Prefixes
$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$
$\underline{\text { Physical Constants }}$

$$
\begin{array}{ll}
k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GNm}^{2} / \mathrm{C}^{2} \text { (Coulomb's Law) } & \epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m} \text { (permittivity of space) } \\
e=1.602 \times 10^{-19} \mathrm{C} \text { (proton charge) } & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \text { (permeability of space) } \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) } \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (speed of light) } & c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (exact value in vacuum) }
\end{array}
$$

Units

$$
\begin{array}{ll}
\left.N_{A}=6.02 \times 10^{23} / \text { mole (Avogadro's } \#\right) & 1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.6605 \times 10^{-27} \mathrm{~kg} \text { (mass unit) } \\
1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \text { (electron-volt) } & 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1 \text { volt }=1 \mathrm{joule} / \text { coulomb } \\
1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \text { farad }=1 \mathrm{C}^{2} / \mathrm{J} & 1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}=1 \mathrm{henry}=1 \mathrm{~J} / \mathrm{A}^{2} \\
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1 \text { ampere }=1 \text { coulomb/second } & 1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2} \\
1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{~m}=1 \text { tesla }=1 \text { newton/ampere} \cdot \text { meter } & 1 \mathrm{G}=10^{-4} \mathrm{~T}=1 \text { gauss }=10^{-4} \text { tesla }
\end{array}
$$

OpenStax Chapter 24 Equations - Electromagnetic Waves

Electromagnetic waves:

$$
\begin{array}{lll}
|\vec{E}| /|\vec{B}|=c=1 / \sqrt{\epsilon_{0} \mu_{0}}, \quad \text { (fields and speed) } & f \lambda=c, \text { or } \lambda=c T \quad \text { (wave equation) } \\
\omega=2 \pi f=\frac{1}{\sqrt{L C}} & \text { (LC oscillator frequency) } & x=c t \quad \text { (propagation in space) }
\end{array}
$$

Energy density, intensity, power:
$\begin{array}{lll}u=\epsilon_{0} E^{2}=\frac{B^{2}}{\mu_{0}} & \text { (instantaneous energy density) } & \bar{u}=\frac{1}{2} \epsilon_{0} E_{0}^{2}=\frac{B_{0}^{2}}{2 \mu_{0}}\end{array} \quad$ (average energy density) $)$

Approximate wavelengths λ for types of EM waves:
0 (γ-rays) 30 pm (x-rays) 3 nm (uv) 400 nm (visible) 700 nm (ir) $300 \mu \mathrm{~m}$ (μ-waves) 3 cm (radio) ∞
$\longrightarrow \quad \longrightarrow \quad$ increasing wavelength $\quad \longrightarrow \quad \longrightarrow$

$\underline{\text { OpenStax Chapter } 25 \text { Equations - Geometrical Optics }}$

Reflection, Mirrors:
$\theta_{r}=\theta_{i} \quad$ (angle of reflection $=$ angle of incidence)

$$
\begin{aligned}
& f=r / 2 \quad \text { (focal length of spherical mirror) } \\
& m=-d_{i} / d_{o}=h_{i} / h_{o} \quad \text { (linear magnification) } \\
& d_{i}<0 \Longrightarrow \quad \text { virtual, dark side. } \\
& m<0 \Longrightarrow \quad \text { inverted. } \\
& |m|<1 \Longrightarrow \quad \text { diminished. }
\end{aligned}
$$

Refraction, Lenses:

$$
\begin{aligned}
& n=c / v \quad \text { (index of refraction) } \\
& \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \quad \text { (lens equation) } \\
& d_{i}>0 \quad \Longrightarrow \quad \text { real image, light (opp.) side. } \\
& m>0 \quad \Longrightarrow \quad \text { upright. } \\
& |m|>1 \quad \Longrightarrow \quad \text { magnified. }
\end{aligned}
$$

Angles in radians

$$
\theta=s / r \quad \text { angle }=\text { arc length } / \text { radius }=\text { separation } / \text { distance away } .
$$

Lens power
$P=1 / f \quad$ (power in diopters, when f is in meters).
Cameras
$f / D=\mathrm{f}$-number, or lens aperture \quad film exposure $=$ exposure time $/(\mathrm{f} \text {-number })^{2}$.
$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \quad$ (lens equation) $\quad m=-d_{i} / d_{o}=h_{i} / h_{o} \quad$ (linear magnification)
Vision correction
Far point $\mathrm{FP}=\infty . \quad$ (good vision) \quad Near point $=\mathrm{NP} \leq 25 \mathrm{~cm}$. (good vision)
Nearsighted. Use lens to get $\mathrm{FP}=\infty$.
Farsighted. Use lens to get $\mathrm{NP}=25 \mathrm{~cm}$.
Simple magnifier
$\begin{array}{lll}\theta=\frac{h_{o}}{\mathrm{NP}} \quad \text { (angular size at NP, via bare eye) } & \theta^{\prime}=\frac{h_{o}}{d_{o}} \quad \text { (angular size at } d_{o}, \text { thru magnifier) } \\ M=\frac{\theta^{\prime}}{\theta}=\frac{\mathrm{NP}}{d_{o}} \quad\left(\text { ang. Mag. viewed at any } d_{o}\right) & M=\frac{\theta^{\prime}}{\theta}=\frac{\mathrm{NP}}{f} \quad\left(\text { ang. Mag. viewed at } d_{o}=f\right)\end{array}$
Microscopes
$\theta=\frac{h_{o}}{\mathrm{NP}} \quad$ (angular size of object at NP, via bare eye)
$m_{o}=\frac{h_{i}}{h_{o}}=\frac{-d_{i}}{d_{o}} \quad$ (1 $1^{\text {st }}$ image, linear magnification of objective lens)
$M_{e}=\frac{\theta^{\prime}}{\theta}=\frac{\mathrm{NP}}{d_{o}^{\prime}} \quad$ (angular magnification due to eyepiece lens)
$M=\frac{\theta_{\text {micro }}}{\theta}=m_{o} M_{e} \quad$ (net angular magnification compared to bare eye)
Telescopes
$M=\frac{\theta^{\prime}}{\theta}=-\frac{f_{\text {obj }}}{f_{\text {eye }}} \quad$ (angular magnification compared to bare eye)

