Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$

Physical Constants

$$
\begin{array}{ll}
k=1 / 4 \pi \epsilon_{0}=8.988 \mathrm{GNm}^{2} / \mathrm{C}^{2} \text { (Coulomb's Law) } & \epsilon_{0}=1 / 4 \pi k=8.854 \mathrm{pF} / \mathrm{m} \text { (permittivity of space) } \\
e=1.602 \times 10^{-19} \mathrm{C} \text { (proton charge) } & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \text { (permeability of space) } \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) }
\end{array}
$$

Units

```
\(N_{A}=6.02 \times 10^{23} /\) mole (Avogadro's \#) \(\quad 1 \mathrm{u}=1 \mathrm{~g} / N_{A}=1.6605 \times 10^{-27} \mathrm{~kg}\) (mass unit)
\(1.0 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\) (electron-volt) \(\quad 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1\) volt \(=1\) joule \(/\) coulomb
\(1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1\) farad \(=1 \mathrm{C}^{2} / \mathrm{J} \quad 1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}=1\) henry \(=1 \mathrm{~J} / \mathrm{A}^{2}\)
\(1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}=1\) ampere \(=1\) coulomb/second \(\quad 1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{ohm}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2}\)
\(1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{m}=1\) tesla \(=1\) newton/ampere \(\cdot\) meter \(\quad 1 \mathrm{G}=10^{-4} \mathrm{~T}=1\) gauss \(=10^{-4}\) tesla
```


OpenStax Chapter 18 Equations

Charges:
$Q= \pm N e, \quad \Delta Q_{1}+\Delta Q_{2}=0, \quad e=1.602 \times 10^{-19} \mathrm{C}$.
Electric Force:
$F=k \frac{Q_{1} Q_{2}}{r^{2}}, \quad k=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}, \quad F=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}}, \quad \epsilon_{0}=\frac{1}{4 \pi k}=8.854 \mathrm{pF} / \mathrm{m}$.
$\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots \quad$ superposition of forces.
Electric Field:
$\vec{E}=\frac{\vec{F}}{q}, \quad q=$ test charge. Or: $\vec{F}=q \vec{E}$.
$|\vec{E}|=E=k \frac{Q}{r^{2}}=\frac{Q}{4 \pi \epsilon_{0} r^{2}}$, due to point charge. Negative Q makes inward \vec{E}, positive Q makes outward \vec{E}.
$\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\ldots \quad$ superposition of many electric fields.
$E=k \frac{Q}{r^{2}}=$ electric field around a point charge or outside a spherical charge distribution.
OpenStax Chapter 19 Equations
Potential Energy and Work:
$W_{b a}=F_{E} d \cos \theta=$ work done by electric force F_{E} on test charge, in displacement d from a to b.
$W_{b a}=-q \Delta V=-q\left(V_{b}-V_{a}\right)=$ work done by electric force on a test charge, moved from a to b.
$\Delta \mathrm{PE}=q \Delta V=q\left(V_{b}-V_{a}\right)=$ change in electric potential energy of the system. Also: $\Delta \mathrm{PE}=-W_{b a}$.
Potential:
$\Delta V=\frac{\Delta \mathrm{PE}}{q}=$ definition of change in electric potential.
$\Delta V=E d=$ potential change in a uniform electric field.
$V=k \frac{Q}{r}=$ potential produced by a point charge or outside a spherical charge distribution.
$\mathrm{PE}=q V=$ potential energy for a test charge at a point in a field.
$\mathrm{PE}=k \frac{Q_{1} Q_{2}}{r_{12}}=$ potential energy of a pair of charges.
Capacitance:
$Q=C V, \quad C=K \epsilon_{0} \frac{A}{d}=$ capacitor equations.
$U=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=$ stored energy.
$E=\frac{Q / A}{\epsilon_{0}}=$ electric field strength very near a charged conductor.

Electric current and power:

$$
\begin{array}{ll}
I=\frac{\Delta Q}{\Delta t}, \quad \Delta Q=I \Delta t \quad \text { current definition. } & V=I R, \quad I=V / R \quad \text { Ohm's law. } \\
R=\rho L / A \quad \text { calculation of resistance. } & \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \quad \text { resistivity changes. } \\
P=I V, \quad P=I^{2} R, \quad P=V^{2} / R . & P=\text { instantaneous work/time. }
\end{array}
$$

Alternating current:

$$
\begin{array}{ll}
V=V_{0} \sin (2 \pi f t)=\text { time-dependent AC voltage. } & I=I_{0} \sin (2 \pi f t)=\text { time-dependent AC current. } \\
V_{\mathrm{rms}}=\sqrt{\overline{V^{2}}}=V_{0} / \sqrt{2}=\text { root-mean-square voltage. } & I_{\mathrm{rms}}=\sqrt{\overline{I^{2}}}=I_{0} / \sqrt{2}=\text { root-mean-square current. }
\end{array}
$$

AC power:

$$
\bar{P}=\frac{1}{2} I_{0} V_{0}=\frac{1}{2} I_{0}^{2} R=\frac{1}{2} V_{0}^{2} / R=\text { average power. } \quad \bar{P}=I_{\mathrm{rms}} V_{\mathrm{rms}}=I_{\mathrm{rms}}^{2} R=V_{\mathrm{rms}}^{2} / R=\text { average power. }
$$

OpenStax Chapter 21 Equations
Resistor Combinations

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\ldots \quad(\text { series }) \quad \frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots \quad \text { (parallel) }
$$

Real batteries

$$
V_{a b}=\mathcal{E}-I r \quad(\text { terminal voltage }) \quad V_{a b}=I R \quad(\text { connected to } \operatorname{load} R)
$$

Kirchhoff's Rules

$$
\sum \Delta V=0 \quad \text { (loop rule, energy conservation) } \quad \sum I=0 \quad \text { (node rule, charge conservation) }
$$

OpenStax Chapter 22 Equations

Magnetic forces, torque

$$
\begin{array}{lll}
F=I l B \sin \theta & \text { (on a current) } & F=q v B \sin \theta \quad \text { (on a moving charge) } \\
F / l=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{d} \quad \text { (between currents) } & F=q v B=m v^{2} / r \quad \text { (during cyclotron motion) } \\
\tau=N B A I \sin \theta \quad \text { (torque on a coil) } & v=\omega r=2 \pi f r=2 \pi r / T \quad \text { (circular motion) }
\end{array}
$$

Magnetic Fields
$B=\frac{\mu_{0}}{2 \pi} \frac{I}{r} \quad$ (due to long straight wire) $\quad B=\mu_{0} I N / l \quad$ (inside a solenoid)
Right Hand Rules
Force $($ thumb $)=[I$ (4 fingers) $] \times[$ magnetic field (palm) $] \quad$ (force on a current)
Force (thumb) $=[q v$ (4 fingers) $] \times[$ magnetic field (palm) $] \quad$ (force on a moving charge)
Current (thumb) \Longleftrightarrow [magnetic field (4 fingers)]
(magnetic field around a wire)
Current (4 fingers) \Longleftrightarrow [magnetic field (thumb)] (magnetic field inside a current loop)
OpenStax Chapter 23 Equations
Faraday's Induced EMF

$$
\begin{array}{lll}
\Phi_{B}=B A \cos \theta \quad \text { (magnetic flux) } & \mathcal{E}=-N \frac{\Delta \Phi_{B}}{\Delta t} \quad \text { (induced emf) } \\
\mathcal{E}=B l v \quad(\text { moving conductor) } & \mathcal{E}=N B A \omega \sin (\omega t), \omega=2 \pi f \quad \text { (AC generator) } \\
V-\mathcal{E}=I R \quad \text { (motor's back-emf) } & \mathcal{E}_{1}=-M \frac{\Delta I_{2}}{\Delta t} \quad \text { (mutual inductance emf) } \\
V_{S} / V_{P}=N_{S} / N_{P} \quad \text { (transformer equation) } & I_{P} V_{P}=I_{S} V_{S} & \text { (power in = power out) }
\end{array}
$$

AC Circuits, Inductors, Capacitors, Reactance

$$
\begin{array}{lll}
\mathcal{E}=-L \frac{\Delta I}{\Delta t} \quad \text { (self-inductance emf) } & U=\frac{1}{2} L I^{2} & \text { (stored magnetic energy) } \\
X_{L}=2 \pi f L=\omega L \quad \text { (inductive reactance) } & V_{L}=I X_{L} & \text { (inductor voltage) } \\
X_{C}=1 /(2 \pi f C)=1 /(\omega C) \quad \text { (capacitive reactance) } & V_{C}=I X_{C} & \text { (capacitor voltage) } \\
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad \text { (series RLC impedance) } & V_{\operatorname{gen}}=I Z=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}} \quad \text { (series RLC) } \\
\omega_{0}=1 / \sqrt{L C}, \quad f_{0}=\frac{\omega_{0}}{2 \pi} \quad \text { (LC resonance) } & \tan \phi=\left(X_{L}-X_{C}\right) / R \quad \text { (series RLC phase) } \\
\bar{P}=I_{\mathrm{rms}} V_{\mathrm{rms}} \cos \phi \quad \text { (AC average power) } & \bar{P}=I_{\mathrm{rms}} V_{\mathrm{rms}} \cos \phi=I_{\mathrm{rms}}^{2} R \quad \text { (series RLC) }
\end{array}
$$

