Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$

Physical Constants

$$
\begin{array}{ll}
k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GNm}^{2} / \mathrm{C}^{2} \text { (Coulomb's Law) } & \epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m} \text { (permittivity of space) } \\
e=1.602 \times 10^{-19} \mathrm{C} \text { (proton charge) } & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \text { (permeability of space) } \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) } \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (speed of light) } & c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (exact value in vacuum) } \\
h=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \text { (Planck's constant) } & \hbar=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \text { (Planck's constant } / 2 \pi \text {) } \\
\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right) \text { (Stefan-Boltzmann const.) } & h c=1239.84 \mathrm{eV} \cdot \mathrm{~nm} \text { (photon energy constant) }
\end{array}
$$

Units

$$
\begin{aligned}
& N_{A}=6.02 \times 10^{23} / \text { mole (Avogadro's } \# \text {) } \\
& 1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \text { (electron-volt) } \\
& 1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \text { farad }=1 \mathrm{C}^{2} / \mathrm{J} \\
& 1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1 \text { ampere }=1 \text { coulomb/second } \\
& 1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{~m}=1 \text { tesla }=1 \text { newton/ampere } \cdot \text { meter }
\end{aligned}
$$

OpenStax Chapter 27 Equations - Wave Optics

Wave properties, interference:

$$
\begin{array}{ll}
v=c / n & \text { (wave speed in a medium) } \\
f \lambda=v & \text { (wave equation in a medium) } \\
d \sin \theta=m \lambda & \text { (double slits bright fringes) }
\end{array}
$$

$\lambda=\lambda_{\text {vacuum }} / n \quad$ (wavelength in a medium)
$\Delta x=d \sin \theta \quad$ (path difference in double slits)
$d \sin \theta=(m+1 / 2) \lambda \quad$ (double slits dark fringes)
Diffraction:
$\begin{array}{ll}D \sin \theta=m \lambda & \text { (single slit minima) } \\ d \sin \theta=m \lambda \quad \text { (diffraction grating maxima) }\end{array}$
$y=L \tan \theta \quad$ (position on a screen)
$d=1 /($ lines per meter $)$.
Rayleigh's Diffraction Limit:
$\theta_{\min }=1.22 \lambda / D \quad$ (resolution limit) $\quad \theta=s / r \quad$ (angular separation in radians)
Polarization:
$I=I_{0} \cos ^{2} \theta \quad$ (transmission thru polarizer) $\quad I=\frac{1}{2} I_{0} \quad$ (transmission of unpolarized light)

OpenStax Chapter 28 Equations - Special Relativity

Time dilation and length contraction:

$$
\begin{aligned}
& \Delta t=\gamma \Delta t_{0}=\Delta t_{0} / \sqrt{1-v^{2} / c^{2}} \\
& \gamma=1 / \sqrt{1-v^{2} / c^{2}} \quad \text { (relativistic factor) }
\end{aligned}
$$

$$
L=L_{0} / \gamma=L_{0} \sqrt{1-v^{2} / c^{2}}
$$

$$
v / c=\sqrt{1-1 / \gamma^{2}} \quad(\text { velocity })
$$

Dyanmics, mass, energy:

$$
\begin{aligned}
& p=\gamma m v \quad \text { (relativistic momentum) } \\
& E_{0}=m c^{2} \quad(\text { rest energy }) \\
& \mathrm{KE}=E-E_{0}=(\gamma-1) m c^{2} \quad \text { (kinetic energy) } \\
& \Delta\left(E_{0}+\mathrm{KE}\right)+\Delta \mathrm{PE}=0 \quad \text { (conservation of energy) }
\end{aligned}
$$

$1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.6605 \times 10^{-27} \mathrm{~kg}$ (mass unit)
$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1$ volt $=1$ joule $/$ coulomb
$1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}=1$ henry $=1 \mathrm{~J} / \mathrm{A}^{2}$
$1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2}$
$1 \mathrm{G}=10^{-4} \mathrm{~T}=1$ gauss $=10^{-4}$ tesla

