Prefixes
$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$.
atto, femto, pico, nano, micro, milli, centi, kilo, mega, giga, tera, peta.

Physical Constants
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ (gravitational acceleration)
$M_{E}=5.98 \times 10^{24} \mathrm{~kg}$ (mass of Earth)
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ (electron mass)
$c=299792458 \mathrm{~m} / \mathrm{s}$ (exact speed of light)
$u=1.6605 \times 10^{-27} \mathrm{~kg}$ (atomic mass unit)
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ (gas constant)

```
\(G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\) (Gravitational constant)
\(R_{E}=6380 \mathrm{~km}\) (mean radius of Earth)
\(m_{p}=1.67 \times 10^{-27} \mathrm{~kg}\) (proton mass)
\(\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\) (Stefan-Boltzmann constant)
\(N_{A}=6.022 \times 10^{23} / \mathrm{mol}\) (Avogadro's number)
\(k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\) (Boltzmann's constant)
```

Units and Conversions
1 inch $=1 \mathrm{in}=2.54 \mathrm{~cm}$
1 foot $=1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}$
1 mile $=5280 \mathrm{ft}=1760$ yards
$1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} /$ hour
$1 \mathrm{mile}=1609.344 \mathrm{~m}=1.609344 \mathrm{~km}$
$88 \mathrm{ft} / \mathrm{s}=60 \mathrm{mile} /$ hour
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$
1 acre $=(1 \mathrm{mile})^{2} / 640=43560 \mathrm{ft}^{2}$
1 hectare $=(100 \mathrm{~m})^{2}=10^{4} \mathrm{~m}^{2}$
$1 \mathrm{cal}=4.186 \mathrm{~J}$
$1 \mathrm{~N}=0.225 \mathrm{lb}$
$1 \mathrm{~J}=1$ joule $=1 \mathrm{~N} \cdot \mathrm{~m}$

symbol	element	atomic number	mass number
H	hydrogen	1	1.00794
He	helium	2	4.00260
C	carbon	6	12.0107
N	nitrogen	7	14.0067
O	oxygen	8	15.9994
Ne	neon	10	20.180
Ar	argon	18	39.948
Fe	iron	26	55.845
Ni	nickel	28	58.693
Cu	copper	29	63.546
Au	gold	79	196.97
U	uranium	92	238.03

Mass numbers are atomic masses in units of " u " where $1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$, or, molar masses for the element (1 mole $=6.02 \times 10^{23}$ atoms), measured in grams $/$ mole. $\left(N_{A} \times 1 \mathrm{u}=1\right.$ gram $)$

Algebra, Geometry, Trigonometry

Quadratic equations: $\quad a x^{2}+b x+c=0, \quad$ solved by $\quad x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Triangles: $A=\frac{1}{2} b h, \quad$ Circles; $C=2 \pi r, A=\pi r^{2}$, arc $=s=r \theta . \quad$ Spheres: $A=4 \pi r^{2}, V=\frac{4 \pi}{3} r^{3}$.
$\sin \theta=(\mathrm{opp}) /(\mathrm{hyp}), \quad \cos \theta=(\mathrm{adj}) /(\mathrm{hyp}), \quad \tan \theta=(\mathrm{opp}) /(\mathrm{adj}), \quad(\mathrm{opp})^{2}+(\mathrm{adj})^{2}=(\mathrm{hyp})^{2}$.
$\sin \theta=\sin \left(180^{\circ}-\theta\right), \quad \cos \theta=\cos (-\theta), \quad \tan \theta=\tan \left(180^{\circ}+\theta\right), \quad \sin ^{2} \theta+\cos ^{2} \theta=1$.
OpenStax Ch 1: Units, measurements, errors or uncertainties
Unit conversions:
value $=\#$ (old units), measurement $=$ value \pm error,
(old units) $\times\left(\frac{\text { new units }}{\text { old units }}\right)=($ new units $)$.
percent error $=($ error $/$ value $) \times 100 \%$.

OpenStax Ch 2: 1D Kinematics - Straight-line motion

Velocity:	$\bar{v}=\Delta x / \Delta t$	$\Delta x=x-x_{0}$	$v(t)=$ slope of $x(t)$
Acceleration:	$\bar{a}=\Delta v / \Delta t$	$\Delta v=v-v_{0}$	$a(t)=$ slope of $v(t)$
Constant acceleration:	$v=v_{0}+a t$,	$\bar{v}=\frac{1}{2}\left(v_{0}+v\right)$,	$\Delta x=\bar{v} \Delta t$.
	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$,	$x=x_{0}+v_{\text {avg }} t$,	$v^{2}=v_{0}^{2}+2 a \Delta x$.
Free fall (+y-axis is up):	$y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$,	$v_{y}=v_{0 y}-g t$,	$v_{y}^{2}=v_{0 y}^{2}-2 g \Delta y$.

OpenStax Ch 3: Vectors \& 2D \& 3D Motion
Vector $\mathbf{V}=\vec{V}=\left(V_{x}, V_{y}\right), \quad$ magnitude $=V=\sqrt{V_{x}^{2}+V_{y}^{2}}, \quad$ direction $=\theta=\tan ^{-1}\left(V_{y} / V_{x}\right)$.
$\theta=$ angle from x-axis to $\mathbf{V}, \quad V_{x}=V \cos \theta$, $V_{y}=V \sin \theta$.
Addition: $\mathbf{A}+\mathbf{B}$, head to tail, \quad Subtraction: $\mathbf{A}-\mathbf{B}$ is $\mathbf{A}+(-\mathbf{B}), \quad-\mathbf{B}$ is \mathbf{B} reversed.

Projectiles: $\quad a_{x}=0, \quad v_{x}=v_{0 x}, \quad x=x_{0}+v_{0 x} t, \quad$ (horizontal x-axis), $\quad R=\left(v_{0}^{2} / g\right) \sin 2 \theta_{0}$.

$$
a_{y}=-g, \quad v_{y}=v_{0 y}-g t, \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
$$

Relative Motion: $\quad \mathbf{V}_{\mathrm{BS}}=\mathbf{V}_{\mathrm{BW}}+\mathbf{V}_{\mathrm{WS}}, \quad$ Boat, Shore, Water.
$B S=$ "boat relative to shore", etc.

OpenStax Ch 4: Newton's Laws

Newton's $1^{\text {st }}$ Law:
Newton's $2^{\text {nd }}$ Law:
Newton's $3^{\text {rd }}$ Law:
Gravitational force near Earth:
Gravity components on inclines:
Spring force:
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=0$ unless $\vec{F}_{\text {net }} \neq 0$,
$\vec{F}_{\text {net }}=m \vec{a}$,
$\vec{F}_{A B}=-\vec{F}_{B A}$,
$F_{G}=m g$, downward.
$F_{\|}=m g \sin \theta, F_{\perp}=m g \cos \theta$,
$F_{s}=-k x$,
$\vec{F}_{\text {net }}=\sum \vec{F}_{i}=$ sum of all forces on a mass.
$F_{\text {net }, x}=m a_{x}, F_{\text {net }, y}=m a_{y}, F_{\text {net }, z}=m a_{z}$.
Forces exist in action-reaction pairs.
Apparent weight is force measured by a scales.
\leftarrow for incline at angle θ to horizontal.
x is the displacement from equilibrium.

OpenStax Ch 5: Friction

Normal force:
Static friction (object is stuck):
Kinetic friction (object sliding):
N or F_{N},
$f_{s} \leq \mu_{s} N, \quad$ Can balance other forces in any direction.
$f_{k}=\mu_{k} N, \quad$ Acts against the relative motion of surfaces.

OpenStax Ch 6: Circular Motion

Centripetal Acceleration:
Circular motion:
Gravitation:
Orbits:
$a_{c}=v^{2} / r=\omega^{2} r$,
speed $v=2 \pi r / T$,
speed $v=\omega r$,
$F=G m_{1} m_{2} / r^{2}$,
$v^{2} / r=g=G M / r^{2} ;$

towards the center of the circle,

 frequency $f=1 / T$, angular speed $\omega=2 \pi f=2 \pi / T$, free fall $g=G M / r^{2}$, speed $v=\sqrt{G M / r}$,Use ω in rad/sec!
$T=$ period of one revolution. ω is in $\mathrm{rad} / \mathrm{sec}$. $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. centripetal $a_{c}=$ free fall g.

OpenStax Ch 7: Work \& Energy

Forces:	F_{x},	$F_{\text {gravity }, y}=-m g$,	$F_{\text {spring }}=-k x$.
Work:	$W=F_{x} \Delta x \cos \theta$,	$W_{\text {gravity }, y}=-m g \Delta y$,	$W_{\text {spring }}=-\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right)$.
$\mathrm{PE}:$	$\Delta \mathrm{PE}=-W_{\text {force }}$,	$\mathrm{PE}_{\text {gravity }}=m g y$,	$\mathrm{PE}_{\text {spring }}=\frac{1}{2} k x^{2}$.
KE:	$\mathrm{KE}=\frac{1}{2} m v^{2}$,	$\Delta \mathrm{KE}=W_{\text {net }}$,	$W_{\text {net }}=$ work of all forces.
Conservation of Energy:	$\Delta \mathrm{KE}+\Delta \mathrm{PE}=W_{\mathrm{NC}}$,	$\mathrm{NC}=$ non-conservative forces.	
Power:	$P_{\text {ave }}=W / t$,	or use $P_{\text {ave }}=$ energy $/$ time.	

OpenStax Ch 8: Momentum

Linear momentum:	$\vec{p}=m \vec{v}$,	impulse $\Delta \vec{p}=m \Delta \vec{v}=\vec{F}_{\text {ave }} \Delta t$.
Conservation of Momentum:	$m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}=m_{A} \vec{v}_{A}^{\prime}+m_{B} \vec{v}_{B}^{\prime}$,	$\left(2\right.$-body collisions, $\left.\vec{F}_{\text {net }}=0\right)$.
1D elastic collision:	$\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A} v_{A}^{\prime 2}+\frac{1}{2} m_{B} v_{B}^{\prime 2}$,	or $v_{A}-v_{B}=-\left(v_{A}^{\prime}-v_{B}^{\prime}\right)$.

OpenStax Ch 9: Rotational Motion

Coordinates:	$1 \mathrm{rev}=2 \pi \mathrm{rad}$,	$1 \mathrm{rev}=360^{\circ}$,	$\omega=2 \pi f$,	$f=\frac{1}{T}$.
Averages:	$\bar{\omega}=\frac{\Delta \theta}{\Delta t}$,	$\Delta \theta=\bar{\omega} \Delta t$,	$\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$,	$\Delta \omega=\bar{\alpha} \Delta t$.
Linear vs. angular:	$l=\theta r$,	$v=\omega r$,	$a_{\tan }=\alpha r$,	$a_{c}=\omega^{2} r$, use radians!
Constant acceleration:	$\omega=\omega_{0}+\alpha t$,	$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$,	$\bar{\omega}=\frac{1}{2}\left(\omega_{0}+\omega\right)$,	$\omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta$.
Torque, Dynamics:	$\tau=r F \sin \theta$,	$I=\Sigma m r^{2}$,	$\tau_{\text {net }}=I \alpha$.	
Rotational Inertias:	$I=M R^{2}$,	$I=\frac{1}{2} M R^{2}$,	$I=\frac{2}{5} M R^{2}$,	$I=\frac{1}{12} M L^{2}$.
(about centers)	(hoop)	(solid cylinder)	(sphere)	(thin rod)
KE, A. Momentum:	$\mathrm{KE}_{\text {rot }}=\frac{1}{2} I \omega^{2}$,	$L=I \omega$,	$\Delta L=\tau_{\text {net }} \Delta t$.	
Work, power:	$W=\bar{\tau} \Delta \theta$,	$P=\tau \omega$.		

OpenStax Ch 10: Static Equilibrium
$\Sigma F_{x}=\Sigma F_{y}=\Sigma F_{z}=0, \quad \Sigma \tau=0, \quad \tau=r F \sin \theta=r_{\perp} F=r F_{\perp}, \quad \tau=$ torque around a chosen axis.

1 atmosphere $=1 \mathrm{~atm}=101.3 \mathrm{kPa}=1.013 \mathrm{bar}=760$ torr $=760 \mathrm{~mm} \mathrm{Hg}=14.7 \mathrm{lb} / \mathrm{in}^{2}$.
Units: $\quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}, \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}, \quad 1 \mathrm{~mm} \mathrm{Hg}=133.3 \mathrm{~Pa}$.
Density: $\quad \rho=m / V, \quad \quad \rho_{\mathrm{H}_{2} \mathrm{O}}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\left(4^{\circ} \mathrm{C}\right), \quad \quad 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~g} / \mathrm{cm}^{3}$.
Pressure: $\quad P=F / A, \quad P_{2}=P_{1}+\rho g d, \quad P_{\text {abs }}=P_{\text {atm }}+P_{\text {gauge }}$.
Archimedes: $\quad F_{B}=\rho_{\text {fluid }} g V_{s}, \quad F_{B}=$ weight of displaced fluid.

OpenStax Ch 12: Fluid Dynamics

Moving fluid: $\quad Q=A v=$ constant, \quad Bernouli Eqn: $P+\frac{1}{2} \rho v^{2}+\rho g y=$ constant.
Viscosity: \quad Definition: $F=\eta A v / \ell, \quad$ Poiseuille Eqn: $Q=\pi r^{4}\left(P_{2}-P_{1}\right) /(8 \eta L)$.
OpenStax Ch 16: Oscillations and Waves

OpenStax Ch 17: Sound
$\begin{array}{llll}\text { Sound in air: } & v=(331 \mathrm{~m} / \mathrm{s}) \sqrt{T / 273 \mathrm{~K}}, & v=343 \mathrm{~m} / \mathrm{s} \text { at } 20^{\circ} \mathrm{C}, & d=v t, \\ \text { Sound level: } & \beta=(10 \mathrm{~dB}) \log \left(I / I_{0}\right), & I=I_{0} 10^{\beta /(10 \mathrm{~dB})}, & I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} .\end{array} \quad I=P / A$.
OpenStax Ch 13: Ideal Gases \& Kinetic Theory

Moles:	$n=N / N_{A}$,	$n=M / M_{A}$,	$M=$ sample mass.
Avogadro number:	$N_{A}=6.022 \times 10^{23} / \mathrm{mol}$,	$1 \mathrm{u}=(1 \operatorname{gram}) / N_{A}$,	$1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$.
Temperature scales:	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\frac{5}{9}\left[\mathrm{~T}\left({ }^{\circ} \mathrm{F}\right)-32\right]$,	$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=\frac{9}{5} \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32$,	$\mathrm{T}(\mathrm{K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15$.
Thermal expansion:	$\Delta L=\alpha L_{0} \Delta T$,	$\Delta V=\beta V_{0} \Delta T$.	$k_{\mathrm{B}}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
Ideal Gas Law:	$P V=n R T=N k_{\mathrm{B}} T$,	$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$,	$m=M_{A} / N_{A}=$ atom or molecule.

OpenStax Ch 14: Heat Transfer

Heat units:	$1.00 \mathrm{cal}=4.186 \mathrm{~J}$,
Internal Energy:	$U=\frac{3}{2} N k T=\frac{3}{2} n R T$,
Heats absorbed:	$Q=m c \Delta T(c=\mathrm{specific}$ heat $)$,
For water:	$c_{\text {liq }}=1.00 \mathrm{cal} /\left(\mathrm{g} \cdot \mathrm{C}^{\circ}\right)=4.186 \mathrm{~kJ} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$,
	$L_{F}=79.7 \mathrm{kcal} / \mathrm{kg}=333 \mathrm{~kJ} / \mathrm{kg}$,
Heat transfer:	Conduction: $P=\frac{\Delta Q}{\Delta t}=k A \frac{\Delta T}{l}$,
Solar Energy:	$P=\frac{\Delta Q}{\Delta t} \approx\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right) e A \cos \theta$,

$1.00 \mathrm{Cal}=1.00 \mathrm{kcal}=4186 \mathrm{~J}$.
\leftarrow (ideal monatomic gases).
$Q=m L\left(L_{F}=\right.$ fusion, $L_{V}=$ vaporization $)$.
$c_{\text {ice }}=0.50 \mathrm{cal} /\left(\mathrm{g} \cdot \mathrm{C}^{\circ}\right)=2.1 \mathrm{~kJ} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$.
$L_{V}=539 \mathrm{kcal} / \mathrm{kg}=2260 \mathrm{~kJ} / \mathrm{kg}$.
Radiation: $P_{\text {net }}=\frac{\Delta Q}{\Delta t}=e \sigma A\left(T_{1}^{4}-T_{2}^{4}\right)$.
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$.

OpenStax Ch 15: The Laws of Thermodynamics

Process (const):	isobaric (P).	isothermal (T).	isochoric (V).
$1^{\text {st }}$ Law:	$\Delta U=Q-W$	$W=$ area under $P(V)$.	$W=P \Delta V$ for isobaric.
Heat Engines:	$W=Q_{H}-Q_{L}$,	$e=\frac{W}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}$	
AC, Heat Pumps:	$W=Q_{H}-Q_{L}$,	AC $\operatorname{COP}=\frac{Q_{L}}{W}$,	heat pumps: COP $=\frac{Q_{H}}{W}$.
Power:	$P_{\text {ave }}=W / t$,	or use $P_{\text {ave }}=\frac{\text { energy }}{\text { time }}$,	$\frac{Q_{L}}{Q_{H}}=\frac{T_{L}}{T_{H}}$ for Carnot cycle.
$2^{\text {nd }}$ Law, Entropy:	$\Delta S_{\text {total }} \geq 0$,	$\Delta S_{\text {reversible }}=0$,	$\Delta S_{\text {system }}=Q / T_{\text {ave }}$.

