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One-Dimensional Easy-Plane Magnets: Classical sine-Gordon Theory or a
Quantum Model?

G. M. Wysin and A. R. Bishop
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

A classical mechanics description of one-dimensional easy-plane ferro- and
antiferromagnets predicts the existence of sine-Gordon kink excitations in
these systems, for the case of a small applied field within the (“strong")
easy plane. Here we consider:

i) the deviations from the sine-Gordon model, due to stronger fields or
weaker anisotropy, which result in modified kink properties, including
negative effective masses and kink-antikink annihilation and reflection
during collisions, and,

ii) equilibrium thermodynamics, especially specific heat, for quantum spin
S =1/2, and S = 1 models, comparing with the predictions of classical
sine-Gordon thaory and with available experimental results.

The applicability of a sine-Gordon model versus a quantum model or the full
classical magnetic Hamiltonian is discussed, for materials such as EsHiFa,
CHAB [{EEHIIHHEJEUErEJ and TMMC [{Eﬂa)dﬂﬁnt13].

I. Introduction

There is continued strong experimental and theoretical interest in nonlinear
excitations supported by low-dimensional magnetic materials. This is
because of their beguilingly direct connections to model theories, such as
the sine-Gordon (SG) equation in 1-dimension [1] or the Kosterlitz-Thouless
scenario of vortex unbinding in 2-dimensions [2]. As the comprehensive
review of Boucher (these proceedings) shows, the experimental support for
the basic predictions of rather simple soliton models in ferromagnetic and
antiferromagnetic, easy-plane chain cases is indeed very strong, even to

the extent that controlled studies of impurity effects on soliton diffusion
are possible. Furthermore, a similarly satisfying picture is beginning to
emerge for vortex gas phenomenologies applied to quasi-two-dimensional magnets
[3].  MNevertheless, theoretical analysis persistently suggests that correc-
tions to ideal (e.g. sine-Gordon) descriptions [4] are very strong in
experimentally relevant circumstances. In the absence of a complete theo-
retical analysis of quantum statistical mechanics for finite spin systems,
it is important that we gain an understanding of dominant individual
corrections to sine-Gordon approximations.

Here, we briefly review the effects of: (i) nonlinear nut-nf-gasy-p1ane
spin motions on classical dynamics (for continuous or discrete spin fields);
and (ii) quantum spin 5 = 1/2 or 1 on thermodynamic properties (e.qg. specific



heat, magnetic susceptibility). For definiteness, we restrict ourselves
to one-dimensional Hamiltonians of the form [5]

=2 08,8 0 AGDP - augh, &
and [6]
- XX Ye¥ - 15, S X
H= ﬁ [Jx5n5n+1 * Jy5n5n+1 i J15n5n+1 g”ﬁaxsn] , (2)

where the notation is conventional. Hamiltonians (1) and (2) are generally
considered appropriate for materials such CsNiF, (S = 1 ferromagnet), TMMC
((CD4),NMNCl,; S = 5/2 antiferromagnet) and CHAB ((CcHy NH,)CuBry; S'= 1/2
ferrdmagnet). In all cases the exchange or local spin anigutrup?as are
chosen such that there is an easy-plane and the magnetic field is applied

in that plane. It has been customary to apply, as a first approximation,
classical statistical mechanics with a field which is small compared with
the anisotropy (e.g. gupB « 2AS). At low temperatures (T < J), the continuum
limit is then apprnxima%ely described by the sine-Gordon equation [5], which
admits as elementary excitations small amplitude spin-waves, and nonlinear
solitons (kinks or breathers).

In section Il we describe the effects of out-of-plane spin motions (beyond
the linear regime) on (1) for an antiferromagnet, i.e. J, A> 0. In partic-
ular we describe possible single kink-solitons and their collisions. Similar
results for the ferromagnetic case are given in [7]. Section III summarizes
recent results [8,9] for the thermodynamics of quantum 5 = 1/2 ferromagnets
of the form (2) (with |J_| = |J. | > [J_|). Some similar discussion of § =1
ferromagnets is given in [9,10)¥ Sectfon IV contains remarks on the outlook
for nonlinear effects in spin chains.

I1. Classical Dynamics in an Easy-Plane Antiferromagnetic Chain

Neutron scattering experiments [11] on TMMC have shown an interesting "cross-
over" behavior of the in-plane and out-of-plane spin-wave dispersions as

an in-plane magnetic field is increased. In model (1) this can be understood
as a switching of the hard axis from the dipole anisotropy axis to the
applied field axis [12].

This switching is also expected to affect the relative energies of the
nonlinear soliton, or "kink" excitations. These kink excitations have been
described in a continuum 1imit by an approximate mapping to the sine-Gordon
(SG) equation, and are rotations of the spins through m around either the
z-axis (XY kinks) or the field axis (YZ kinks) [13]. At the critical field
the stationary XY and YZ kinks have equal energies, as do the in-plane and
out-of-plane spin waves at the zone boundaries.

Previously XY and YZ kinks have been considered to be distinct solutions
of the equations of motion, belonging to separate energy dispersion branches.
Alternatively, here we review an Ansatz which includes the two as distinct
limits of a single continuously connected dispersion curve [14,15]. Also
we compare with results of a numerical integration of the discrete equation
of motion, as well as presenting a linear stability analysis for YZ kinks.



Properties of continuum 1imit XY and YZ kinks have been given elsewhere
[5,13]. Here we present a slightly different analysis for the YZ kinks.

In order to look for the YZ kink solution, it is best to use spherical
polar coordinates where the field direction is the polar axis, in order to
take the symmetry of the desired solution properly into account. 5o if the
spins are parameterized in terms of x-polar spherical coordinates, then the
equation of motion governing the YZ kinks has been shown to be [14,15]:

1 =
2{¢zz - Emtt) =g sin2b; o= 2R/ . (3)
This is a SG equation with ¢ = 2, with the small angles 8, ¢ given in terms

of the large angles ® and . See [14,15] for exact definitions of these
angles. The YZ kink solution is

8@=1/2n; o¢=22tanexpl ; (4a)
L= wa (z-vt) ;  y=(1-3v

The Y2 kink energy is approximately E, = 2y/@ x JS°. Note that the field
determines the width and energy of XY iinks. whereas the anisotropy does
so for YZ kinks. Both XY and YZ SG kink energies increase monotonically
with velocity.

(4b)

A linear stability analysis [14,15] of YZ SG kinks leads to the following
decoupled eigenvalue equation for 8, where one has assumed small perturbations
8, ¢, 8 and ¢ from the SG profile, and B = ngBfoS:

“EECE + (1-2 sech’t - BY sech £)8 = A8 . (5)

An instability is indicated by a bound state solution to this Schridinger
problem with an imaginary eigegfrequency, HhEEE the eigenfrequency w is
related to the eigenvalue by w” = 4a(A-1) + B°. For v = 0, therg is 3
sech { bound state, uitE zero eigenvalue. This corresponds to w™ = p-4a,
however, and can have w” < 0 if B < p_ = 2/u, indicating a structural
instability for fields less than the Eritical field. e

For nonzero v, the potential for & is modified. The effect of nonzero v
can be taken into account through first order perturbation theory. 5 short
calculation shows that the stability criterion becomes v/c > (4a - B“)/(npJa).

The XY and YZ kinks can be connected through a variational Ansatz, made
in terms of the xyz spin components in a manner similar to that done for the
easy-plane ferromagnetic kinks [16]. Further motivation and details of this
Ansatz calculation are given elsewhere [14,15]. Essentially, a kink profile
can be represented by a trajectory of the spin vectors on the unit sphere,
plus information about the distribution of the spin vectors along the
trajectory. Specifically, there will be one trajectory for each sublattice,
and we assume that the A sublattice spin trajectory 1ies in a plane at an
angle 8, to the easy plane, while the B sublattice spin trajectory lies in a
plane ai angle 8,. The distribution of the spins along these trajectories
is taken to be SG-1ike; the angular position within these tilted planes
being ¢ = 4 tan “exp[(z-vt)/w], where w is a width variational parameter.
Thus the Ansatz involves three parameters: 6,, 8, and w, and for given o
and B, these are determined by locating the e&treﬁa of the Langrangian.



In Fig. 1 we show E(v) as obtained from this Ansatz using o = 0.04 as
appropriate for TMMC and for fields g = 0.3, 0.4 and 0.5 (B_ = 0.4), and
for 0 < 8, < m. We also show results from numerical integrﬁtiun of the
equations of motion on a discrete lattice, using Ansatz profiles as initial
conditions, and time averaging the kinks in their own reference frame to
remove spin wave contributions to the energy (a result of having only an
approximate traveling wave initial condition).
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Fig.1l. Some typical easy-plane antiferromagnet kink energy-velocity dispersion
relationships, at three different fields. The data points were obtained from
numerical integrations with A/J = 0.02, and B/B_ = 0.75 (O), 1.0 (A), and
1.25 (x). The curves are the cnrraspnnding resﬁ1t52frum a variational Ansatz
calculation. The energy is measured in units of JS", and the velocity in

units of JS/h.
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It is found from these numerical studies that the stable kink profile
given by the Ansatz can correspond to either an XY or YZ kink, depending
on B,; the XY and YZ branches are continuously connected. Also, for B < Bes
wherg static Y2 kinks are unstable, there can be stable moving YZ kinks,
consistent with the linear stability analysis results.

From the numerical 1ntegrat1nns XY kinks are stable above and below the
critical field, for o = 0.04, 0.08 < p < 0.6 and |v/c|] < 1. Even for B > Bc‘
they show no tendency to decay to lower energy YZ kinks. Whether they can
be viewed as slightly perturbed SG kinks is doubtful, especially for B > ﬂ
The situation is the same as in the ferromagnet abuwe the critical field,
where the kinks are dynamically stable but move in a direction opposite tu
that predicted by 5G theory [7]. We conclude the XY kinks are not adequately



described by SG theory, and that there is no structural instability at the
critical field.

For small velocities v « c, a two parameter Ansatz for YX kinks (putting
B, + 8g = n) reproduces the velocity dependence of the energy given by SG
tﬁeury. SG theory adequately describes the YZ branch. Static YZ kinks
are stable only if B > B_. Dynamics YZ kinks require a minimum applied
field to be stable, wher& this minimum field decreases with increasing
velocity.

The limited extent of the XY branch could be interpreted to mean that
SG-1ike XY kinks with larger (absolute value) velocities are dynamically
unstable, MNote that it is possible to estimate the stability limit for the
XY kinks from the linear stability analysis for YZ kinks, since the two dis-
persion curves end where they intersect. First order perturbation theory for
the moving YZ kink linear stability problem estimates the velocity v*, at
which the XY branch meetings the YZ branch, as

/ey = 2 §£ [ - {E;}zl . (6a)
where

€y = 298/h (6b)
and the critical field is

8, = (88520 %/(qug) . (7)

The lattice spacing is taken as the unit of length here. Note that for

B < B_, when v* > 0, the XY effective mass is positive, while for B > B,

when 9* < 0, the XY effective mass is negative. Equation (6a) is an apﬁru-
ximate expression which is most accurate for B near B_. Also note that

one cannot determine v* by equating the predicted SG %Y and YZ energies for

a given field; the SG theory predicts that the branches do not cross except
for B very near B_.. The non sine-Gordon behavior manifests itself by strongly
changing the effeftive masses of the XY kinks.

The XY kinks are in many ways analogous to the kinks of the easy-plane
ferromagnet. The ferromagnetic kink's effective mass changes sign at a cor-
responding critical field, the absolute values of the effective masses are
much smaller than predicted by SG theory, and they are also dynamically stable
even for fields greater than the critical field. Also, while the XY kinks
obey dynamics very different from SG-1ike, the YZ kinks, on the contrary, can
be described quite accurately using 5G dynamics outside of the unstable
regimes mentioned. The YZ kinks have no natural analogue in the ferromagnet.

Turning to kink-antikink (KK) collisions, only numerical results are pres-
ently available. We have used chains with 101 to 501 lattice sites [1?|:
where the kink width varies as w ~ 2J5/(gugB) for XY kinks and as w ~
for YI kinks. Using a fixed ratio 2A/J = 0.04, the field ranged from Bch =
0.10 to B/B_ = 1.50. For TMMC, this corresponds to 9.0 kG < B < 140 kG, with
B. ~ 90 kG.© The initial condition was an Ansatz profile for some specified
pirameter 8,, where 8, determines the tilt of the spins out of the easy plane
on the n-Suﬁlattice [14,15]. The resulting profile could correspond to either
an XY or YI kink, depending on whether 8, was near zero or n/2. At some



intermediate value of 8,, the Ansatz kink switched from the XY branch to the
YZ branch. A given cnmﬁination of 8, and B!BE then determined the initial
velocity, energy, and width of the k*nk

Neumann boundary conditions were applied to the xyz spin components with
the spatial derivatives on each sublattice separately set to zero at the
boundaries. Classification of the type of collision was based on viewing
the time evolution of the spin profile and the spatial averages of in-plane
and out-of-plane angles. The tilt of the two spins at the center of one
kink, one on each sublattice, measured from the easy plane, provided an
additional diagnostic.

Possible outcomes of collisions include SG-1ike transmission, annihilation,
and reflection. Some typical cases of each of these are shown in Figs. 2-4,
in terms of the in-plane (¢) and out-of-plane (8) angles on one sublattice.

Results from these simulations are summarized in the final state phase
diagram of Fig. 5.

Fig. 2. KK collision of an XY-1ike Fig. 3. KK collision of an XY-like pair

pair, resulting in 5G-1ike trans-
mission; at field B/B_ = 0.25,
with initial velocitycu = 1.4
(or 8, = 0.180243). Th& angle ¢
withiﬂ the easy plane (on one
sublattice) is shown in (a), and
the associated out of easy plane
angle 8 is shown in (b).

resulting in annihilation; at field

B/B_ = 0.25, with initial velocity

v. £ 0.37 (or 8, = 0.024673). Parts (a)
ahd (b) are as ﬁescribed in Fig. 2.

Note the oscillations, suggestive of
formation of a breather-1ike bound
state.
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Fig. 4. KK collision of an XY-like Fig. 5. An output state "phase diagram"
pair also resulting in reflection, in terms of the applied field B/B_ and

but for B/B_ = 1.075, with v, = the Ansatz parameter 6 {apprnximﬁteiy
0.06 (HA = 5.35#553). Parts (a) equal to the tilt of the spins out of
and (b) are as described in the easy plane at the kink center). The
Fig. 2. symbols refer to transmission (&),

annihilation (x) and reflection (o).

The results for XY kinks are similar to ferromagnetic kinks. Generally,
for low fields B < B_ there is SG-1ike transmission (Fig. 2). At higher
fields, but still with B < B , the low velocity pairs annihilate, or possibly
form breathers, (Fig. 3) whiTe the higher velocity XY kinks undergo SG-Tike
transmission. Some cases with B < B_ resulted in reflection of XY kinks.

For B > B_, the negative effective miss XY kinks_reflect, as in the ferromag-
net (Fig. 4). Most of the cases tested for YI KK pairs resulted in
transmission, consistent with their nearer-SG behavior. The exceptions
included some cases at small velocity for B > B_, where annihilation occurs.
See [17] for further details of these results.

I11. Quantum Thermodynamics for Easy-Plane Ferromagnetic Chains

When using a model such as (2) to describe materials such as § = 1/2

CHAB [[6]; J_  =J = -110 K, J_/J_ = 0.95], it is natural to consider that
quantum effelts mﬂy be 1mpurtaﬁt,l One approach is to reintroduce quantum
mechanics by replacing the classical sine-Gordon equation with its quantized
version, leading to a reduction of the effective SG soliton rest mass.
Alternatively, Johnson and Wright [18] reviewed the Bethe Ansatz method [15]
applied to solving the quantized SG equation relevant to easy-plane ferro-
and antiferromagnets -- a similar rest mass reduction is found, but still
theory and experiment for CHAB, CsNiF, and TMMC disagree (for specific

heat, and therefore probably for athe? thermodynamic properties). These



authors point out, in particular, that the corrected classical SG theory,
including kink-kink interactions [20], would require a rest mass increase
to bring the calculated specific heat into agreement with experiment for
CHAB. This approach of quantizing a particular limit of the full classical
Hamiltonian (the SG limit) seems questionable. By so doing, the out-of-
plane degree of freedom is not treated properly; it is essentially trans-
formed to a linear degree of freedom. In view of continuing concerns over
the importance of out-of-plane classical motions (c.f. section II) verses
the quantization of the SG model, it seems necessary to include both
out-of-plane and quantum aspects simultaneously.

One way of achieving this is to use the recently developed Trotter-Suzuki
transformation, whereby the thermodynamics of the original 1-D quantum
system is mapped onto the thermodynamics of a 2-D classical system 1].
Numerical evaluation of the internal energy, specific heat, etc. is carried
out by using either Monte Carlo or transfer matrix methods [22]. Although
this will give no direct information about the excitations, (e.g., the
question of existence of solitons) it can nevertheless give crucial indica-
tions of the importance of quantum effects and the validity of the assumed
Hamiltonians. Attempts to implement Trotter-Suzuki formalisms for S = 1/2
and § = 1 ferromagnets are reported in [8,9,14,22]. Here we 1imit the
discussion to an alternative "numerically exact" quantum transfer matrix
(QTM) method [9,23] applied to S = 1/2 CHAB thermodynamics (model 2). We
have used a technique to extrapolate from the finite size lattice to the
infinite 1imit in both directions on the 2-D lattice, thereby making this
preferred over the previous S = 1/2 quantum Monte Carlo (QMC) method [8]. We
find that there is no value of exchange anisotropy from 4% to 108 for which
the QTM results for specific the peaks will agree with experiment. We have,
however, tested that the QTM calculation gives results consistent with the
QMC calculation. The computing method used was given by Betsuyaku [23], who
adapted that of Morgenstern and Binder [24] as originally applied to spin
glass models, by allowing for the four-spin interactions. It is necessary to
choose free boundary conditions in the spatial direction (N), while periodic
boundary conditions are imposed in the Trgﬁter direction (m) as a result of
the trace. The method requires storing 2 Boltzmann factors -- for this cal-
culation we have used 1 < m < 9. (The integer m is the lattice size in the
Trotter direction.) Computing time rises exponentially with m and linearly
with N. Presently the practical limit is m = 9 for storage as well as CPU
time using a CRAY-1 800 K word machine, while N > 100 is no practical problem.
Extrapolations for N, m + » are discussed in [9,23].

First the method was tested for m,= 8, N = 32, at 5% anisotropy (J,/J =
0.95) to compare with previous spin-5 QMC data [8,14]. Results for ifitefnal
energy, specific heat, magnetization®and susceptibility all agreed to within
about 5% over the temperature range 4 K to 20 K. Then we applied this
method to model (2) with anisotropy ranging from 4% to 10%, in order to
compare with the experimental specific heat data of Kopinga et al. [6].

The difference specific heat C(B) - C(0) = AC, is plotted versus field for

a series of temperatures, End then the peak position and height are deter-
mined and plotted verses T° and T respectively. Some representative AC verses
B curves are shown in Figure 6, for the case of 5% anisotropy. The data lie
on smooth curves, making the determination of peak positions and heights
possible, Interpolation, using a parabolic fit to the peaks, provided a
simple accurate way to determine the heights and positions. In Figure 7 the
resulting B and AC are shown, for anisotropies 4%, 5%, 6%, 8%, and

10%, and cuﬂﬁﬂ?ed with"#¥assical SG theory and experiment.
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Fig. 6. Some typical results for AC vs. B as obtained with the spin-1/2 QTM
calculation using CHAB parameters (5% anisotropy). The data correspond to
temperatures T = 4.0 K (V), 4.4 K (), 4.9 K (x), 5.5 K (+), 6.2 K (4) and
7.2 K (0), and have been extrapolated to N+ =, m + =,

The dashed lines in Figure if!re classical SG theory results using a soli-
ton rest mass E°. = B(JS gu,B)~" ", that is, with no adjusted parameters, as
in [20]. The pﬁgdictians n? classical SG theory are independent of the
anisotropy. Expressions given by Sasaki and Tsuzuki [20] include contribu-
tions from spin waves, solitons, and soliton-soliton interactions. Their
calculations predict that the general result for a SG ferromagnetic is

: 2ugdsHt (8)

EpHk = AT , A= (E#tn
where t_ = TfE; = 0.190 has determined the peak position. The corresponding
peak he?ght is ﬁuund to be given by

- i | - E

AC ax = A'T , A' =0.196/J35 + ; (9)
We see that agreement between this classical theory and experiment is fair
for B but not as good for AC__.. None of the chosen values of aniso-
trupyp?EF the QTM fit well to thﬂﬂﬁxperimenta1 CHAB data over this temper-
ature range. If the SG soliton rest mass is ad-hoc renormalized such that
the slopes of the SG theory B curves agree with the experimental slope,
then the implied changes in tﬂsagﬁ theory AC are not adequate to cause
them to simultaneously fit the experimental B3¢a. 1t has not been apparent
how to resolve this problem with classical SG theory. The QTM data presented
here obviously should require no such quantum renormalization, but neverthe-
less systematically disagree with experiment, casting some doubt on the
adequancy of the customary model (2). Quantum Monte Carlo studies for 5 =1
CsNif, [9,14] raise similar questions. (QTM methods of the form used for
§= 1?2 are presently impractical for S = 1 because of computer memory
limitations.)
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Fig. 7. Spin-1/2 QTM results for (a) B and (b) AC___, using model (2)
with J_ = J = -110 K, for a series of"§8fues of anisB®Fopy J./0_ = 0.96 (D),
0.95 (§), 0Y94 (a), 0.92 (+) and 0.90 (x). These are all datd ffom the
extrapolation to N+ = m + =, The solid data points (e) are the experi-
mental data on CHAB by Tinus et al. [25]. The dashed lines are the classical
SG theory of Sasaki and Tsuzuki [20].

I¥. Outlook

In view of the results summarized in sections Il and III, we should be
surprised how well classical sine-Gordon theory can explain experimental

data on materials such as CHAB, TMMC and CsNiF, with easy-plane applied
magnetic fields. For instance, we have seen tiat the quantized version of
the ferromagnet Hamiltonian gives approximately the same low-T thermodynamics
as the classical SG Hamiltonian, for the case of 5 = 1/2 CHAB. This can be
compared with classical transfer matrix calculations [25] for the ferromagnet
Hamiltonians, which give much larger low-temperature specific heat peaks.

We tentatively conclude that the quantum mechanics plays a strong role in
restricting the spins to the easy plane (including a zero-point out-of-plane
component) thereby making the classical theory more appropriate than might

at first be expected. It will be interesting to see whether such a restric-
tion also controls dynamics quantum properties, e.g. as measured in jinelastic
neutron scattering. In the context of quantum Monte Carlo simulations, this
will require solving the outstanding problem of Laplace inversion from a
finite imaginary time interval.

We anticipate that low-dimensional magnetic materials will continue to
develop as accessible contexts in which to investigate fundamental nonlinear
and nonequilibrium processes, including: (i) effects of impurities and
damping mechanisms on soliton transport (c.f. Boucher); space-time coherence
and chaos (e.g. breather selection and synchronization by an external oscil-
latory field [26], or competing spin interactions leading to inhomogeneous
structures and associated dynamics, or chaotic dynamics [26], or even "quantum
chaos" [27]); and (iii) vortex-spin-wave dynamics in quasi-two-dimensional
magnets [3], which is especially timely in view of the emergence of many



well=characterized materials and improved resolution inelastic neutron
scattering data.

References

1. M. Steiner, K. Kakuri and J. K. Kjems, Z. Phys. B 53, 117 (1983);

J. P. Boucher, L. P. Regnault, J. Rossat-Mignod, J. P. Renard, J. Bouillot,
W. G. Stirling, and F. Mezei, Physica 1208, 241 (1983).

2. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); and Prog.
Low Temp. Phys. (D. F. Brewer, ed.), Yol. VIII B, North-Holland,
Amsterdam (1978).

3. C. Kawabata, M. Takenchi and A. R. Bishop, J. Magn. Magn. Mat. 54-57,

871 (1986); A. R. Bishop et al., in preparation.

4. See, for example, P. Kumar, Phys. Rev. B 25, 483 (1982); Physica 50,
359 (1982); E. Magyari and H. Thomas, Phys. Rev. B 25, 531 (1982);
J. Phys. C 16, L535 (1983).

5. H. J. Mikeska, J. Phys. C 11, L29 (1978); 13, 2913 (1980).

6. K. Kopinga, A. M. C. Tinus and W. J. M. de Jonge, Phys. Rev. B 29, 2868
(1984).

7. G. M. Wysin, A. R. Bishop and P. Kumar, J. Phys. C 17 , 5975 (1984); 13,
L337 (1982).

8. 1. Satija, G. M. Wysin and A. R. Bishop, Phys. Rev. B 31, 3205 (1985).

9, G. M. Wysin and A. R. Bishop, Phys. Rev. B 34, 3377 (1986).

10. G. Kamienarz and C. Vanderzande, preprint (1986).

11. I. U. Heilmann, R. J. Birgeneau, Y. Endoh, G. Reiter, G. Shirane and
S. L. Holt, Solid State Commun. 31, 607 (1979).

12. 1. Harada, K. Sasaki and H. Shiba, Solid State Commun. 40, 29 (1981).

13. N. Fliiggen and H. J. Mikeska, Solid State Commun. 48, 293 (1983).

14. G. M. Wysin, PhD. Thesis, Cornell University (1985).

15. G. M. Wysin, A. R. Bishop and J. Oitmaa, J. Phys. C 19, 221 (1986); J.

Magn. Magn. Mat. 54-57, 831 (1986).

16. R. Liebmann, M. Schobinger and D. Hackenbracht, J. Phys. C 16, L633
(1983).

17. G. M. Wysin and A. R. Bishop, in preparation.

18. M. D. Johnson and N. F. Wright, Phys. Rev. B 32, 5798 (1985).

19. M. Fowler and X. Zotos, Phys. Rev. B 25, 2805 (1982).

20. K. Sasaki and T. Tsuzuki, J. Magn. Magn. Mat. 31-34, 1283 (1983).

21. M. Suzuki, Prog. Th. 1454 (1976); M. Barma and B. 5. Shastry,

Phys. Rev. B 18, 3351 (1978).

22. For examples, see J. J. Cullen and D. P. Landau, Phys. Rev. B 27, 297
(1983); H. DeRaedt, A. Lagendijk and J. Fivez, Phys. Rev. B 46, 261
{1982).

23. H. Betsuyaku, Prog. Th. Phys. 73, 319 (1985); Phys. Rev. Lett. 53, 629
(1984).

24. 1. Morgenstern and K. Binder, Phys. Rev. B 22, 288 (1980). .

25. M. G. Pini and A. Rettori, Phys. Rev. B 29, 5246 (1984); A. M. C. Tinus,
W. J. M. de Jonge and K. Kopinga, preprint (1985); Phys. Rev. B 32, 3154
(1985).

26. A. R. Bishop and P. S. Lomdahl, Physica D 18, 54 (1986); G. M. Wysin
and A. R. Bishop, J. Magn. Magn. Mat. 54-57, 1132 (1986).

27. K. Nakamura et al., Phys. Rev. B 33, 1963 (1986); Phys. Rev. Lett. 57,
5 (1986).



