<u>Prefixes</u>

 $\overline{a=10^{-18}}$, f=10⁻¹⁵, p=10⁻¹², n=10⁻⁹, $\mu = 10^{-6}$, m=10⁻³, c=10⁻², k=10³, M=10⁶, G=10⁹, T=10¹², P=10¹⁵

Physical Constants

$$\begin{split} k &= 1/4\pi\epsilon_0 = 8.988~\text{GNm}^2/\text{C}^2~(\text{Coulomb's Law})\\ e &= 1.602\times10^{-19}~\text{C}~(\text{proton charge})\\ m_e &= 9.11\times10^{-31}~\text{kg}~(\text{electron mass}) \end{split}$$

Units

$$\begin{split} N_A &= 6.02 \times 10^{23} / \text{mole (Avogadro's } \#) \\ 1.0 \text{ eV} &= 1.602 \times 10^{-19} \text{ J (electron-volt)} \\ 1 \text{ F} &= 1 \text{ C/V} = 1 \text{ farad} = 1 \text{ C}^2 / \text{J} \\ 1 \text{ A} &= 1 \text{ C/s} = 1 \text{ ampere} = 1 \text{ coulomb/second} \\ 1 \text{ T} &= 1 \text{ N/A·m} = 1 \text{ tesla} = 1 \text{ newton/ampere-meter} \end{split}$$

OpenStax Chapter 18 Equations

Charges:

 $Q = \pm Ne, \quad \Delta Q_1 + \Delta Q_2 = 0, \quad e = 1.602 \times 10^{-19} \text{ C.}$ Electric Force: $E = k \frac{Q_1 Q_2}{Q_2} = k = 8.088 \times 10^9 \text{ N} \text{ m}^2/C^2$

$$F = k \frac{Q_1 Q_2}{r^2}, \quad k = 8.988 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2, \qquad F = \frac{Q_1 Q_2}{4\pi\epsilon_0 r^2}, \quad \epsilon_0 = \frac{1}{4\pi k} = 8.854 \text{ pF/m}.$$

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots \quad \text{superposition of forces.}$$

Electric Field:

 $\vec{E} = \frac{\vec{F}}{q}, \quad q = \text{test charge.}$ Or: $\vec{F} = q\vec{E}.$ $|\vec{E}| = E = k\frac{Q}{r^2} = \frac{Q}{4\pi\epsilon_0 r^2}$, due to point charge. Negative Q makes inward \vec{E} , positive Q makes outward \vec{E} . $\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$ superposition of many electric fields. $E = k\frac{Q}{r^2} = \text{electric field around a point charge or$ *outside* $a spherical charge distribution.}$

OpenStax Chapter 19 Equations

Potential Energy and Work:

 $W_{ba} = F_E d \cos \theta = \text{work}$ done by electric force F_E on test charge, in displacement d from a to b. $W_{ba} = -q\Delta V = -q(V_b - V_a) = \text{work}$ done by electric force on a test charge, moved from a to b. $\Delta PE = q\Delta V = q(V_b - V_a) = \text{change}$ in electric potential energy of the system. Also: $\Delta PE = -W_{ba}$. Potential:

 $\Delta V = \frac{\Delta PE}{q}$ = definition of change in electric potential.

 $\Delta V = Ed$ = potential change in a uniform electric field.

 $V = k \frac{Q}{r}$ = potential produced by a point charge or *outside* a spherical charge distribution.

PE = qV = potential energy for a test charge at a point in a field.

 $PE = k \frac{Q_1 Q_2}{r_{12}} = potential energy of a pair of charges.$

Capacitance:

Q = CV, $C = K\epsilon_0 \frac{A}{d}$ = capacitor equations.

 $U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ = stored energy.

 $E = \frac{Q/A}{\epsilon_0}$ = electric field strength very near a charged conductor.

 $\epsilon_0 = 1/4\pi k = 8.854 \text{ pF/m}$ (permittivity of space) $\mu_0 = 4\pi \times 10^{-7} \text{ T·m/A}$ (permeability of space) $m_p = 1.67 \times 10^{-27} \text{ kg}$ (proton mass)

1 u = 1 g/ N_A = 1.6605 × 10⁻²⁷ kg (mass unit) 1 V = 1 J/C = 1 volt = 1 joule/coulomb 1 H = 1 V·s/A = 1 henry = 1 J/A² 1 Ω = 1 V/A = 1 ohm = 1 J·s/C² 1 G = 10⁻⁴ T = 1 gauss = 10⁻⁴ tesla

OpenStax Chapter 20 Equations

Electric current and power: $I = \frac{\Delta Q}{\Delta t}, \quad \Delta Q = I \Delta t$ current definition. $R = \rho L/A$ calculation of resistance. $P = IV, \quad P = I^2 R, \quad P = V^2/R.$ Alternating current: $V = V_0 \sin(2\pi ft) =$ time-dependent AC voltage. $V_{\rm rms} = \sqrt{V^2} = V_0/\sqrt{2} =$ root-mean-square voltage. AC power: $\overline{P} = \frac{1}{2}I_0V_0 = \frac{1}{2}I_0^2R = \frac{1}{2}V_0^2/R = \text{average power.}$ **OpenStax Chapter 21 Equations Resistor** Combinations $R_{\rm eq} = R_1 + R_2 + R_3 + \dots$ (series) Real batteries $V_{ab} = \mathcal{E} - Ir$ (terminal voltage) Kirchhoff's Rules $\sum \Delta V = 0$ (loop rule, energy conservation) **OpenStax Chapter 22 Equations** Magnetic forces, torque $F = IlB\sin\theta$ (on a current) $F/l = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}$ (between currents) $\tau = NBAI \sin \theta$ (torque on a coil) Magnetic Fields $B = \frac{\mu_0}{2\pi} \frac{I}{r}$ (due to long straight wire) **Right Hand Rules** Force (thumb) = $[I (4 \text{ fingers})] \times [\text{magnetic field (palm)}]$

Force (thumb) = $[qv (4 \text{ fingers})] \times [\text{magnetic field (palm)}]$ Force (thumb) = $[qv (4 \text{ fingers})] \times [\text{magnetic field (palm)}]$ Current (thumb) $\iff [\text{magnetic field (4 fingers)}]$ Current (4 fingers) $\iff [\text{magnetic field (thumb)}]$

OpenStax Chapter 23 Equations

Faraday's Induced EMF $\Phi_B = BA \cos \theta$ (magnetic flux) $\mathcal{E} = Blv$ (moving conductor) $V - \mathcal{E} = IR$ (motor's back-emf) $V_S/V_P = N_S/N_P$ (transformer equation)

AC Circuits, Inductors, Capacitors, Reactance $\mathcal{E} = -L\frac{\Delta I}{\Delta t} \quad \text{(self-inductance emf)}$ $X_L = 2\pi f L = \omega L \quad \text{(inductive reactance)}$ $X_C = 1/(2\pi f C) = 1/(\omega C) \quad \text{(capacitive reactance)}$ $Z = \sqrt{R^2 + (X_L - X_C)^2} \quad \text{(series RLC impedance)}$ $\omega_0 = 1/\sqrt{LC}, \quad f_0 = \frac{\omega_0}{2\pi} \quad \text{(LC resonance)}$ $\overline{P} = I_{\text{rms}} V_{\text{rms}} \cos \phi \quad \text{(AC average power)}$

 $V = IR, \quad I = V/R$ Ohm's law. $\rho = \rho_0 [1 + \alpha (T - T_0)]$ resistivity changes. P = instantaneous work/time.

 $I = I_0 \sin(2\pi f t) =$ time-dependent AC current. $I_{\rm rms} = \sqrt{\overline{I^2}} = I_0/\sqrt{2} =$ root-mean-square current.

 $\overline{P} = I_{\rm rms} V_{\rm rms} = I_{\rm rms}^2 R = V_{\rm rms}^2 / R$ = average power.

 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots \quad \text{(parallel)}$ $V_{ab} = IR \quad \text{(connected to load } R\text{)}$

 $\sum I = 0$ (node rule, charge conservation)

 $F = qvB\sin\theta \quad \text{(on a moving charge)}$ $F = qvB = mv^2/r \quad \text{(during cyclotron motion)}$ $v = \omega r = 2\pi fr = 2\pi r/T \quad \text{(circular motion)}$

 $B = \mu_0 I N / l$ (inside a solenoid)

(force on a current)(force on a moving charge)(magnetic field around a wire)(magnetic field inside a current loop)

$$\begin{aligned} \mathcal{E} &= -N \frac{\Delta \Phi_B}{\Delta t} \quad (\text{induced emf}) \\ \mathcal{E} &= NBA\omega \sin(\omega t), \ \omega = 2\pi f \quad (\text{AC generator}) \\ \mathcal{E}_1 &= -M \frac{\Delta I_2}{\Delta t} \quad (\text{mutual inductance emf}) \\ I_P V_P &= I_S V_S \quad (\text{power in = power out}) \end{aligned}$$

$$\begin{split} U &= \frac{1}{2}LI^2 \quad (\text{stored magnetic energy}) \\ V_L &= IX_L \quad (\text{inductor voltage}) \\ V_C &= IX_C \quad (\text{capacitor voltage}) \\ V_{\text{gen}} &= IZ = \sqrt{V_R^2 + (V_L - V_C)^2} \quad (\text{series RLC}) \\ \tan \phi &= (X_L - X_C)/R \quad (\text{series RLC phase}) \\ \overline{P} &= I_{\text{rms}}V_{\text{rms}} \cos \phi = I_{\text{rms}}^2 R \quad (\text{series RLC}) \end{split}$$