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ABSTRACT

Properties of vortices and dynamic correlation functions have been studied for
the two-dimensional classical ferromagnetic Heisenberg model with easy-plane
anisotropy, as a function of the anisotropy parameter A = J,/Jy. Continuum limit
equations of motion exhibit two types of static vortex solutions, with and without
out-of-plane spin components. We have studied numerically the stability of these
solutions and have found that for A £ 0.7 only the planar vortex (zero out-of-
plane spin components) is stable, and for A\ 2 0.8 only the vortex with nonzero
out-of-plane spin components is stable. Approximate spin configurations for non-
zero-velocity vortices are presented. A vortex ideal gas phenomenology is used
to calculate the dynamic correlation function S(§q,w). Above the Kosterlitz-
Thouless transition temperature, the calculation predicts a Gaussian central peak
for the out-of-plane correlations and a squared Lorentzian for the in-plane corre-
lations. These results are compared with results of a Monte Carlo-Molecular Dyna-
mics simulation.

1. INTRODUCTION

Quasi-two-dimensional (2D) spin systems provide challenging realizatons of models
ideally suited for large-scale numerical simulations of dynamical behavior. Model
Hamiltonians including anisotropic (easy-plane) exchange and possibly in-plane
symmetry breaking are believed to describe materials of current experimental
interest, such as BaCo; (AsO4),, RbyCrCly [1,2] and CoCl,-GIC [3]. 1In a classical
description, the models support interacting nonlinear domain walls, vortices, and
spin waves, and therefore can be used to test theories for the stability, energy
dispersion, and interactions between these excitations. Continuum limit theory
can be used as a guide, and can be compared with numerical simulations on finite
lattices, where the effects of discreteness may modify the dynamics. These can
be compared with experimental results, especially inelastic neutron scattering
data. The low-frequency long-wavelength dynamic correlations are particularly
relevant as signatures for topological excitations, such as vortices and domain
walls.

The model Hamiltonian we consider is the easy-plane anisotropic Heisenberg
ferromagnet with nearest neighbor interactions:
H=-J 1 (s¥s% + s¥s¥ + as®sh. (1)
1) i)

(i,3)

The exchange parameter is J > 0, and 0 < A < 1 measures the degree of anisotropy.
For the XY model (A = 0), the system is expected to undergo a Kosterlitz-Thouless
(KT) topological phase transition at a finite temperature Tgr [4]. Static spin-
spin correlations are expected to change from power law to exponential as the
temperature T is raised above Tgp, due to a finite density of vortex-antivortex
pairs becoming unbound. For T > Tgr, we therefore expect there will be a low den-
sity of free vortices interacting weakly with one another, in a background spin
field of the remaining bound pairs and renormalized spin waves [5]. This is remi-
niscent of the soliton ideal gas picture for 1D magnets [6]. Phenomenologically,
we can determine the vortex ideal gas contribution to the dynamic structure



function S(§,w), as in Mertens et al. [7], for in-plane and out-of-plane corre-
lations. The theory includes phenomenological parameters that are temperature
dependent, including an rms vortex velocity u, and a correlation length § equal to
half the mean vortex-vortex separation. We will also assume a vortex number den-
sity my = (1/2£)2. As in the 1D scliton models, a central peak (v = 0) in s(q,w)
is expected, relating to the presence of zero-velocity coherent nonlinear struc-
tures (i.e., vortices). These results will also apply to nonzero-\ cases; Tyt de-
creases very slowly with A until A is very near 1 [8]. However, the out-of-plane
correlations might be expected to be modified with increasing A. This depends
on details of the A-dependence of the out-of-plane spin configurations for
moving vortices, which we consider below.

The total S(a.w), due to all excitations and their interactions, can be deter-
mined from numerical simulations using a combined Monte Carlo-Molecular Dynamics
(MC-MD) approach [9]. A (microcanonical) MD integration of equations of motion
is performed, using initial configurations generated by a MC simulation. Compari-
sons of the phenomenology with numerical experiments and laboratory experiments
must allow for effects of nonlinear interactions between the interactions. In
particular, higher order spin wave processes also can contribute to the central
peak; we are presently considering this problem.

We have three primary goals here. First, we consider the dynamics of an isolated
vortex, in the continuum limit and numerically on a lattice, to determine the en-
ergy dispersion, stability, and approximate out-of-plane spin configuration. This
is done for stationary and moving vortices. Second, the vortex ideal gas pheno-
menology is reviewed, and the vortex spin configurations are used to predict the
free vortex contributions to S(q,w). Third, we compare the phenomenological
predictions with numerical simulations on a square lattice, specifically for the
central peak (CP) properties of the XY model.

2. CONTINUUM LIMIT VORTEX PROPERTIES

For the continuum classical dynamics of Eq. 1, we define the in-plane spin field
¢(r) and out-of-plane spin field 6(r) by

§(;) = (cos® cos¢, cos® sin¢g, sin®), (2)

where ¢ = (r,¢) in polar coordinates. Assuming small spatial derivatives (for
example, a 36/3r << 1, (a/r) 36/3p << 1, a = lattice spacing), the continuum equa-
tions of motion are [10, 11]

. 2 . — -
© = cos® V¢ - 2 sinb V6 « V¢, (3)

¢ cos® = [28 - (& |?9I2 4 |V¢I2)/2} sin26 - (1 - ¢ cosze)er. (4)

where the unit of time is fi/JS, and
d=1-2n. (5)

The Hamiltonian contains terms due to © and ¢ gradients, as well as an
anisotropy term (we set a = 1): '

2
J
H = _E dzr [(1-600529} IVBI2 + cosze |V¢|2 + Jésinze}. (6)
2
For static configurations, © = ¢ = 0 and Eq. 3 admits the solution for a

vortex (or antivortex) at the origin:
¢ = + tan-1 (y/x) + $0» 7

where ¢, is an arbitrary constant. The corresponding out-of-plane component can



have two distinct configurations. First, there is a "planar"” solution, with
epl = 0, and energy 1 = %Js2 1n (R/ry), where R is the system size and ro, = a
is a vortex core cut-off for the radial integration. The second solution involves
nonzerce out-of-plane spin components, with asymptotic values

Oout = A(ry/r)l/2 eT/fy, r 4+ = (8)

Oout = ¥/2 - K r/ry , r-+0 (9)

r, =1 (_}_)1f2 (10)
2 \1

If we match the asymptotic functions at r = ry, then
A = we/5 and A = 3%/10 . (11)

The energy E,,¢ is a function of A and r,. The decay of 6y, for large r is char-
acterized by a vortex radius ry. For the XY model, ry = 0, and the out-of-plane
solution degenerates to the planar solution. For nonzero A, relative stability is
determined by Eout‘zpt- However, this difference is very sensitive to the value
of ry. To compare with simulations on a square lattice, ro = a, but it may be
more appropriate to use rp = a/v2 because this is the smallest r to a lattice site
for a vortex centered in a unit cell. Alternatively, the stability can be exam-
ined directly on a discrete lattice by numerical means.

For the XY model, the out-of-plane vortex correlations must derive from moving
"planar" vortices, which can have nonzero out-of-plane components. An approximate
traveling wave solution to Eq. 4 can be found by assuming sin® << 1 and (T-ut)
time dependence, giving "
» ~
sine = " e!r i (12)

1odke®

where 8; is the azimuthal unit vector.

The spin profile is proportional to the velocity. The angular dependence on
3¢ is to be expected--the out-of-plane profile necessarily cannot be isotropic in
¢ if we want the profile to define a distinct direction for the velocity. How-
ever, we see that Eq. 12 is discontinuous and diverges at r = 1/2; retaining the
neglected nonlinear terms presumably would suppress the divergence and force
sin® to cross zero near r = 1/2. For arbitrary A\, asymptotic solutions for a
moving planar vortex are consistent with Eq. 12;
-» ~

&€= us+<e r, r=+0, (13)
¥ ;
. 2 1
0 =~ =u eﬂ g r @ o, (14)
44 r

Whether the asymptotic r + 0 solution is relevant for vortices on a lattice is
questionable; the continuum "solution" varies too rapidly near r = 1/2 to justify
the assumption of small spatial derivatives. We consider this question and vortex
stability using numerical simulation.

3. VORTEX MOTION ON A LATTICE

For numerical simulations, the discrete equations of motion are

3 - - > - =
S.=8S.x F, - ¢S, x (S, x F,), (15)
i i i i i i



-5
F. =J I (S

X ~
i R 3 2 . (16)
(i;3)

$ + 877 + ast

J |
The sum on j is only over the nearest neighbors of i. The parameter ¢ is the
strength of a Landau-Gilbert damping, which was included for testing vortex sta-
bility and for damping out spin waves generated from non-ideal initial conditions.
Neumann boundary conditions were used for simulating single vortices; periodic
boundary conditions were used for vortex-antivortex pairs. The equations for the
Xyz spin components were integrated using a fourth order Runge-Kutta scheme with
a time step of 0.04 (using time unit #/JS). Conservation of energy and spin
length served as checks of numerical accuracy (to about 1 part in 109). Single
vortex motion was studied on a 40 x 40 square lattice; vortex-antivortex pair mo-
tion was studied on a 100 x 100 square lattice.

The stability of static planar vortices was tested by using Eq. 7 as initial con-
dition, with © = 0, centered in a unit cell. The time evolution was followed
to t = 400, with damping ¢ = 0.1. For A < 0.7, the planar vortex was found
to be stable; a small decrease in energy occurred due to small changes in the
boundary spin configuration, but the out-of-plane component remained zero every-
where. For A\ > 0.8, however, a nonzero out-of-plane component developed after
t = 100, and relaxed into configurations as in Fig. 1, approximately described
by Eq. 8 and 9 for the out-of-plane vortex. These simulations were also repeated
using the out-of-plane vortex as initial condition. Again, we found that for A
< 0.7 the planar vortex is the stable configuration and for A\ > 0.8 the out-of-
plane vortex is the stable configuration =
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Fig. 1. Single vortex out-of-plane angles 6, after integration for 400 time
units starting from a planar vortex (6 = 0). The lengths of the lines
are proportioned to ©; the angles from the horizontal axis are 0.

Some insight about moving vortex profiles can be obtained by using static planar

vortex-antivortex pairs as initial condition. With ¢ = 0.1, it is found that
the pairs move easily toward each other for A > 0.8. For A < 0.7, however, the
attraction is considerably weaker and falls off strongly with distance. An in-

stantaneous configuration is shown in Fig. 2. The azimuthal dependence of the
out-of-plane component is clear. There is no sign change in sin® as a function
of r. It should be noted that the vortex motion is not along the line connecting
the centers, but includes a net drift in the orthogonal direction as well 51
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Fig. 2. Vortex-antivortex pair motion for A = 0.7, at t = 15, starting from a
planar pair at t = 0 (6 = 0). A 20 x 20 segment of the 100 x 100 lat-

tice simulated is shown. Note the dependence of © on the azimuthal
coordinate for each vortex.

We have also tested profiles for isolated moving vortices without damping. The
XY planar vortex, Eq. 12, is not found to be a good traveling wave solution. How-
ever, if we modify the r-dependence to sin® ~ (1-e~Br2)/r, which does not change
change sign, then we find that fairly stable moving profiles can be obtained. The
details of the small-r dependence of © still need to be clarified.

4. VORTEX IDEAL GAS PHENOMENOLOGY

The correlations in a dilute gas of free vortices with average separation 2t and
with a Maxwellian velocity distribution with rms velocity U were considered in
Mertens et al. [7]. Based on the single vortex stability regimes, we expect that
the out-of-plane correlations will be determined by moving planar vortices for
A £ 0.7 or by out-of-plane vortices for A\ 2 0.8. Using the*large r asymptotic so-
lutions, we can predict the small-wavevector behavior of S(q,w). Assuming inco-

herent scattering of the vortices, the out-of-plane space-time correlation func-
tion is

-+ 2 2 2 -+ . -+ =2 =2 n -+
Szz(r.t} = nvS fd R fd u P(u) sin®(r-R-ut) siné(R), (17)

where ny is the free vortex density and P(z) is the Maxwell-Boltzmann velocity

distribution. For A < 0.7, and using Eq. 14 for 6 for moving planar the
vortices, space-time Fourier transform of Eq. 17 is

2 nu - 2
8.z Q0 = . ° WL N0 (18)

32!162 q3

Similarly, for A > 0.8, the vortex contribution to Szz (a.m) is found using Eq. 8
for © for out-of-plane vortices, and we find

2 n 2 - 2
szz(;.w} _ S v |£¢q) | a-(m/uq) ‘ A 2 0.8 (19)

'5/2 = q

4



with vortex form factor for gry << 1,

945

4 & 26°

f(q) = 13/2 A ri [1 - As (qrv)2 +

(qrv)4 — see], (20)
16

In both cases there is a Gaussian central peak with width I'; = uq. This reflects
the assumption of a Maxwellian velocity distribution. The integrated intensities
are

2
2 nu
.S v ; Mg 0T (21)
3262 q2
out S o 2
rout _ ( ) n_ 1E@1°, x> 0.8 . (22)
z ; v ~

The small-q divergence of Eq. 21 can be removed by taking into account the finite
system size or other similar cutoffs.

For the in-plane correlations, a different approach is needed because the in-plane
spin components have no Fourier transform and they are globally sensitive to the
presence of vortices. A vortex passing between 0 and r breaks the topological
long range order in cos ¢, diminishing the correlations and changing cos ¢ by
a factor of -1. The vortices behave similarly to 2D sign functions. Carefully
counting the number of vortices passing between 0 and r in time t leads to [7]

2
sxx(?.t) e 5 axp (-10xr0)? + (y321V% (23)

Y = Vv u/2% (24)

Taking the space-time Fourier transform leads to a squared Lorentzian central peak

% 2 73 E2
T rd = 2 2 2 2.2 (25)
2% {0 + v~ [1 + (Eq)"1}
The CP width and integrated intensity are
1/2 1/2
V2 - e .
r, = is(vz — 1] GEY 11+ Go2 , (26)
2
2 2
Ix = S 13 (27)
4 3/72
"o+ (Eq)zl

These results can be compared with the MC-MD simulation, for the XY model. We
used a 100 x 100 lattice with periodic boundary conditions, allowing access to q
= 0.02 (w/a). First, an MC algorithm of 104 steps per spin was used to produce
three equilibrium configurations at a desired temperature. These were used as in-
itial conditions for MD using 4th order Runge-Kutta time integration with time
step 0.04, sampling time Ng x 0.04, and total integration time 512 x Ng x 0.04.
The sampling interval Ng = 4 - 32 depend%gg on the wavevectors of interest. A
Gaussian window function was applied to S(q,t) before using an FFT algorithm for
the time Fourier transform. S(a.w) was averaged over the three initial conditions.
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Fig. 3. Resu%ts from MC-MD simulations of the XY model on a 100 x 100 lattice,
for q = (0.10, 0.10) w/a, for a) in-plane correlations and b) out-of-
plane correlations. Spin wave softening and development of central peak
intensity are seen with increasing temperature.

Typical data are shown in Fig. 3 for three temperatures, where Tgp = 0.8 J.
In-plane as well as out-of-plane spin wave peaks are seen to soften as T is in-

creased towards Tgrp. Additionally, CP intensity develops. Spin wave frequencies
determined from S(§,w) are shown in Fig. 4

Fig. 4. Spin wave frequencies for the XY model, for q's in units of (1/50) (w/a),
as functions of tq?perature (with J = 1), determined from a& in-plane
correlations Sy, (q,w), and b) out-of-plane correlations S,, (q,w). The
frequencies for T > 0.8 are crude estimates, especially for wyy; the
softening of wy, is much stronger than for w,,.



Estimates (upper limits) of numerical CP widths and intensities are shown in Figs.
5 and 6 for T = 1.0. Agreement with the phenomenology is very good, using u and
¥ as adjustable parameters. Fitting I'y to Eq. 26 gives U =0.9 and E/a = 3.0
(Fig. 6). Using these values in Eq. 21 gives I, = 7 x 10-4/q2; for small q this
is larger than the MC-MD calculation of I, by a factor of 2 (Fig. 5). It is not
clear whether finite site corrections for small q are responsible for this differ-
ence. It is encouraging that the orders of magnitude are comparable, although the
MC-MD data for I, do not appear to vary as 1/q4. Multi-spinwave and other effects
due to vortex-vortex and vortex-spinwave interactions may also be responsible for
modifying the out-of-plane CP intensity to lower values than predicted for small
q. Alternatively, it is probable that part of the in-plane width is due to multi-
spinwave processes, and by fitting the observed I'y to Eq. 26, we effectively un-
derestimate the vortex-vortex separation 2% and thus overestimate the vortex den-
sity. This would then result in a predicted out-of-plane intensity due to vorti-
ces that is too large. Investigation of these effects will be important for more
precise comparisons.
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Fig. 5. Central peak properties of S,, (a,w) for the XY model at T = 1.0. In a)
we show estimates of the CP width I', from MC-MD data and compare with
F; = Uq using U = 1.6. In b) we show estimates of the CP intensity I,
from MC-MD data and compare with I, = 3 x 10‘4/q2 (c.f. Eq. 21).

qa/m

5. CONCLUSIONS

We have made continuum and discrete numerical calculations for classical vortex
dynamics in a 2D ferromagnet, for the microscopic single vortex behavior and for
the collective behavior of a finite system in equilibrium. From simulations on a
square lattice, the planar (® = 0) static vortex predicted in continuum theory
is stable only for A < 0.7, and the out-of-plane static vortex is stable only for
A > 0.8. Therefore, for A < 0.7, out-of-plane correlations due to vortices should
be determined by the velocity-dependent out-of-plane spin components of moving
planar vortices. Using a large-r asymptotic expression for a moving planar vor-
tex, we have calculated S(a,w) within an ideal vortex gas phenomenology. The phe-
nomenclogy gives a fairly good description of the central peak behavior of the XY
model above Tgy, as found in MC-MD simulations. Corrections to the ideal gas
phenomenology will involve accounting for the effects of interactions between the
excitations. This may be easiest for the XY model, and will provide an instruc-
tive example for dealing with additional modifications due to in-plane anisotropy
and due to other lattices, such as triangular and honeycomb.



0.0 |
= .-
005} \
1.0 0% o*o.s ol.s. 10
qa/m qa/m

Fig. 6. Central peak properties of Syex (E,w) for the XY model at T = 1.0. In a)

we show estimates of the CP width Iy from MC-MD data and compare with
Eq. 26 using u = 0.9 and £ = 3.0a. In b) we show estimates of the CP
intensity I, from MC-MD data and compare with Eq. 27 using E = 2.4a.
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