Prefixes

$$
\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}
$$

Physical Constants

$$
\begin{array}{ll}
k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GN} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \text { (Coulomb's Law) } & \epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m} \text { (permittivity of space) } \\
e=1.602 \times 10^{-19} \mathrm{C} \text { (proton charge) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) } \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } &
\end{array}
$$

Units

$$
\begin{array}{ll}
\left.N_{A}=6.02 \times 10^{23} / \text { mole (Avagodro's } \#\right) & 1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.6605 \times 10^{-27} \mathrm{~kg} \text { (mass unit) } \\
1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \text { (electron-volt) } & 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1 \text { volt }=1 \text { joule } / \text { coulomb } \\
1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \text { farad }=1 \mathrm{C}^{2} / \mathrm{J} & \\
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1 \text { ampere }=1 \text { coulomb } / \text { second } & 1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2}
\end{array}
$$

Vectors
Written \vec{V} or \mathbf{V}, described by magnitude $=V$, direction $=\theta$ or by components $\left(V_{x}, V_{y}\right)$.
$V_{x}=V \cos \theta, \quad V_{y}=V \sin \theta$,
$V=\sqrt{V_{x}^{2}+V_{y}^{2}}, \quad \tan \theta=\frac{V_{y}}{V_{x}} . \quad \theta$ is the angle from \vec{V} to $+x$-axis.
Addition: $\mathbf{A}+\mathbf{B}$, head to tail. Subtraction: $\mathbf{A}-\mathbf{B}$ is $\mathbf{A}+(-\mathbf{B}), \quad-\mathbf{B}$ is \mathbf{B} reversed.

Trig summary

$$
\begin{array}{llcl}
\sin \theta=\frac{(\text { opp })}{(\text { hyp })}, & \cos \theta=\frac{(\text { adj })}{(\text { hyp })}, & \tan \theta=\frac{(\text { opp })}{(\text { adj })}, & (\text { opp })^{2}+(\text { adj })^{2}=(\text { hyp })^{2} . \\
\sin \theta=\sin \left(180^{\circ}-\theta\right), & \cos \theta=\cos (-\theta), & \tan \theta=\tan \left(180^{\circ}+\theta\right), & \sin ^{2} \theta+\cos ^{2} \theta=1 .
\end{array}
$$

OpenStax Chapter 18 Equations
Charges:
$Q= \pm N e, \quad \Delta Q_{1}+\Delta Q_{2}=0, \quad e=1.602 \times 10^{-19} \mathrm{C}$.
Electric Force:
$F=k \frac{Q_{1} Q_{2}}{r^{2}}, \quad k=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}, \quad F=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}}, \quad \epsilon_{0}=\frac{1}{4 \pi k}=8.854 \mathrm{pF} / \mathrm{m}$.
$\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots \quad$ superposition of many forces.
$F_{x}=F_{1 x}+F_{2 x}+F_{3 x}+\ldots \quad$ superposition of x-components of many forces.
$F_{y}=F_{1 y}+F_{2 y}+F_{3 y}+\ldots \quad$ superposition of y-components of many forces.
Electric Field:
$\vec{E}=\frac{\vec{F}}{q}, \quad q=$ test charge. Or: $\vec{F}=q \vec{E}$.
$|\vec{E}|=E=k \frac{Q}{r^{2}}=\frac{Q}{4 \pi \epsilon_{0} r^{2}}$, due to point charge. Negative Q makes inward \vec{E}, positive Q makes outward \vec{E}.
$\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\ldots \quad$ superposition of many electric fields.
$E_{x}=E_{1 x}+E_{2 x}+E_{3 x}+\ldots \quad$ superposition of x-components of many electric fields.
$E_{y}=E_{1 y}+E_{2 y}+E_{3 y}+\ldots \quad$ superposition of y-components of many electric fields.
$E=k \frac{Q}{r^{2}}=$ electric field around a point charge or outside a spherical charge distribution.

OpenStax Chapter 19 Equations

Potential Energy and Work:

$W_{b a}=F_{E} d \cos \theta=$ work done by electric force F_{E} on test charge, in displacement d from a to b.
$W_{b a}=-q \Delta V=-q\left(V_{b}-V_{a}\right)=$ work done by electric force on a test charge, moved from a to b.
$\Delta \mathrm{PE}=q \Delta V=q\left(V_{b}-V_{a}\right)=$ change in electric potential energy of the system. Also: $\Delta \mathrm{PE}=-W_{b a}$.
$\Delta \mathrm{KE}+\Delta \mathrm{PE}=0$, or, $\Delta \mathrm{KE}=-\Delta \mathrm{PE}=-q \Delta V, \quad$ principle of conservation of mechanical energy.
$\Delta \mathrm{KE}+\Delta \mathrm{PE}=W_{\mathrm{nc}}, \quad$ change in mechanical energy when nonconservative forces are present.
Potential:
$\Delta V=\frac{\Delta \mathrm{PE}}{q}=$ definition of change in electric potential.
$\Delta V=E d=$ potential change in a uniform electric field.
$V=k \frac{Q}{r}=$ potential produced by a point charge or outside a spherical charge distribution.
$\mathrm{PE}=q V=$ potential energy for a test charge at a point in a field.
$\mathrm{PE}=k \frac{Q_{1} Q_{2}}{r_{12}}=$ potential energy of a pair of charges.
Capacitance:
$Q=C V, \quad C=\kappa \epsilon_{0} \frac{A}{d}, \quad E=V / d, \quad$ capacitor equations.
$U=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=$ stored energy.
$E=\frac{Q / A}{\epsilon_{0}}=$ electric field strength very near a charged conductor.
$C_{\text {parallel }}=C_{1}+C_{2}+C_{3}+\ldots=$ capacitance of capacitors in parallel (same voltages).
$1 / C_{\text {series }}=1 / C_{1}+1 / C_{2}+1 / C_{3}+\ldots=$ capacitance of capacitors in series (same charges).

OpenStax Chapter 20 Equations

Electric current:
$I=\frac{\Delta Q}{\Delta t}$, or $\Delta Q=I \Delta t$, definition of current.
$V=E d=$ voltage applied to a conductor.
$V=I R$, or $I=V / R$, Ohm's law.
$R=\rho \frac{L}{A}=$ calculation of resistance.
$\rho_{T}=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]=$ temperature-dependent resistivity.
Electric power:
$P=I V, \quad P=I^{2} R, \quad P=V^{2} / R, \quad P=$ instantaneous energy/time.
Alternating current:
$V=V_{0} \sin (2 \pi f t)=$ time-dependent AC voltage. $\quad I=I_{0} \sin (2 \pi f t)=$ time-dependent AC current.
$V_{\mathrm{rms}}=\sqrt{\overline{\overline{V^{2}}}}=V_{0} / \sqrt{2}=$ root-mean-square voltage. $\quad I_{\mathrm{rms}}=\sqrt{\overline{I^{2}}}=I_{0} / \sqrt{2}=$ root-mean-square current.
AC power in resistors:

$$
\bar{P}=\frac{1}{2} I_{0}^{2} R=\frac{1}{2} V_{0}^{2} / R=\frac{1}{2} I_{0} V_{0}=\text { average power. } \quad \bar{P}=I_{\mathrm{rms}}^{2} R=V_{\mathrm{rms}}^{2} / R=I_{\mathrm{rms}} V_{\mathrm{rms}}=\text { average power. }
$$

