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How vortices produce central peaks in the
dynamic form factor of the 2-d anisotropic
Heisenberg model
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The Kosterlitz-Thouless phase transition in the Xy-
model is caused by the unbinding of vortex-antivortex
pairs. We consider a gas of freely moving vortices and
show that the dynamic structure function exhibits a
central peak for the in-plane as well as for the out-
of-plane correlations. However, the mechanism produc-
ing these peaks is quite different in the two cases.
The wavevector and temperature dependencies of the peaks
agree with the results of a combined Monte Carlo-molec-
ular Dynamics simulation as well as with recent neutron
scattering ‘experiments on two-dimensional easy-plane
magnets.

I. INTRODUCTION

In the last years magnetic materials like Rb,CrCL,, K,CuF,...
or BaCoz(Aso4)2, BaN12(P04)2... have been produced, in which the magne-
tic ions are situated within planes. The measurement of spin-wave
dispersion curves has shown that the intraplane coupling constants are
by a factor of about 10° to 10° larger than the interplane coupling
constants; this means that these materials are quasi two-dimensional’
concerning their magnetic properties.

: The simplest classical model Hamiltonian for these systems has
the form

H=-J _m n Im_n m n
¥ (sy 8% + 8y 8, * A8 87) (1.1)

m,n
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Here S™ is the x-component of the spin 8 at the lattice site m; all
lattic: sites lie in the iy-plane. For 02A <1 this is the 2-dimen-
sional anisotropic Heisenberg model. The case A =0 is called the
Xy-model; this should not be confused with the planar model, where the
spins are confined to the xy-plane. For the above mentioned materials
A is in the range 0.4 to 0.99.

In two dimensions there is no spontaneous magnetization because
every long-range order is destroyed by the spin waves (Mermin-Wagner
theorem). Nevertheless there is a (topological) phase transition, pre-
dicted by Kosterlitz and Thouless (XT) (l1). The ideas is that below a
transition temperature Tc there are vortices and anti-vortices which are
bound in pairs, above T, they become free.

For the static correlation function Sxx(r) the KT-theory pre-
1/2

dicts a power law below Tc and an exponential decay r~ exp (-xr/E)
above Tc, where the correlation length £ has the form
£ = £_exp(b/YT) Bim (=D NP0 (1.2)

50 is supposed to be in the order of the lattice constant a, and b=1.3,
However, more refined studies(2) have revealed that b is rather strongly
temperature dependent.

The predicted form of the static correlations has been verified
both by Monte Carlo simulations(3, 4) and by quasi-elastic neutron scat
tering experiments(5, 6). Thereby the existence of vortices has been
proven indirectly.

However, direct evidence for the vortices cdn be expected from
a study of teh dynamic correlations. Recently some preliminary results
from Molecular Dynamics simulations(7) and from inelastic neutron
scattering (5, 8) have been published, which both show "central peak"
structures in the dynamic structure function above Tc. The purpose
of this paper is to study how these structures possibly are produced by
free vortices.

So far, the dynamics is well known only for the spin waves(9),
including renormalization effects by the vortex pairs(10). The only
work on single vortices is that of Huber(11), who calculated several

autocorrelation functions. However, this means that his dynamic struc-
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ture functions have no wavevector dependence. Moreover, some of his

results now seem to be guestionable (see below).

II. OUT-OF-PLANE CORRELATIONS

In a continuum approximation vortex spin configuration have the form(12)

¢ = tan-1(y/x)

m[1 - exp(—r/rv)] ¥ e
' (2.2)

where S = Scos ¢+sinv, S, =Scosv, ¥ = %2 5 yzr and

v, =a[ 200 =2 (223)

is a vortex core radius.

In contrast to Sx and Sy (see next section) the out-of-plane
component Sz(§, t) is localized which means that it has a spatial Fou-
rier transform. Therefore we first consider the out-of-plane correla-
tion function S, (¥, t) = <5, (£, t) +§,(5, 0)>.

We assume that an arbitrary field configuration can be repre-
sented by a sum of spin-wave and vortex contributions and that above TS
the latter is essentially produced by a gas of Nv free vortices with
positions ﬁu and velocities $v:

N
- v - > ->
Sz(r, t) —\;21 cos v (r - RU b €)1 (2.4)
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Here, only incoherent scattering from independent vortices is considered.
Now the thermal average can be performed by integration over
ﬁv and $v' where we assume a Maxwellian velocity distribution. The

calculation is straight-forward and gives for the Fourier transform

2

n 2 2
o B v [£(q) | [ w ]
s,.(d, w = — exp | - —
' 2 5 9 (Fgyedauaiide3)

which shows a Gaussian central peak. The vortex form factor f(gq) is

the Fourier transform of cosvu (r); we evaluate it approximately by
extending the asymptotic solution in (2.2) to small r and by expanding
about v = /2 up to the first order. This gives

wzrs
f(q) = " qr

$< 1., (2.6)
. 27372
[1+ (r,@?]%

Apart from r, there are only two other relevant parameters:
the rms velocity v and the correlation length £ which appears in the
density of free vortices n, = gk

Since we have made a phenomenological theory our predictions
must be tested and the parameters must be determined. We have just
learned (13) that a central peak has in fact been observed in szz{a' w)
for RbZCrC£4, but we do not yet know any details. Therefore we com-
pare with our Monte Carlo-Molecular Dynamics (MC-MD) simulations of a
100 x 100 spin lattice. We have chosen the XY-limit A =0 which should
be representative for all A-values up to about 0.7 because Tc and the
static correlations depend only very weakly on A in this regime (12,
14).1 Bellow TC(= 0.83 in units of J/kB) there is only a spin-wave
component. This is softened above Tc, but an additional central peak
appears (Fig. 1). o '

From (2.5) we expect a width I ™ V * . This linear prediction
is in fact very well supported by the data (Fig. 2a). The rms velocity
practically is a constant (¥ =1.6 in units where J=A=8S= 1) for
0.9 =T < 1.1. (More closely to T_ the central peak is too weak to be

1. Extreme cases, like A = 0.99, will be considered in a subsequent
paper.
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measured accurately). This behavior agrees qualitatively with a result
of Huber (11) who calculated

2 2
v = (xb)1/2 &8 (, /3,174 (2.7)
'f'l \'

from an equation of motion for free vortices, namely (2.7) shows a
saturation as T+1.2. Even the numbers for ¥ are not too far off:

v = 0.74 for T=1.0, witp b=~0.3 for this temperature(2), and Eo = a.
Since for Eo only the order of magnitude is known, v could be fitted
easily to the observed value of 1.6. On the other hand, this value is
an upper limit because PZ might have been overestimated from plots

like Fig. 1l(b).

T T T T T

XY(A=0)

>
o —

9=(0.2,0)n/a
05

e ol e

Figure 1. Dynamic form factor for out-of-plane correlations from a

combined Monte Carlo-Molecular-Dynamics simulation of a 100 * 100 lat-

tice. (a) temperature T > 'I'c = 0.83, (b) T > T
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Fijure 2. Width Fz and intensity I, of the central peak in S,,(q, W).

The data points result from estimating these quantities from plots like

Fig. 1. The solid lines are fits to F£==§q from the Gaussian (2.5) and

to I, in (2.8). The dashed line is a guide to the eye and the open

circles are upper bounds.

Figure 2b shows the integrated intensity of the central peak

2
n_S

I, (@ = ——]| £ | (2.8)
(2m)

with the continuum theory value rv==0.? a from (2.3). This agrees well

with the MC-MD data for q < 1/{2rv) , for larger g a good agreement is
not expected because of approximating v (r) for small r.

The rather small value of r means that the spins are every-

where strongly constrained to the xy-plane, which is consistent with our

simulations. A

Our results differ from those of Huber (11l) where Iz 4" né (which
has no obvious explanation in contrast to (2.8)) and Pg &in

v (which
shows no saturation for a finite temperature).
III. IN-PLANE CORRELATIONS
In contrast to Sz' the in-plane component Sk = Scos ¢, sin v

with ¢ from (2.1) is not localized in space. This means that the cor-
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relation function S, (%, t) = < S, (¥, t) - 5,6, 0)> is only globally
sensitive to the presence of vortices. In fact all vortices which pass
with its center through the point r in the time t diminish the correla-
tion, namely by changing cos ¢ by a factor of -1 (except for vortices
moving along the x- or Y- axis, which is a measure zero set only). 1If
we work on a length scale >>r, we can neglect effects due to the small
out-of-plane components and due to the finite size of the vortices. In
this sense the vortices act like 2-d-sign-functions. An ideal gas of
vortices then has the effect that

”’

Syx(Fr t) = 82 <cos? g > < (-1 (Fs t),  (FL)

Here N(;, t) is the number of vortices which pass an arbitrary, non-
intersecting contour connecting (5, 0) and (;, t).

Expressions like (3.1) were evaluated for the case of kinks in
1 -d models (e.g. ¢4 or sine-Gordon) by several authors; the most de-
tailed investigation was made by Dorgovtsev(15), who also calculated
such correlations numerically in two dimensions. wWe have now calculat-
ed(3.1) analytically: 1In contrast to (15) we use a velocity-independent
contour, thereby we see various cancellation effects.

We wish to demonstrate this for the 1 -d case, the generaliza-
tion to higher dimensions will then be obvious. For simplicity let all
kinks have the same velocity v. Let us consider the case that the point
(x, t) (with x, t 2 0) is situated outside the "light"-cone, which means
X > vt. We choose the contour (0, 0) » (x, 0) +» (x, ¢). The contribu-
tion from the first part is

n

n

" r

R L
na r

for dilute gas of kinks we can use the Poisson-distribution

g (3.3)
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where ﬁl (ﬁr) is the average density of kinks running to the left (right).
Since the kinks pass this part of the contour at the same

time (t=0) but at different positions, these events are not correlated.

Thus n, and n_ are independent and the two sums in (3.2) can be calculat

ed separately, leading to the result

c(-1NXetls o % adkrgmuARRS, (3.4)

For the part (x, 0) - (x, t) of the contour we get formally again the
expression (3.2). However, here the kinks pass the same point at dif-
ferent times, these events are correlated, as long as t < x/v which was
a prerequisite. Thus n, and n_are not independent. As the number of
left and right running kinks is the same, n, + n_ is even and the second
part of the contour gives no contribution. .
The other possible case, namely x < vt, is more complicated.
Here we obtain the general result that vertical lines within the light
cone give a contribution, whereas horizontal lines do not (just op-
posite to the previous case). The final result is <(-1)N(x't}> =
exp (-vt/E) .
In two dimensions, where the vortices play the role of the
kinks, the same kind of argumentation can be applied, leading eventual-
ly to '

* -
<(=1N > < exp {—J Iz Zvel o lopvtl ] P(v) dv } (3.5)
0
Here the average over the velocities v = |v| is already included by

means of P(v). Assuming again a Maxwell velocity distribution we obtain

> . 3 g r /7 V|t r
Sxx(r, t) = ES exp {- T -—2-—JE—-|-erfc (%:] } (3.6)

with the complementary errorfunction erfc.
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Similar to the 1-d case(16) one can find an excellent analytic
approximation for the argument of the exponential

S (;, £)i = lSz exp {- [(r/E)2 + (Yt)2 ]1/2]
XX 2
(3.7)
with
T v
Y =3 r - (3.8)

This approximation preserves not only the correct integrated intensity
(see below) but also the correct asymptotic behavior for r or t -+,

For (3.7) the spatial and temporal Fourier transformations can
be performed

s? v3g? (3.9)
2
27 2 i Y2 [1 g (gq)zj}z

Sxx (s ©) =
{w

This is a squared Lorentzian central peak with a g-dependent (half)-width

rot@ = (vZ2-1)"2%y (1 + &)%) '/2 . (3.10)

Let us compare this with our MC-MD simulations for the XY-model
(Fig. 3). Contrary to the out-of-plane case, the spin waves are
strongly softened here for 'I')-Tc (this is consistent with the theoret-
ical predictions(17), as well as with the experiments(5, 4, 8). There-
fore we observe essentially a central peak, which could well be a-
Lorentzian. The g-dependence (3.10) is indeed observed (Fig. 4a) and
we obtain numbers for the two parameters ¥ and £ in (3.9).

Using again Huber's result (2.7) for ¥, Pi is predicted to
increase with the temperature and to saturate at about T =1.2 for
q >>£_1, whereas an increase and no saturation at finite T occurs for
q << E"; we indeed observe these behaviors in both cases, the former
case has already been published (7).
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Figure 3. Dynamic form factor for in-plane correlations from MC-MD
simulations; further explanations like in figure 1.
The integrated intensity of (3.9) is
2 2
-+ S 6
I _(q) = (3.11)
X i [ 1 (quzja/z

Since we are working on a length scale >>r, we can fit (3.11) to our
data for q<<£-1 (Fig. 4b) and obtain again values for £. They do not
differ much from those previously obtained from Pi. The values for £
can be compared with theoretical values(2), where the unknown ﬁo is set
equal to a, see table I.

Last, but not least, we can compare with inelastic neutron
scattering experiments on XY-like quasi-2d magnets. Presently the
published results are still rather incomplete, they contain each only
one figure of Sxx(q, w) and verbal statements on the g-dependence.

For BaCoz(Aso4)2 a central peak has been measured(6) which
can be fitted to a Lorentzian. The width Fx is a constant for small q,

which agrees with (3.10). Using the experimental value for £ and the
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Figure 4. Width Fx and intensity I, of the central peak in S The

X Xx*
data points result from estimating these gquantities from plots like

figure 3. The solid lines are fits to (3.10) and to (3.11).

Table I
Parameter values obtained by fitting to our MC-MD data for the
XY-model (A =0) for T= 1.0, compared to theoretical predictions.

from 5 v s E/a s rv/a
%{q) < 1.6 = -
Ilz(q) - - ‘ 0.7
Pk(q} 0.91 3.0 -
Ixtq) - 2.4 -
(1.2) with b=0.3, E°=a. - 1.9 -
(2.7) with b=0.3, EO= a 0.74 - -
(2. 3) - s 3 - 0.7
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theoretical estimate (2.7) for Vv we obtain the correct order of magni-

i shows a rapid increase with

temperature and no saturation, this agrees qualitatively with our pre-

tude for Pi, namely 0.3 meV. Above Tc, r

diction. However, below Tc there is also a central peak with a weakly
temperature dependent width. Therefore, we have the impression that
the observed peak consists of two contributions: a part resulting from
the free vortices above Tc, and another, nearly constant part which
might be diffusive or an isotope effect.

For Rb2CrC£4 a Lorentzian central peak also has been measured
(8). The width is 0.014 meV for q=0 and 7 =0.15, we obtain 0.05 meV,
using the'rough estimate b=1.0 for this temperature from(2). The
g-dependence of g{ is reported to be linear for very small T and
quadratic for larger t. The latter behavior is well represented by
Eq. (3.10) for not too large g, and in fact the measurements were per-
formed for small q. The linear behavior for small t might also be con-
sistent with (3.10). As £ is very large here, the cross-over from
constant to linear behavior occurs already at very small q==E_}, there-
fore maybe only the latter behavior has been seen.

IV. CONCLUSION

Our vortex-gas phenomenology predicts a Gaussian central peak
for the out-of-plane correlations, and a Lorentzian peak for the in-
plane ones. Both is in very good agreement with our MC-MD data.

Experimentally for the out-of-plane form factor only the
existence of a central peak has been reported. For the in-plane case
Lorentzian central peaks have been measured for two materials. From
our theory we obtain the correct order of magnitude for the peak width,
and qualitatively the same wavevector and temperature dependencies.

So far the experimental data have been fitted to an ad-hoc
formula, namely a product of two Lorentzians, one for the w-dependence
and one for the g-dependence(8). We think that a fit to the squared
Lorentzian (3.9) with its g-dependent width will allow a much more
detailed comparison between theory and experiment.
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