Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$

Physical Constants

$$
\begin{array}{ll}
k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GNm}^{2} / \mathrm{C}^{2} \text { (Coulomb's Law) } & \epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m} \text { (permittivity of space) } \\
e=1.602 \times 10^{-19} \mathrm{C} \text { (proton charge) } & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \text { (permeability of space) } \\
m_{e}=9.109 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) } \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (speed of light) } & c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (exact value in vacuum) } \\
h=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \text { (Planck's constant) } & \left.\hbar=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \text { (Planck's constant } / 2 \pi\right) \\
\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right) \text { (Stefan-Boltzmann const.) } & h c=1239.84 \mathrm{eV} \cdot \mathrm{~nm} \text { (photon energy constant) }
\end{array}
$$

Units

$$
\begin{array}{ll}
N_{A}=6.02 \times 10^{23} / \mathrm{mole}(\text { Avogadro's } \#) & 1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.6605 \times 10^{-27} \mathrm{~kg} \text { (mass unit) } \\
1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \text { (electron-volt) } & 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1 \text { volt }=1 \text { joule } / \text { coulomb } \\
1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \text { farad }=1 \mathrm{C}^{2} / \mathrm{J} & 1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}=1 \mathrm{henry}=1 \mathrm{~J} / \mathrm{A}^{2} \\
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1 \text { ampere }=1 \text { coulomb/second } & 1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2} \\
1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{~m}=1 \text { tesla }=1 \text { newton/ampere } \cdot \text { meter } & 1 \mathrm{G}=10^{-4} \mathrm{~T}=1 \text { gauss }=10^{-4} \text { tesla }
\end{array}
$$

OpenStax Chapter 24 Equations - Electromagnetic Waves

Electromagnetic waves:

$$
|\vec{E}| /|\vec{B}|=c=1 / \sqrt{\epsilon_{0} \mu_{0}}, \quad \text { (fields and speed) } \quad f \lambda=c \quad \text { (wave equation) }
$$

Energy density, intensity, power:

$$
\begin{array}{lll}
u=\epsilon_{0} E^{2}=\frac{B^{2}}{\mu_{0}} & \text { (instantaneous energy density) } & \bar{u}=\frac{1}{2} \epsilon_{0} E_{0}^{2}=\frac{B_{0}^{2}}{2 \mu_{0}} \quad \text { (average energy density) } \\
I=\bar{u} c=\frac{1}{2} \epsilon_{0} E_{0}^{2} c & \text { (EM waves intensity) } & I=P / A=P /\left(4 \pi r^{2}\right) \quad \text { (intensity definition) }
\end{array}
$$

Approximate wavelengths λ for types of EM waves:
0 (γ-rays) 30 pm (x-rays) 3 nm (uv) 400 nm (visible) 700 nm (ir) $300 \mu \mathrm{~m}$ (μ-waves) 3 cm (radio) ∞
$\longrightarrow \quad \longrightarrow \quad$ increasing wavelength $\quad \longrightarrow \quad \longrightarrow$

OpenStax Chapter 28 Equations - Special Relativity

Time dilation and length contraction:

$$
\begin{array}{ll}
\Delta t=\gamma \Delta t_{0}=\Delta t_{0} / \sqrt{1-v^{2} / c^{2}} & L=L_{0} / \gamma=L_{0} \sqrt{1-v^{2} / c^{2}} \\
\gamma=1 / \sqrt{1-v^{2} / c^{2}} \quad \text { (relativistic factor) } & v / c=\sqrt{1-1 / \gamma^{2}} \quad \text { (velocity) }
\end{array}
$$

Dyanmics, mass, energy:
$p=\gamma m v \quad$ (relativistic momentum)
$m_{\text {rel }}=\gamma m \quad$ (relativistic mass)
$E_{0}=m c^{2} \quad$ (rest energy)
$E=\gamma m c^{2}=m_{\mathrm{rel}} c^{2} \quad$ (relativistic energy)
$\mathrm{KE}=E-E_{0}=(\gamma-1) m c^{2} \quad$ (kinetic energy)
$E=E_{0}+\mathrm{KE}=\sqrt{p^{2} c^{2}+m^{2} c^{4}}$ (relativistic energy)
$\Delta\left(E_{0}+\mathrm{KE}\right)+\Delta \mathrm{PE}=0$ (conservation of energy)
$\Delta \mathrm{PE}_{\text {elec }}=q \Delta V \quad$ (electric potential energy)

Blackbody radiation, photons, photo-electric effect:
$\lambda_{p} T=2.90 \mathrm{~mm} \cdot \mathrm{~K} \quad$ (Wien's Law)
$I=\sigma T^{4} \quad$ (intensity or power/area)
$E=n h f, n=1,2,3 \ldots$ (quantized radiation energy)
$E=h c / \lambda=(1240 \mathrm{eV} \cdot \mathrm{nm}) / \lambda$ (photons)
$E=h f=W_{0}+\mathrm{KE}_{\max }$ (photo-electrons)
$h c / \lambda_{\max }=W_{0} \quad$ (work function)
$\mathrm{KE}_{\max }=e V_{0} \quad($ stopping potential $)$
$v_{\max }=\sqrt{2 \mathrm{KE}_{\max } / m} \quad$ (max. speed)

Momentum, matter waves:
$p=h / \lambda \quad$ (quantum momentum)
$\lambda=h / p$ (de Broglie wavelength)
$\Delta \mathrm{KE}+q \Delta V=0 \quad$ (acceleration thru potential)
$\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \phi) \quad$ (Compton effect)
$\mathrm{KE}=p^{2} / 2 m \quad$ (kinetic energy, $v \ll c$)
$v=\sqrt{2 q \Delta V / m}$ (acceleration thru potential, $v \ll c$)
Heisenberg Uncertainty Principle:
$\Delta x \Delta p_{x} \approx h$ (approximate relation)
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\Delta E \Delta t \approx h$ (approximate relation)
$\Delta x \Delta p_{x} \geq \hbar / 2$ (has the minimum uncertainty)
$\Delta E \Delta t \geq \hbar / 2$ (energy-time form)
$\Delta E=\Delta m \cdot c^{2} \quad$ (Einstein's mass-energy equivalence)
$\hbar=\frac{h}{2 \pi}=1.05459 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
\leftarrow This has exact equality.

OpenStax Chapter 30 Equations - Atomic Physics

Bohr Model:

$$
\begin{array}{ll}
h f=E_{n}-E_{n^{\prime}} \quad \text { (quantum jump) } & L=m v r=n \frac{h}{2 \pi} \quad \text { (Bohr's quantization) } \\
r_{n}=\frac{n^{2}}{Z} r_{1} \quad(\text { Bohr radii }) & r_{1}=\frac{h^{2}}{4 \pi^{2} m k e^{2}}=52.9 \mathrm{pm} \quad\left(1^{\text {st }}\right. \text { Bohr radius) } \\
E_{n}=-(13.6 \mathrm{eV}) \frac{Z^{2}}{n^{2}} \quad \text { (Bohr energies) } & E_{n}=\frac{1}{2} m v^{2}-\frac{k Z e^{2}}{r_{n}} \quad \text { (total energy) } \\
n=1,2,3, \ldots \text { (Bohr's quantum number) } & E=h c / \lambda=(1240 \mathrm{eV} \cdot \mathrm{~nm}) / \lambda \text { (photons) }
\end{array}
$$

Quantum numbers for atoms:
principle quantum number $n=0,1,2,3 \ldots$
orbital quantum number $l=0,1,2 \ldots(n-1)$
magnetic quantum number $m_{l}=-l$ to $+l$
spin quantum number $m_{s}=-\frac{1}{2}, \quad+\frac{1}{2}$
shell $\left(2 n^{2}\right.$ states $)=$ a value of (n) is given.
$\operatorname{orbital}(2$ states $)=\operatorname{particular}\left(n, l, m_{l}\right)$ are given.
$E_{n}=-(13.6 \mathrm{eV}) / n^{2} \quad$ (energy of hydrogen states)
$L=\sqrt{l(l+1)} \hbar$ (angular momentum magnitude)
$L_{z}=m_{l} \hbar \quad(z$-component of $\vec{L})$
$S_{z}=m_{s} \hbar \quad$ (z-comp., spin angular momentum)
sub-shell $[2(2 \ell+1)$ states $]=$ values of (n, l) are given.
state $=$ particular $\left(n, l, m_{l}, m_{s}\right)$ are given.
$l=0,1,2,3,4,5,6 \ldots$ are indicated with respective letters: $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots$
Pauli exclusion principle: No two electrons in an atom can occupy the same quantum state.
Subshells in order of increasing energy: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p (They fill in order of increasing $n+l$, but higher n is higher energy if there is a tie.)

Periodic Table of the Elements ${ }^{8}$

${ }^{\dagger}$ Lanthanide Series	La 57 138.9055 $5 d^{1} 6 s^{2}$	$\begin{aligned} & \mathrm{Ce} \quad 58 \\ & 140.115 \\ & 4 f^{\prime} 5 d^{\prime} 6 s^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Pr } \quad 59 \\ & 140.90765 \\ & 4 f^{3} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Nd } & 60 \\ 144.24 \\ 4 f^{4} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{gathered} \text { Pm } 61 \\ (145) \\ 4 f^{5} 5 d^{0} 6 s^{2} \end{gathered}$	$\begin{aligned} & \text { Sm } 62 \\ & 150.36 \\ & 4 f^{6} 5 d^{0} 6 s^{2} \\ & \hline \end{aligned}$	$\begin{array}{\|ll} \mathrm{Eu} & 63 \\ 151.964 \\ 4 f^{7} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \text { Gd } 64 \\ & 157.25 \\ & 4 f^{2} 5 d^{1} 6 s^{2} \\ & \hline \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { Tb } & 65 \\ 158.92534 \\ 4 f^{9} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \text { Dy } 66 \\ & 162.50 \\ & 4 f^{10} 5 d^{0} 6 s^{2} \end{aligned}$	Ho 67 164.93032 $4 f^{11} 5 d^{0} 6 s^{2}$	$\begin{array}{\|ll\|} \hline \text { Er } & 68 \\ 167.26 \\ 4 f^{12} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \text { Tm } 69 \\ & 168.93421 \\ & 4 f^{13} 5 d^{0} 6 s^{2} \end{aligned}$	$\begin{array}{\|ll\|} \hline \mathbf{Y b} & 70 \\ 173.04 \\ 4 f^{14} 5 d^{0} 6 s^{2} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \text { Lu } 71 \\ 174.967 \\ 4 f^{145} 5 d^{1} 6 s^{2} \\ \hline \end{array}$
\ddagger Actinide Series	Ac 89 (227.02775) $6 d^{1} 7 s^{2}$	$\begin{array}{ll} \text { Th } & 90 \\ 232.0381 \\ 6 d^{2} 7 s^{2} \end{array}$	$\begin{array}{\|cc\|} \hline \mathbf{P a} & 91 \\ (231) \\ 5 f^{2} 6 d^{1} 7 s^{2} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \mathbf{U} & 92 \\ 238.0289 \\ 5 f^{3} 6 d^{\prime} 7 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \text { Np } 93 \\ & (237) \\ & 5 f^{f} 6 d^{1} 7 s^{2} . \end{aligned}$	$\begin{gathered} \text { Pu } 94 \\ (244) \\ 5 f^{6} 6 d^{0} 7 s^{2} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Am 95 } \\ (243) \\ 5 f^{7} 6 d^{0} 7 s^{2} \\ \hline \end{array}$	$\begin{array}{\|c} \text { Cm } 96 \\ { }_{(247)} \\ 5 f^{\prime} 6 d^{1} 7 s^{2} \\ \hline \end{array}$	$\begin{gathered} \text { Bk } 97 \\ { }^{(247)} \\ 5 f^{9} 6 d^{0} 7 s^{2} \end{gathered}$	$\begin{gathered} \text { Cf } 98 \\ (251) \\ 5 f^{10} 6 d^{0} 7 s^{2} \\ \hline \end{gathered}$	Es 99 (252) 5f ${ }^{11} 6 d^{07} 7 s^{2}$	$\begin{array}{\|c\|} \hline \text { Fm } 100 \\ (257) \\ 5 f^{12} 6 d^{0} 7 s^{2} \\ \hline \end{array}$	$\begin{gathered} \text { Md } 1 \dot{101} \\ \begin{array}{c} (258) \\ 5 f^{13} 6 d^{0} 7 s^{2} \end{array} \end{gathered}$	$\begin{gathered} \text { No } 102 \\ (259) \\ 5 f^{14} 6 d^{0} 7 s^{2} \end{gathered}$	$\begin{gathered} \text { Lr } 103 \\ (262) \\ 5 f^{14} 6 d^{1} 7 s^{2} \end{gathered}$

[^0]
[^0]: ${ }^{\S}$ Atomic mass values averaged over isotopes in the percentages they occur on Earth's surface. For unstable elements, mass of the longest-lived known isotope is given in parentheses 2003 revisions. (See also Appendix B.)

