1
2 + 3xIyI

ρ2

)

µy
nµ

y
m

+ 3
2ρ2

(

x2I − y2I
)

(µx
nµ

y
m + µy

nµ
x
m)− µz

nµ
z
m

]

. (57)

Consider first an AB bond, where (xI+yI) is odd. The
dipoles are labeled µ̂n = An and µ̂m = Bm. The dipoles
have slight angular deviations from the equilibrium rs, as
in (14). The terms needed are expanded up to quadratic
order in the deviations, such as

Ax
nB

x
m ≈ cncm

[

(1− 1
2φ

2
n − 1

2φ
2
m + φnφm) cosφ0A sinφ0A

−φn sin2φ0A − φm cos2φ0A
]

, (58)

where the out-of-plane deviation factor is

cncm ≈ 1− 1
2θ

2
n − 1

2θ
2
m. (59)

There is a similar term for y components,

Ay
nB

y
m ≈ cncm

[

(1− 1
2φ

2
n − 1

2φ
2
m + φnφm) cosφ0A sinφ0A

+φn cos2φ0A + φm sin2φ0A
]

. (60)

Finally, there is the cross coupling of components,

Ax
nB

y
m +Ay

nB
x
m ≈ cncm(1− 1

2φ
2
n − 1

2φ
2
m − φnφm). (61)

One can see that the pair’s dipolar energy uAB contains
zeroth order, first order, and quadratic order terms.
Consider instead an AA pair with energy uAA, or sim-

ilarly, a BB pair, where (xI + yI) is even. For uAA the
needed expressions are

Ax
nA

x
m ≈ cncm

[

(1− 1
2φ

2
n − 1

2φ
2
m) cos2φ0A + φnφm sin2φ0A

−(φn + φm) sinφ0A cosφ0A
]

, (62)
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FIG. 8: The effect of adding longer-range dipole interactions
on the remanent state’s equlibrium tilting angle φ0

A, Eq. (72),
as a function of the largest radius used in the needed sum sAB

of equation (70). The first large jump at ρmax =
√
5 is due to

fourth nearest neighbors.

Ay
nA

y
m ≈ cncm

[

(1 − 1
2φ

2
n − 1

2φ
2
m) sin2φ0A + φnφm cos2φ0A

+(φn + φm) sinφ0A cosφ0A
]

, (63)

Ax
nA

y
m +Ay

nA
x
m ≈

cncm
[

(1− 1
2φ

2
n − 1

2φ
2
m − φnφm) sin 2φ0A

+(φn + φm) cos 2φ0A
]

. (64)

For uBB because the equilibrium directions are different
on the B-sublattice, the expressions are also different,
swapping the factors of sinφ0A and cosφ0A,

Bx
nB

x
m ≈ cncm

[

(1− 1
2φ

2
n − 1

2φ
2
m) sin2φ0A + φnφm cos2φ0A

−(φn + φm) sinφ0A cosφ0A
]

, (65)

By
nB

y
m ≈ cncm

[

(1− 1
2φ

2
n − 1

2φ
2
m) cos2φ0A + φnφm sin2φ0A

+(φn + φm) sinφ0A cosφ0A
]

, (66)

Bx
nB

y
m +By

nB
x
m ≈

cncm
[

(1− 1
2φ

2
n − 1

2φ
2
m − φnφm) sin 2φ0A

−(φn + φm) cos 2φ0A
]

. (67)

A. The shifted equilibrium

Including lrd interactions, the Hamiltonian can be ex-
pressed

H = H(0) +H(1) +H(2), (68)

where the superscripts indicates the zeroth, linear, and
quadratic terms in the deviations around equilibrium.
The equilibrium still has opposing in-plane tilting, φ0B =

−φ0A. The terms in H come partly from AB bonds and
partly from AA bonds (nearly equivalent to BB bonds),
as well as the anisotropy. At the equilibrium, the linear
part H(1) vanishes. There are no linear terms in θn in H ,
implying that the equilibrium still has values θn = 0 for
all sites, and thus all sn = 0, cn = 1. The zeroth order
terms, not containing θn nor φn, are very simple in Eqs.
(57) through (67) and are easy to apply to obtain H(0),
employing inversion symmetry of the system, and divid-
ing by two to avoid double counting. The equilibrium
energy of an island interacting with the entire system via
lrd interactions, per island, ε∞ = H(0)/N , is found to
be

ε∞ = K1 sin
2φ0A − D

4

(

AB
∑

xI,yI

sin 2φ0A
ρ3

+
AA
∑

xI,yI

1

ρ3

)

. (69)

The first sum is over AB bonds, where ρ2 = 1, 5, 9, 13,
etc. The second sum is over AA bonds, with ρ2 = 2, 4, 8,
etc. Estimates of the sums are

sAB =

AB
∑

xI,yI

1

ρ3
≈ 5.8397, sAA =

AA
∑

xI,yI

1

ρ3
≈ 3.1926.

(70)

Then with infinite-range dipole interactions, the energy
per island is

ε∞ = K1 sin
2φ0A − 1

4D
(

sAB sin 2φ0A + sAA

)

. (71)

The equilibrium tilting of the dipoles takes place at the
minimum of H(0), which gives

tan 2φ0A = − tan 2φ0B =
sABD
2K1

≈ 2.9198D
K1

. (72)

Thus, the effect of infinite-range dipolar interactions is
to increase the inward tilting of the two sublattices to-
wards each other, compared to the nn-model [Eq. (9)],
see Fig. 3. The change in tilting as longer-range dipolar
interactions are included is shown Fig. 8, as a function
of the maximum neighbor distance ρmax used in the sum
sAB, for K1/D = 5. The largest jump (beyond nn in-

teractions) occurs at ρmax =
√
5, where φ0A changes from

10.9◦ to 12.6◦. This is attributed to fourth nearest neigh-
bor interactions (eight AB bonds with ρ2 = 5) that try
to align the A and B lattices. The AA bonds do not
shift the equilibrium, as the sum sAA plays no role in the
formula for φ0A, but they contribute to the energy.

B. Dynamics with long-range-dipole interactions

The last term in the Hamiltonian, H(2) = Hφ +Hθ, is
quadratic in the small deviations φn and θn, and controls
the dynamics, as in Eqs. (32) and (34). Equations (57)
through (67) give the contributions of arbitrary range
dipole interactions to H(2), and implicitly define the ma-
trices Mφ and Mθ. Once lrd interactions are included,
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the matrices Mφ and Mθ do not have the same eigen-
vectors, so a more general procedure is needed to get the
dynamic modes.
The dynamics in (34) is still solved using traveling

waves written in the nn island coordinates. While lo-
cating an island by n = nxI

xI + nyI
yI, a displace-

ment to another island of a dipole pair is expressed as
r = xIxI + yIyI. Assume waves on both sublattices vary-
ing in time as e−iωt (suppressed in the formulas), the
same as in the nn-model,

θAn = aθe
iq·n, φAn = aφe

iq·n, A-sites,

θBn = bθe
iq·n, φBn = bφe

iq·n, B-sites. (73)

The allowed wave vectors were given in (38).
The matrix form of the dynamic equations (34) in-

volves sums over matrix elements with the spin field com-
ponents,

−iωφn = γe

µ (Mθ,n,n θn +
∑

r6=0

Mθ,n,n+r θn+r),

iωθn = γe

µ (Mφ,n,n φn +
∑

r6=0

Mφ,n,n+r φn+r). (74)

This pair of equations becomes four equations when both
A and B sublattices are considered. The matrix elements
are either within a sublattice (MAA

n,m,M
BB
n,m) or between

sublattices (MAB
n,m,M

BA
n,m). They are derived from the

quadratic terms in Eqs. (57) through (67). For exam-
ple, the coefficient of φ2n in Ax

nB
x
m in (58) contributes

to MAB
φ,n,n, while the coefficient of φnφm contributes to

MAB
φ,n,m.
With the wave assumption, the equations comprise

coupled systems with 2 × 2 matrices named m and n

for compact notation,

−iω

[

aφ
bφ

]

=

[

maa mab

mba mbb

] [

aθ
bθ

]

, (75)

−iω

[

aθ
bθ

]

= −
[

naa nab

nba nbb

] [

aφ
bφ

]

. (76)

This is identical to a single 4× 4 eigenvalue problem,







0 0
0 0

m

n
0 0
0 0













aφ
bφ
iaθ
ibθ






= ω







aφ
bφ
iaθ
ibθ






. (77)

Symbolically, the 2× 2 matrices off the diagonal are

m =
γe
µ
Mθ, n =

γe
µ
Mφ, (78)

as projected onto the traveling wave solutions. More
specifically, the matrix elements of m and n are given
by sums of the interactions as derived from H(2). For
instance, maa comes from the AA dipole interactions as

0 0.5 1 1.5 2
K1/D
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-0.4

0

0.4

0.8
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1.6

2

2.4

λ φ+
/D

Long-range-dipole model

unstable

q
I
aI=(0,0)

qIaI=(π,0)
1.094

FIG. 9: With infinite-range dipole interactions, the in-plane
energy eigenvalue λ+

φ vs. in-plane anisotropy, for two wave
vectors in island coordinates, showing that stability requires
K1 >≈ 1.094D, significantly less than K1 > 2.947D in the
nn-model.

well as the on-site anisotropy. Supposing n is an A-site,
with n+r also an A-site,

maa =
γe
µ

(

Mθ,n,n +
AA
∑

r

Mθ,n,n+re
iq·r

)

. (79)

The symbol
∑AA

r indicates summing over displacements
on one sublattice (xI + yI =even). The same expression
gives mbb = maa. For the AB couplings there is also
symmetry,

mab = mba =
γe
µ

AB
∑

r

Mθ,n,n+re
iq·r (80)

where
∑AB

r indicates summing over displacements from
one sublattice to the other (xI + yI = odd). The full q-
dependence of the matrix elements of m and n is shown
in Appendix B 1.

1. Stability requirements with lrd interactions

Similar to the nn-model, the eigenvalues of matrices n
and m must be positive for stability of the rs when lrd

interactions are included. The controlling requirement is
due to the eigenvalues λ±φ of matrix n. A general formula

for its eigenvalues (as for any 2× 2 matrix) is

λ±φ = 1
2 (naa+nbb)±

√

1
4 (naa + nbb)2 − (naanbb − nabnba).

(81)
The most unstable eigenvalue occurs at qaI = (π, 0),
where the sums needed (see Appendix B 1) become

fodd(π, 0) = devn(π, 0) = fxy
evn(π, 0) = 0, (82)

fevn(π, 0) ≈ −0.93546, dodd(π, 0) ≈ −3.71107 (83)
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Then the eigenvalues are λ±φ = naa ± nab, or

λ±φ (π, 0) = 2K1 cos 2φ
0
A + 1

2D
[

sAB sin 2φ0A

+sAA − fevn(π, 0)± 3 dodd(π, 0)] . (84)

Because dodd(π, 0) is negative, the eigenvalue λ+φ (π, 0)
is smallest. It is responsible for an instability at K1 <
1.094 D, see Fig. 9. As a result, lrd interactions enhance
the stability of the remanent state, meaning that even
rather weak uniaxial anisotropy of the islands will be
able to maintain that state.

2. Mode frequencies with lrd interactions

It is shown in Appendix C that the eigenfrequencies of
the 4× 4 eigenvalue problem (77) are obtained from

ω2 =
1

2

[

(

mT · n
)

±
√

(mT · n)2 − 4|m||n|
]

. (85)

The two solutions can be labeled as ω±
∞(q), where ∞ in-

dicates keeping lrd interactions to unlimited distances.
The formula contains a dot product of the two 2 × 2
dynamic matrices, as well as a product of their deter-
minants. It should apply to any spin dynamics prob-
lem involving a two-sublattice partitioning of the system.
The two modes might be considered as acoustic and op-
tic modes, however, such identification really depends on
the spin components being considered.

Following the procedure in Appendix C, and applying
Eq. 85, the dispersion relations for modes of excitation
from a remanent state were obtained for various cases of
anisotropy.

3. Changes in dynamics – second nearest neighbors

To see the general trend due to going beyond nn-
interactions, first we include only the interactions up
to second nearest neighbors (2nn), with displacements
(x, y) = (±1, 0)av, (0,±1)av, which are the nearest AA
or BB bonds. It is straightforward to show that the
equilibrium angles φ0A are the same as in the nn-model.
The procedure in Eq. 85 gives the eigenfrequencies, us-
ing sums truncated at 2nd-nearest neighbors. A partial
mode spectrum is shown in Fig. 10, for K1 = 2.947D,
where the 2nn-model is compared to the model using
infinite-range dipole interactions. The 2nn interactions
already lift eigenfrequencies enough to relieve the insta-
bility that is present in the nn-model, compare Fig. 6.
Once lrd-interactions to infinite range are included, the
frequencies are raised further, and the notable crossing
point between higher and lower modes shifts to lower fre-
quency. Surprisingly, it is not an avoided crossing.
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FIG. 10: Comparison of the [10] rs dispersion relations (wave
vectors in island coordinates) using the 1st+2nd neighbors
model (ω±

2NN, indigo) and the model with all ∞-range dipole
interactions (ω±

∞, red) calculated using sums out to ρ ≈ 4000,
at K1 = 2.974D, just above the minimum needed for stability
in the nn-model. The frequencies are higher with more dipole
terms and the crossing point shifts to lower wave vector.
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FIG. 11: Dispersion relations in island coordinates using all
dipole interactions, for a remanent state with K1 = 1.09428D
and K3 = 0, just above the minimum needed for stability,
calculated using sums out to ρ ≈ 10000. Both the [10] and [01]
ω−
∞ dispersion relations go unstable at qIaI = π for smaller

K1.

4. Changes in dynamics – infinite range dipole interactions

The stability limit at K1 ≈ 1.094D,K3 = 0, with
infinite-ranged dipole interactions can be verified by find-
ing the mode dispersion relations for wave vectors along
[10], [01], and [11] directions in island coordinates, see
Fig. 11. It is found that the ω−

∞ modes along both the
[10] and [01] directions go to zero for qIaI = π, similar
to the behavior in the nn-model, compare Fig. 6, even
though the [01] frequency is higher, away from the stabil-
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FIG. 12: Dispersion relations using all dipole interactions for
a rs at K1 = 5.0D, calculated using sums out to ρ ≈ 4000.
While the ω−

∞ and ω+
∞ frequencies along [01] and [11] island

directions are far from each other, they touch or /cross at a
point in the [10] direction, i.e., for wave vectors parallel to the
rs magnetization.

ity limit point. One concludes that spin waves traveling
either parallel to (along [10]) or perpendicular to (along
[01]) the magnetic moment of the rs contribute to its in-
stability at weak uniaxial anisotropy in the islands. Even
so, very little uniaxial anisotropy is needed to stabilize a
rs under the influence of long-range dipole interactions.

Another example of the dispersion relations is shown in
Fig. 12 for K1 = 5D,K3 = 0. The shapes have changed
noticeably from how they appeared at the stability limit
for K1. Note that the frequencies along [10] touch or
cross now at qIaI ≈ 0.3π, while those along [01] and [11]
remain very highly separated for all qI. This is in strong
contrast to the result in Fig. 7 for the nn-model above the
stability limit. The conclusion is that dipolar interactions
are especially influential along the [11] island direction in
keeping the higher and lower mode frequencies separated.
This effect is highlighted in Fig. 13, where the frequencies
along [11] are compared for the nn model (ω±

NN), the

model with 1st and 2nd nearest neighbors (ω±
2NN), and the

model with all lrd interactions (ω±
∞). A drastic change

occurs when the 2nd nearest neighbors are added, while
going from there to very long range interactions shifts
the frequencies about 10% higher.

Consider next a real square spin-ice material such as
that using Permalloy studied by Wang et al. [11], with
elongated islands of approximate dimensions 220 nm ×
80 nm × 25 nm thick. Based on the saturation mag-
netization Ms = 860 kA m−1 multiplying the volume
of elliptical islands, the island magnetic dipole moment
was estimated as µ = 2.97 × 10−16 A m2, see Ref. 25.
Then supposing a square ice with a close vertex spacing,
av = 320 nm (island nn spacing aI = av/

√
2), the nn

dipolar coupling constant in Eq. (3) is D = 7.61× 10−19

J. Simulations in Ref. 28 can be used to estimate the
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FIG. 13: Dispersion relations at K1 = 5.0D,K3 = 0 for wave
vectors along the [11] island direction only, comparing the
calculations of the nn model (ω±

NN) , the model with 1st and

2nd nearest neighbors (ω±

2NN), and the model with all lrd

interactions (ω±
∞).

anisotropy constants, for the chosen island aspect ratios,
and they were found [25] to be K1 = 2.9 × 10−17 J and
K3 = 6.4 × 10−17 J. These are high compared to room
temperature thermal energy, which insures stabilization
of a remanent or other discrete spin-ice state, and truly
forces the oscillations to be of small amplitude. Then the
scaled anisotropy parameters needed here are estimated
as K1 = 38 D and K3 = 84 D, based on this particular
geometry of the island lattice.
For this realistic model, mode frequencies or wave vec-

tors along [10], [01] and [11] directions in island coordi-
nates are plotted in Fig. 14. Relative to the examples
with weaker anisotropy, the whole spectrum has been
shifted to higher frequencies due to the strong anisotropy
in typical spin-ice with greatly elongated islands. Note
again the vivid linearity of dispersion relations along the
[10] direction near qI = 0, and in the region near the
point where higher and lower frequencies touch. The
modes along [01], to the contrary, remain widely sepa-
rated for the whole range of wave vectors. Along [11],
both modes ω+

∞ and ω−
∞ are almost independent of qI,

with only slight variations. The modes along [10] and
[01] both approach qIaI → π with zero slope.

V. CONCLUSIONS

An effective model with Heisenberg-like island dipoles
influenced by anisotropies and dipole-dipole interactions
has been applied to find the remanent state properties
for square spin ice, including the spin configuration, its
energy, angular deviation eigenvalues, and the normal
modes of oscillation about a rs. The model allows the
net dipole of each island to deviate continuously in direc-
tion from its long axis, while paying a cost in anisotropy



12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
qIaI/π

132

134

136

138

140

142

144
ω

/δ
1

ω−
∞(0,qI)

ω−
∞(qI,qI)

ω+
∞(0,qI)

Modes for 
K1 = 38 D, 

with all long-range 
  dipole interactions.

ω+
∞(qI,0)

ω−
∞(qI,0)

ω+
∞(qI,qI)

K3 = 84 D, 

FIG. 14: Dispersion relations in island coordinates using all
dipole interactions, for a remanent state at realistic spin-ice
parameters appropriate to the square spin-ice of Wang et al.

[11]. Calculated using sums out to ρ ≈ 4000. Note the linear
dispersions on both sides of the [10] touching point, while
the modes stay fairly widely separated along [01] and [11].
Further, the modes along [10] and [01] approach qIaI → π
with zero slope.

energy. This analysis would not be possible if the island
dipoles were represented as Ising spins.

The model with nn-dipole-interactions, although
somewhat limited, was used to describe the static and
dynamic calculations and to estimate the basic proper-
ties. The rs energy (Fig. 3) for K1 > K1,min ≈ 2.947 D
is εNN ≈ −0.2 D, compared to the ground state en-
ergy −3D in the nn-approximation. Hence, the rs ex-
hibits a metastable property. It has considerably higher
energy than a ground state but nevertheless is stabi-
lized from small oscillations by relatively weak uniaxial
anisotropy of the islands, even when including only nn-
dipole-interactions.

In the nn-model, a rs is stable in the absence of planar
anisotropy (K3 = 0) as long as the uniaxial anisotropy
of an island surpasses K1,min = 2.947 D, where D is the
nn dipolar interaction strength. The instability for weak
uniaxial anisotropy (K1 < K1,min) can be attributed to
in-plane deviation eigenvalues becoming zero at the lim-
iting anisotropy: λ+φ (π, 0) → 0 and λ−φ (0, π) → 0. The
net magnetic moment of the system in the selected rema-
nent state is along the [10] direction of the island lattice
([11] direction of the xy coordinates of the vertex lattice).
Although the nonzero magnetization M breaks the sym-
metry of the system, modes along island directions [10]
and [01] both go unstable at K1,min, see Fig. 6. The
eigenvalues λ±φ become imaginary for K1 < K1,min, im-
plying that large in-plane fluctuations will grow with time
for the unstable rs. The out-of-plane deviation eigenval-
ues λ±θ remain positive and do not play a role in the
instability, even for planar anisotropy K3 = 0, as long as
K1 > K1,min.

A procedure was developed here to include all dipole-

dipole interactions of a central site with neighbors at any
distance on the square lattice. With dipole-dipole bonds
classified as AA or BB (intrasublattice) and AB (inter-
sublattice), it is found that the AA and BB bonds do not
change the rs spin angles, but they do affect the dynamic
frequencies. lrd interactions cause the sublattice spins
to tilt more closely towards each other (closer to the [10]
direction) compared to their directions in the nn-model,
see Fig. 3. That extra tilting puts the dipoles into an en-
ergetically more favorable configuration for dipole-dipole
interactions, and lowers the rs energy, while the state
remains metastable.

With infinite-range dipole interactions, the instability
of the rs for qIaI → π still takes place for wave vec-
tors along both the [10] and [01] island directions for
K1 < K1,min, however, the limiting value decreases to
K1,min = 1.09428 D. This implies that the extra dipole
interactions beyond nn tend to keep the island spins more
strongly along the island axes, with less need for uniaxial
anisotropy. A remanent state of square spin ice will not
be stable for K3 = 0 unless K1 > 1.09428 D, a rather
weak anisotropy constraint. For the model of a realistic
square spin ice, the large anisotropy values K1/D = 38,
K3/D = 84 very strongly stabilize a remanent state.

The dynamics with lrd interactions is determined by
a pair of coupled 2 × 2 eigenvalue problems, equivalent
to a single 4×4 system. Due to the symmetry properties
of the involved matrices, the exact frequency eigenvalues
of the 4 × 4 system can be calculated. Generally, the
mode frequencies increase as longer range dipole inter-
actions are included. For realistic parameters for square
spin-ice, Fig. 14, the mode frequencies are fairly high al-
ready due to the islands’ anisotropies. The modes ω±

∞
with wave vectors along [10] (parallel to the rs magneti-
zation) touch at one point and display a linear behavior
at lower wave vectors. The other modes ω±

∞ with wave
vectors along [01] and [11] stay well separated. Along
[11] that mode separation appears to be due to the lrd

interactions. These calculations are expected to be ap-
plicable for finding state stability and mode properties
in other distinct states of spin ice and can be adapted to
different lattices.

Appendix A: Full lrd Hamiltonian H(2)

Here the quadratic terms in expression (57) for dipole
pair energy are fully expanded in the small deviations θn
and φn and a complete expression for H(2) that deter-
mines the dynamics is given. The quadratic part of an
AB pair interaction energy can be written as

u
(2)
AB = uxxAB + uyyAB + uxyAB + uzzAB. (A1)
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Eqs. (58) through (61) are used to get the contributions

to u
(2)
AB,

uxxAB =
D
4ρ3

(

1

2
− 3xIyI

ρ2

)

sin 2φ0A

×
(

φ2n + φ2m − 2φnφm + θ2n + θ2m
)

,

uyyAB =
D
4ρ3

(

1

2
+

3xIyI
ρ2

)

sin 2φ0A

×
(

φ2n + φ2m − 2φnφm + θ2n + θ2m
)

,

uxyAB =
3D
4ρ5

(

x2I − y2I
)

×
(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

,

uzzAB =
D
ρ3
θnθm. (A2)

Then the single AB pair interaction is

u
(2)
AB =

D
ρ3
{

1
4

(

φ2n + φ2m − 2φnφm + θ2n + θ2m
)

sin 2φ0A

+
3(x2

I−y2
I )

4ρ2

(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

+ θnθm
}

.

(A3)

This is summed over all AB pairs, which is one contri-
bution to H(2). Each pair must be summed only once,
which can be done by restricting n to be an A-site only
and m to be a B-site only, denoted as

U
(2)
AB =

A
∑

n

B
∑

m

u
(2)
AB. (A4)

But the expressions are symmetric in n and m, so that
summing φ2m over all m is equivalent to summing φ2n over
all n. That means φ2m can be removed, and n can be
summed over all sites of both sublattices. The term θ2m
can be removed for the same reason. For the cross terms,
let m = n + r, sum over the allowed AB displacements
r, sum over all n, and then divide by two to undo the
double counting of bonds. n might be an A or B site,
it doesn’t matter, as long as r = (xI, yI) is an AB bond,
which is enforced with (xI + yI) being an odd integer.
This gives the AB bond contribution to H(2),

U
(2)
AB =

∑

n

AB
∑

r

D
ρ3

{

1
4

(

φ2n − φnφm + θ2n
)

sin 2φ0A

+
3(x2

I−y2
I )

4ρ2

(

φ2n + φnφm + θ2n
)

+ 1
2θnθm

}

. (A5)

A similar procedure is applied for AA bonds. Eqs. (62)

through (64) give

uxxAA =
D
2ρ3

(

1

2
− 3xIyI

ρ2

)

×
[

(φ2n + φ2m + θ2n + θ2m) cos2φ0A − 2φnφm sin2φ0A
]

,

uyyAA =
D
2ρ3

(

1

2
+

3xIyI
ρ2

)

×
[

(φ2n + φ2m + θ2n + θ2m) sin2φ0A − 2φnφm cos2φ0A
]

,

uxyAA =
3D
4ρ5

(

x2I − y2I
)

×
(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

sin 2φ0A,

uzzAA =
D
ρ3
θnθm. (A6)

Their sum is a single AA pair interaction,

u
(2)
AA =

D
ρ3

{

1
4 (φ

2
n + φ2m − 2φnφm + θ2n + θ2m) + θnθm

+
3(x2I − y2I )

4ρ2
(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

sin 2φ0A

−3xIyI
2ρ2

(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

cos 2φ0A

}

.

(A7)

When u
(2)
AA is summed over all AA pairs, this gives an-

other contribution to H(2). In this case both n and m

must be selected from the A-sites, and the sum is

U
(2)
AA =

1

2

A
∑

n

A
∑

m6=n

u
(2)
AA. (A8)

where 1
2 undoes the double counting of AA bonds. But

summing φ2m over all A-sites gives the same as summing
φ2n over all A-sites. Therefore this can be written indicat-
ing that n is an A-site while the displacements r = (xI, yI)
must be AA bonds, enforced by (xI + yI) being even in-
tegers. This gives

U
(2)
AA =

A
∑

n

AA
∑

r

D
ρ3

{

1
4 (φ

2
n − φnφn+r + θ2n) +

1
2θnθm

+
3(x2I − y2I )

4ρ2
(

φ2n + φnφn+r + θ2n
)

sin 2φ0A

−3xIyI
2ρ2

(

φ2n + φnφn+r + θ2n
)

cos 2φ0A

}

. (A9)

Finally there are BB bonds, very similar to AA bonds,
however, the terms differ because the equilibrium dipole
directions on the two sublattices are different. Eqs. (65)
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through (67) give

uxxBB =
D
2ρ3

(

1

2
− 3xIyI

ρ2

)

×
[

(φ2n + φ2m + θ2n + θ2m) sin2φ0A − 2φnφm cos2φ0A
]

,

uyyBB =
D
2ρ3

(

1

2
+

3xIyI
ρ2

)

×
[

(φ2n + φ2m + θ2n + θ2m) cos2φ0A − 2φnφm sin2φ0A
]

,

uxyBB =
3D
4ρ5

(

x2I − y2I
)

×
(

φ2n + φ2m + 2φnφm + θ2n + θ2m
)

sin 2φ0A,

uzzBB =
D
ρ3
θnθm. (A10)

The displacements that connect BB pairs are the same as
for AA pairs, selecting r = (xI, yI) with (xI + yI) being
even integers. Summing appropriately over all the BB
pairs gives their contribution to H(2),

U
(2)
BB =

B
∑

n

BB
∑

r

D
ρ3

{

1
4 (φ

2
n − φnφn+r + θ2n) +

1
2θnθm

+
3(x2I − y2I )

4ρ2
(

φ2n + φnφn+r + θ2n
)

sin 2φ0A

+
3xIyI
2ρ2

(

φ2n + φnφn+r + θ2n
)

cos 2φ0A

}

. (A11)

The term with xIyI is reversed in sign from that in U
(2)
AA,

Eq. (A9), which is obtained more easily by transform-
ing φ0A → π

2 − φ0A in going from AA interactions to BB
interactions for the same r.
The final contribution to H(2) comes from the islands’

anisotropies, whose quadratic contribution can be ob-
tained from (17),

U
(2)
K =

∑

n

[

(K1 cos 2φ
0
A)φ

2
n +

(

K1 cos
2 φ0A +K3

)

θ2n
]

.

(A12)
Then the total second order Hamiltonian is the sum of
all these parts,

H(2) = U
(2)
K + U

(2)
AB + U

(2)
AA + U

(2)
BB. (A13)

Appendix B: Matrix elements of H(2)

The matrix elements needed in the dynamics calcula-
tions can be found from the full quadratic Hamiltonian
H(2), using its quadratic form,

H(2) = 1
2ψ

†
θMθψθ +

1
2ψ

†
φMφψφ. (B1)

This is equivalent to a double sum over all n and m,

H(2) = 1
2

∑

n,m

(Mθ,n,mθnθm +Mφ,n,mφnφm) . (B2)

The matrix elements can be found either by inspection
of H(2) in (A13) or by second derivatives,

Mθ,n,m =
∂2H(2)

∂θn∂θm
, Mφ,n,m =

∂2H(2)

∂φn∂φm
. (B3)

The factors θ2n and φ2n appear in all four parts of H(2),
so all lrd interactions contribute to on-site (Mn,n) cou-
plings. Those matrix elements are

Mθ,n,n =Mdd + 2
(

K1 cos
2 φ0A +K3

)

,

Mφ,n,n =Mdd + 2K1 cos 2φ
0
A, (B4)

where Mdd is the lrd part, the same for θ and φ,

Mdd =
AB
∑

r

D
ρ3

[

1
2 sin 2φ

0
A +

3(x2
I−y2

I )
2ρ2

]

(B5)

+

AA
∑

r

D
ρ3

[

1
2 +

3(x2
I−y2

I )
2ρ2 sin 2φ0A ∓ 3xIyI

2ρ2 cos 2φ0A

]

.

For A-sites (B-sites), the last term takes the minus (plus)
sign. For an infinite system, however, the sums involving
xI and yI are zero due to symmetry. Mdd is the same for
A- and B-sites, and depends on sums over 1/ρ3 for AB
or AA bonds,

Mdd = 1
2D
(

sAB sin 2φ0A + sAA

)

(B6)

where sAB and sAA were defined in (70). Note that
− 1

2Mdd already appears in the expression (71) for equi-

librium energy per island, H(0)/N .
There are also matrix elements connecting different

sites, which can be grouped according to bond type
(AB, AA or BB), and depend on the bond displacement

r = (xI, yI) or on the distance ρ =
√

x2I + y2I . For the θ
coordinate, they don’t depend on the bond type:

MAB
θ,n,n+r =MAA

θ,n,n+r =MBB
θ,n,n+r =

D
ρ3
. (B7)

For the φ coordinate, the bond type is important:

MAB
φ,n,n+r =

D
ρ3

[

− 1
2 sin 2φ

0
A +

3(x2
I−y2

I )
2ρ2

]

, (B8)

MAA
φ,n,n+r =

D
ρ3

[

− 1
2 +

3(x2
I−y2

I )
2ρ2 sin 2φ0A − 3xIyy

ρ2 cos 2φ0A

]

.

MBB
φ,n,n+r =

D
ρ3

[

− 1
2 +

3(x2
I−y2

I )
2ρ2 sin 2φ0A +

3xIyy

ρ2 cos 2φ0A

]

.

None of the above matrix elements depend on the site
n, but only on the displacement from n to n+r, where
r = (xI, yI) in integer island coordinates.

1. Elements of the dynamic matrices m and n

The elements of the dynamic matrices m (which acts
on a θ wave function) and n (which acts on a φ wave
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function) with all lrd interactions are implicitly defined
via Eq. (74), with traveling waves inserted. The aa and bb
elements stay within a sublattice, so they involve Fourier
sums over MAA

n,n+r and MBB
n,n+r. For the θ operator m,

maa = mbb =
γe
µ

(

Mθ,n,n +
AA
∑

r

MAA
θ,n,n+re

iq·r

)

=
γe
µ

[Mθ,n,n +Dfevn(q)] . (B9)

This depends on a Fourier sum over AA displacements,

fevn(q) ≡
AA
∑

r

eiq·r

ρ3
=

even
∑

xI+yI

cos[(qxI
xI + qyI

yI)aI]

(x2I + y2I )
3/2

.

(B10)

The restriction that xI+yI is even keeps the bonds on the
same sublattice. The ab and ba elements are determined
by Fourier sums over MAB

n,n+r,

mab = mba =
γe
µ

AB
∑

r

MAB
θ,n,n+re

iq·r =
γe
µ
Dfodd(q),

(B11)

where the sum is restricted by xI + yI being odd,

fodd(q) ≡
AB
∑

r

eiq·r

ρ3
=

odd
∑

xI+yI

cos[(qxI
xI + qyI

yI)aI]

(x2I + y2I )
3/2

.

(B12)

For the φ operator n, the corresponding matrix elements are

naa =
γe
µ

(

Mφ,n,n +

AA
∑

r

MAA
φ,n,n+re

iq·r

)

=
γe
µ

{

Mφ,n,n +D
[

3
2devn(q) sin 2φ

0
A − 3fxy

evn(q) cos 2φ
0
A − 1

2fevn(q)
]}

.

nbb =
γe
µ

(

Mφ,n,n +

BB
∑

r

MBB
φ,n,n+re

iq·r

)

=
γe
µ

{

Mφ,n,n +D
[

3
2devn(q) sin 2φ

0
A + 3fxy

evn(q) cos 2φ
0
A − 1

2fevn(q)
]}

.

nab = nba =
γe
µ

AB
∑

r

MAB
φ,n,n+re

iq·r =
γe
µ
D
[

3
2dodd(q)− 1

2fodd(q) sin 2φ
0
A

]

. (B13)

These depend on fe(q) and fo(q) and other Fourier sums,

fxy
evn(q) ≡

even
∑

xI+yI

xIyI cos[(qxI
xI + qyI

yI)aI]

(x2I + y2I )
5/2

,

devn(q) ≡
even
∑

xI+yI

(x2I − y2I ) cos[(qxI
xI + qyI

yI)aI]

(x2I + y2I )
5/2

,

dodd(q) ≡
odd
∑

xI+yI

(x2I − y2I ) cos[(qxI
xI + qyI

yI)aI]

(x2I + y2I )
5/2

. (B14)

Appendix C: Eigenvalues of the 4× 4 dynamic matrix

The general dynamic equation (77) has the expanded
expression,







0 0 maa mab

0 0 mba mbb

naa nab 0 0
nba nbb 0 0













aφ
bφ
iaθ
ibθ






= ω







aφ
bφ
iaθ
ibθ






. (C1)

This is Wψ = ωψ, where W is the 4 × 4 matrix. The
solution requires the determinant D(ω) = |W − ωI| to

be zero. This is

D(ω) =

∣

∣

∣

∣

∣

∣

∣

−ω 0 maa mab

0 −ω mba mbb

naa nab −ω 0
nba nbb 0 −ω

∣

∣

∣

∣

∣

∣

∣

= 0. (C2)

Evaluating D(ω) by the first row, the first term is

D1(ω) = −ω

∣

∣

∣

∣

∣

∣

−ω mba mbb

nab −ω 0
nbb 0 −ω

∣

∣

∣

∣

∣

∣

= −ω
[

−ω3 + (mbanab +mbbnbb)ω
]

. (C3)

The next term is

D2(ω) = maa

∣

∣

∣

∣

∣

∣

0 −ω mbb

naa nab 0
nba nbb −ω

∣

∣

∣

∣

∣

∣

= maa

[

−naaω
2 +mbb(naanbb − nabnba)

]

. (C4)

The third and last term is

D3(ω) = −mab

∣

∣

∣

∣

∣

∣

0 −ω mba

naa nab −ω
nba nbb 0

∣

∣

∣

∣

∣

∣

= −mab

[

nbaω
2 +mba(naanbb − nabnba)

]

. (C5)
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The total determinant is the sum, D(ω) = D1+D2+D3,
which is quadratic in ω2,

D(ω) = ω4 − [maanaa +mbbnbb +mabnba +mbanab]ω
2

+ (maambb −mabmba)(naanbb − nabnba) = 0.
(C6)

That is very general, and it is the same as

D(ω) = ω4 −
(

mT · n
)

ω2 + |m||n| = 0. (C7)

That involves a scalar product of the 2× 2 matrices and
their determinants. Then the eigenvalues in this rather

general case are determined by the quadratic formula,

ω2 =
1

2

[

(

mT · n
)

±
√

(mT · n)2 − 4|m||n|
]

. (C8)

One can verify that all four eigenvalues are real, and
they come in +/− pairs, corresponding to opposite di-
rections of propagation. The ± in the expression gives
two fundamental solutions (higher and lower frequen-
cies), whose dispersion relations are denoted ω+

∞(q) and
ω−
∞(q), where the ∞ subscript indicates that all lrd in-

teractions are included.
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