Prefixes

$$
\begin{array}{lllllll}
\mathrm{z}=10^{-21}, & \mathrm{a}=10^{-18}, & \mathrm{f}=10^{-15}, & \mathrm{p}=10^{-12}, & \mathrm{n}=10^{-9}, & \mu=10^{-6}, & \mathrm{~m}=10^{-3}, \\
\text { zepto, }=10^{-2}, & \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, & \mathrm{~T}=10^{12}, \quad \mathrm{P}=10^{15}, \mathrm{E}=10^{18}, & \mathrm{Z}=10^{21} \\
\text { atto, } & \text { femto, } & \text { pico, } & \text { nano, } & \text { micro, } & \text { milli, } & \text { centi, }
\end{array}
$$

Physical Constants

```
\(k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GNm}^{2} / \mathrm{C}^{2}\) (Coulomb's Law)
\(e=1.602 \times 10^{-19} \mathrm{C}\) (proton charge)
\(c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (speed of light)
\(m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}\) (electron mass)
\(m_{n}=1.67493 \times 10^{-27} \mathrm{~kg}=\) (neutron mass)
\(h=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\) (Planck's constant)
\(\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)\) (Stefan-Boltzmann const.)
\(\epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m}\) (permittivity of space)
\(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\) (permeability of space)
\(c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (exact value in vacuum)
\(m_{p}=1.67262 \times 10^{-27} \mathrm{~kg}\) (proton mass)
\(h c=1239.84 \mathrm{eV} \cdot \mathrm{nm}(\) photon energy \(=h c / \lambda)\)
\(\hbar=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\) (Planck's constant \(/ 2 \pi\) )
\(h c=1239.84 \mathrm{eV} \cdot \mathrm{nm}\) (photon energy constant)
```


Units

```
\(N_{A}=6.02214 \times 10^{23} /\) mole (Avogadro's \#)
\(1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\) (electron-volt)
\(1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \mathrm{farad}=1 \mathrm{C}^{2} / \mathrm{J}\)
\(1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1\) ampere \(=1\) coulomb/second
\(1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{m}=1\) tesla \(=1\) newton/ampere \(\cdot\) meter
\(1 \mathrm{~Bq}=1\) becquerel \(=1\) decay \(/ \mathrm{s}\)
    \(1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.66054 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2}\)
\(1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1\) volt \(=1\) joule \(/\) coulomb
\(1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}=1\) henry \(=1 \mathrm{~J} / \mathrm{A}^{2}\)
\(1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2}\)
\(1 \mathrm{G}=10^{-4} \mathrm{~T}=1\) gauss \(=10^{-4}\) tesla
\(1 \mathrm{Ci}=1\) curie \(=3.70 \times 10^{10}\) decays \(/ \mathrm{s}=37.0 \mathrm{GBq}\)
```

Some Masses (for neutral atoms)
electron $={ }_{1}^{0} \mathrm{e}=0.00054858 \mathrm{u}=0.51100 \mathrm{MeV} / \mathrm{c}^{2}$
neutron $={ }_{0}^{1} \mathrm{n}=\mathrm{n}=1.008665 \mathrm{u}=939.57 \mathrm{MeV} / \mathrm{c}^{2}$
deuterium $={ }_{1}^{2} \mathrm{H}=\mathrm{d}=2.014102 \mathrm{u}$
helium- $3={ }_{2}^{3} \mathrm{He}=3.016029 \mathrm{u}$
proton $={ }_{1}^{1} \mathrm{p}=p=1.007276 \mathrm{u}=938.27 \mathrm{MeV} / \mathrm{c}^{2}$ hydrogen $={ }_{1}^{1} \mathrm{H}=1.007825 \mathrm{u}=938.78 \mathrm{MeV} / \mathrm{c}^{2}$ tritium $={ }_{1}^{3} \mathrm{H}=\mathrm{t}=3.016049 \mathrm{u}$ helium- $4={ }_{2}^{1} \mathrm{He}=\alpha=4.002603 \mathrm{u}$

Nuclides:

$$
\begin{array}{ll}
A=N+Z, \quad \text { (mass, neutron, proton numbers) } & r=(1.2 \mathrm{fm}) A^{1 / 3} \quad \text { (nuclear radius) } \\
\Delta E=[(\text { mass of parts })-(\text { mass of nuclide })] c^{2} & \leftarrow(\text { binding energy) } \\
Q=\left[M_{\text {parent }}-M_{\text {products }}\right] c^{2} & \leftarrow(\text { disintegration energy }) \\
1 \mathrm{u}=1 \text { gram } / 6.02214 \times 10^{23} \quad \text { (atomic mass unit) } & 1 \mathrm{u} \cdot c^{2}=931.5 \mathrm{MeV} \text { (energy unit) }
\end{array}
$$

Half-life $T_{1 / 2}$ and decay constant λ

$N=N_{0} e^{-\lambda t} \quad$ (decay of parent nuclei)	$N=N_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \quad$ (decay by half-lives)
$t=\frac{-1}{\lambda} \ln \left(N / N_{0}\right) \quad$ (time when N nuclei remain)	$R=\left\|\frac{\Delta N}{\Delta t}\right\|=N \lambda \quad$ (radio-activity)
$\lambda T_{\frac{1}{2}}=\ln 2 \quad($ decay constant, half-life)	$M=N m=$ mass $=(\#$ of nuclei) $\times($ nuclear mass)
$\#\left({ }_{6}^{14} C\right) / \#\left({ }_{6}^{12} C\right)=1.3 \times 10^{-12} \quad$ (live carbon ratio)	1 year $=3.156 \times 10^{7}$ seconds

OpenStax Chapter 32 Equations - Applications of Nuclear Physics
Radiation doses:
absorbed dose $=$ energy absorbed $/$ mass affected $\quad \leftarrow$ SI unit $=1$ gray $=1 \mathrm{~Gy}=1 \mathrm{~J} / \mathrm{kg}=100 \mathrm{rad}$.
effective dose $=$ absorbed dose \times RBE $\quad \leftarrow \mathrm{SI}$ unit $=1$ sievert $=1 \mathrm{~Sv}=1 \mathrm{~J} / \mathrm{kg}=100 \mathrm{rem}$.
$\mathrm{RBE}=$ relative biological effectiveness $\quad \mathrm{RBE}=\mathrm{QF}=$ quality factor (units $=\mathrm{Sv} / \mathrm{Gy}$).

radiation:	γ-rays	slow β 's	fast β 's	slow neutrons	fast neutrons	protons	α 's	heavy ions
$\mathrm{RBE}=$	1	1.7	1	$2-5$	10	10	$10-20$	$10-20$

Reactions:
$Q=\left[M_{\text {reactants }}-M_{\text {products }}\right] c^{2} \quad$ (reaction energy)
$Q>0 \quad(Q=$ mass converted to energy $) \quad Q<0 \quad(|Q|=$ threshold energy $)$
Energy, power and mass in nuclear reactors:

$E=m c^{2}$	$($ Einstein's mass-energy equivalence $)$	$P=E / t \quad($ power $)$
$E=N Q$	$[$ energy $=(\#$ of reactions $) \times($ reaction energy $)]$	$1 \mathrm{u} \cdot c^{2}=931.5 \mathrm{MeV}$
$M=N m$	$[$ mass used $=(\#$ of reactions $) \times($ reaction mass $)]$	
$E_{\text {out }}=e E_{\text {in }} \quad[$ output energy $=($ efficiency $) \times($ input energy $)]$		

Periodic Table of the Elements ${ }^{\S}$

Group I	Group II	Transition Elements										Group III	$\begin{aligned} & \text { Group } \\ & \text { IV } \end{aligned}$	Group V	Group VI	$\begin{gathered} \text { Group } \\ \text { VII } \end{gathered}$	$\begin{aligned} & \text { Group } \\ & \text { VIII } \end{aligned}$	
$\begin{array}{ll} \mathbf{H} & 1 \\ 1.00794 \\ 1 s^{\prime} & \end{array}$			Symb Atomic Mas			$\begin{array}{\|ll\|} \hline \mathrm{Cl} & 17 \\ 35.4527 \\ 3 p^{5} & \\ \hline \end{array}$	Atomic Number Electron Configuration (outer shells only)										$\begin{array}{\|lr\|} \hline \mathrm{He} & 2 \\ 4.002602 \\ 1 s^{2} \\ \hline \end{array}$	
$\begin{array}{ll} \mathbf{L i} & 3 \\ 6.941 & \\ 2 s^{\prime} & \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{B e} \quad 4 \\ 9.012182 \\ \hline 2 s^{2} & \\ \hline \end{array}$				$\begin{array}{\|ll\|} \hline \mathbf{B} & 5 \\ 10.811 & \\ 2 p^{1} & \\ \hline \end{array}$							$\begin{array}{\|lr\|} \hline \mathbf{C} & 6 \\ 12.0107 \\ 2 p^{2} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{N} & 7 \\ 14.00674 \\ 2 p^{3} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{O} & 8 \\ 15.9994 & \\ 2 p^{4} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{F} & 9 \\ 18.9984032 \\ 2 p^{5} & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \mathrm{Ne} \quad 10 \\ 20.1797 \\ 2 p^{6} & \\ \hline \end{array}$		
$\begin{array}{lr} \mathrm{Na} & 11 \\ 22.989770 \\ 3 s^{1} & \end{array}$	$\begin{aligned} & \mathrm{Mg} \quad 12 \\ & 24.3050 \\ & 3 s^{2} \end{aligned}$				$\left\|\begin{array}{lr} \text { Al } & 13 \\ 26.981538 \\ 3 p^{r} & \end{array}\right\|$							$\begin{array}{\|ll\|} \hline \mathbf{S i} & 14 \\ 28.0855 \\ 3 p^{2} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{P} & 15 \\ 30.973761 \\ 3 p^{3} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{S} & 16 \\ 32.066 \\ 3 p^{4} & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{C l} . \quad 17 \\ 35.4527 \\ 3 p^{5} \\ \hline \end{array}$	$\begin{aligned} & \text { Ar } \quad 18 \\ & 39.948 \\ & 3 p^{6} \\ & \hline \end{aligned}$		
$\begin{array}{\|lr\|} \hline \mathbf{K} & 19 \\ 39.0983 \\ 4 s^{\prime} & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{C a} \\ \hline 40.078 \\ 4 s^{2} \\ \hline \end{array}$	Sc 21 44.955910 $3 d^{1} 4 s^{2}$	$\begin{array}{\|lr} \mathbf{T i} \quad 22 \\ 47.867 \\ 3 d^{2} 4 s^{2} \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \mathbf{V} & 23 \\ 50.9415 \\ 3 d^{3} 4 s^{2} \\ \hline \end{array}$		$\begin{array}{ll} \text { Cr } & 24 \\ 51.9961 \\ 3 d^{5} 4 s^{1} \end{array}$	$\begin{aligned} & \text { Mn } 25 \\ & 54.938049 \\ & 3 d^{5} 4 s^{2} \end{aligned}$	Fe 26 55.845 $3 d^{6} 4 s^{2}$	$\begin{aligned} & \text { Co } 27 \\ & 58.933200 \\ & 3 d^{7} 4 s^{2} \end{aligned}$	$\begin{array}{ll} \mathrm{Ni} \quad 28 \\ 58.6934 \\ 3 d^{8} 4 s^{2} \\ \hline \end{array}$	$\begin{array}{ll} \mathrm{Cu} & 29 \\ 63.546 \\ 3 d^{10} 4 s^{1} \end{array}$	$\left.\begin{array}{\|l\|} \hline \operatorname{Zn} \\ 65.39 \\ 3 d^{104} 4 s^{2} \end{array} \right\rvert\,$	$\begin{aligned} & \text { Ga } 31 \\ & 69.723 \\ & 4 p^{1} \end{aligned}$	$\begin{array}{\|ll} \hline \text { Ge } 32 \\ 72.61 \\ 4 p^{2} & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { As } 33 \\ 74.92160 \\ 4 p^{3} \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \mathbf{S e} & 34 \\ 78.96 & \\ 4 p^{4} & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \mathbf{B r} & 35 \\ 79.904 \\ 4 p^{5} \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \mathbf{K r} & 36 \\ 83.80 \\ 4 p^{6} & \\ \hline \end{array}$
$\begin{array}{ll} \mathbf{R b} & 37 \\ 85.4678 \\ 5 s^{1} \\ \hline \end{array}$	$\begin{array}{\|ll} \mathrm{Sr} & 38 \\ 87.62 & \\ 5 s^{2} & \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline \mathbf{Y} & 39 \\ 88.90585 \\ 4 d^{1} 5 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{Z r} \quad 40 \\ & 91.224 \\ & 4 d^{2} 5 s^{2} \\ & \hline \end{aligned}$	$\left.\begin{array}{\|ll\|} \hline \mathbf{N b} & 41 \\ 92.90638 \\ 4 d^{4} 5 s^{1} \end{array} \right\rvert\,$		$\left\|\begin{array}{ll} \text { Mo } & 42 \\ 95.94 \\ 4 d^{5} 5 s^{\prime} \end{array}\right\|$	Tc 43 (98) $4 d^{5} 5 s^{2}$	$\begin{array}{\|l\|} \hline \mathbf{R u} \quad 44 \\ 101.07 \\ 4 d^{\prime} 5 s^{\prime} \end{array}$	$\begin{array}{ll} \mathbf{R h} & 45 \\ 102.90550 \\ 4 d^{8} 5 s^{1} & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Pd } 46 \\ 106.42 \\ 4 d^{105} s^{\circ} \\ \hline \end{array}$	$\left\|\begin{array}{ll} \text { Ag } & 47 \\ 107.8682 \\ 4 d^{10} s^{\prime} \end{array}\right\|$	$\left\|\begin{array}{ll} \text { Cd } & 48 \\ 112.411 \\ 4 d^{10} 5 s^{2} \end{array}\right\|$	$\begin{array}{\|lr\|} \hline \text { In } & 49 \\ 114.818 \\ 5 p^{1} & \\ \hline \end{array}$	$\begin{array}{ll} \text { Sn } & 50 \\ 118.710 \\ 5 p^{2} \end{array}$	$\left\lvert\, \begin{array}{ll} \mathrm{Sb} & 51 \\ 121.760 \\ 5 p^{3} & \\ \hline \end{array}\right.$	$\begin{aligned} & \text { Te } \quad 52 \\ & 127.60 \\ & 5 p^{4} \end{aligned}$	$\begin{array}{\|lr} \hline \mathbf{I} & 53 \\ 126.90447 \\ 5 p^{5} & \\ \hline \end{array}$	$\begin{array}{ll} \text { Xe } & 54 \\ 131.29 \\ 5 p^{6} \end{array}$
$\begin{array}{ll} \text { Cs } & 55 \\ 132.90545 \\ 6 s^{1} \end{array}$	$\begin{aligned} & \text { Ba } \quad 56 \\ & 137.327 \\ & 6 s^{2} \end{aligned}$	57-71 ${ }^{\dagger}$	$\begin{array}{ll} \text { Hf } & 72 \\ 178.49 \\ 5 d^{2} 6 s^{2} \end{array}$	Ta 73 180.9479 $5 d^{3} 6 s^{2}$	$\left\|\begin{array}{ll} \mathbf{W} & 74 \\ 183.84 \\ 5 d^{4} 6 s^{2} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \boldsymbol{R e} \quad 75 \\ 186.207 \\ 5 d^{5} 6 \mathrm{~s}^{2} \end{array}$	Os 76 190.23 $5 d^{6} 6 s^{2}$	$\begin{aligned} & \text { Ir } \quad 77 \\ & 192.217 \\ & 5 d^{7} 6 s^{2} \end{aligned}$	Pt 78 195.078 $5 d^{9} 6 s^{1}$	Au 79 196.96655 $5 d^{10} 6 s^{1}$	$\left\lvert\, \begin{aligned} & \mathrm{Hg} 80 \\ & 200.59 \\ & 5 d^{10} 6 s^{2} \\ & \hline \end{aligned}\right.$	$\begin{array}{\|lr} \mathrm{Tl} & 81 \\ 204.3833 \\ 6 p^{\prime} & \\ \hline \end{array}$	$\begin{array}{ll} \mathbf{P b} & 82 \\ 207.2 \\ 6 p^{2} \\ \hline \end{array}$	Bi 83 208.98038 $6 p^{3}$	$\begin{array}{\|cc\|} \hline \text { Po } & 84 \\ (209) \\ 6 p^{4} & \\ \hline \end{array}$	At 85 (210) $6 p^{5}$	$\begin{array}{\|c\|} \hline \mathbf{R n} 86 \\ (222) \\ 6 p^{6} \\ \hline \end{array}$	
$\begin{array}{\|cc} \hline \text { Fr } & 87 \\ (223) \\ 7 s^{1} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Ra } 88 \\ (226) \\ 7 s^{2} \end{array}$	89-103 \ddagger	$\begin{gathered} \mathbf{R f} 104 \\ (261) \\ 6 d^{2} 7 s^{2} \end{gathered}$	Db 105 (262) $6 d^{77 s^{2}}$	$\begin{array}{\|cc\|} \hline \mathbf{S g} & 106 \\ (266) & \\ 6 d^{4} 7 s^{2} & \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Bh } 107 \\ (264) \\ 6 d^{5} 77^{2} \\ \hline \end{array}$	Hs 108 (269) $6 d^{6} 75^{2}$	$\begin{gathered} \text { Mt } 109 \\ (268) \\ 6 d^{7} 7 s^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ds } 110 \\ (271) \\ 6 d^{9} 7 s^{1} \end{gathered}$	$\begin{array}{r} 111 \\ (272) \\ 6 d^{10} 7 s^{1} \end{array}$	$\begin{gathered} 112 \\ (277) \\ 6 d^{107 s^{2}} \\ \hline \end{gathered}$							

\dagger Lanthanide Seri	$\begin{aligned} & \text { La } 57 \\ & 138.9055 \\ & 5 d^{1} 6 s^{2} \end{aligned}$	Ce 58 140.115 $4 f^{\prime} 5 d^{1} 6 s^{2}$	Pr 59 140.90765 $4 f^{3} 5 d^{6} 6 s^{2}$	$\begin{aligned} & \text { Nd } \quad 60 \\ & 144.24 \\ & 4 f^{4} 5 d^{0} 6 s^{2} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Pm } 61 \\ (145) \\ 4 f^{5} 5 d^{0} 6 s^{2} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Sm 62 } \\ 150.36 \\ 4 f^{6} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{array}{ll} \text { Eu } & 63 \\ 151.964 \\ 4 f^{\prime} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \text { Gd } 64 \\ & 157.25 \\ & 4 f^{\prime} 5 d^{1} 6 s^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tb } \quad 65 \\ & 158.92534 \\ & 4 f^{\rho} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{aligned} & \text { Dy } 66 \\ & 162.50 \\ & 4 f^{10} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{aligned} & \text { Ho } 67 \\ & 164.93032 \\ & 4 f^{11} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{aligned} & \text { Er } \quad 68 \\ & 167.26 \\ & 4 f^{12} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{gathered} \operatorname{Tm} 69 \\ 168.93421 \\ 4 f^{13} 5 d^{0} 6 s^{2} \end{gathered}$	$\begin{aligned} & \mathbf{Y b} 70 \\ & 173.04 \\ & 4 f^{14} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{array}{ll} \mathrm{Lu} & 71 \\ 174.967 \\ 4 f^{14} 5 d^{1} 6 s^{2} \end{array}$
\ddagger Actinide Series	Ac 89 (227.02775) $6 d^{1} 7 s^{2}$	$\begin{aligned} & \text { Th } 90 \\ & 232.0381 \\ & 6 d^{2} 7 s^{2} \end{aligned}$	$\begin{gathered} \text { Pa } 91 \\ (231) \\ 5 f^{2} 6 d^{1} 7 s^{2} \end{gathered}$	$\begin{array}{lr} \mathbf{U} & 92 \\ 238.0289 \\ 5 f^{3} 6 d^{1} 7 s^{2} \\ \hline \end{array}$	$\begin{gathered} \text { Np } 93 \\ (237) \\ 5 f^{4} 6 d^{1} 7 s^{2} . \end{gathered}$	$\begin{gathered} P u \quad 94 \\ (244) \\ 5 f^{6} 6 d^{0} 7 s^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Am } 95 \\ (243) \\ 5 f^{\prime} 6 d^{0} 7 s^{2} \end{gathered}$	$\begin{gathered} \mathrm{Cm} 96 \\ (247) \\ 5 f^{\prime} 6 d^{1} 7 s^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Bk } 97 \\ { }_{(247)} \\ 5 f^{9} 6 d^{\circ} 7 s^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Cf } 98 \\ (251) \\ 5 f^{10} 6 d^{07} 7 s^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Es } 99 \\ (252) \\ 5 f^{11} 6 d^{07} s^{2} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Fm } 100 \\ (257) \\ 5^{12} 6 d^{0} 7 s^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Md } 101 \\ (258) \\ 5 f^{13} 6 d^{0} 7 s^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { No } 102 \\ (259) \\ 5 f^{146} 6 d^{07} 7 s^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{L r} 103 \\ (262) \\ 5 f^{146} d^{1} 7 s^{2} \\ \hline \end{array}$

[^0] 2003 revisions. (See also Appendix B.)

[^0]: ${ }^{8}$ Atomic mass values averaged over isotopes in the percentages they occur on Earth's surface. For unstable elements, mass of the longest-lived known isotope is given in parentheses.

