Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$. atto, femto, pico, nano, micro, milli, centi, kilo, mega, giga, tera, peta.

Physical Constants

$$
\begin{aligned}
& g=9.80 \mathrm{~m} / \mathrm{s}^{2} \text { (gravitational acceleration) } \\
& M_{E}=5.98 \times 10^{24} \mathrm{~kg} \text { (mass of Earth) } \\
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } \\
& c=299792458 \mathrm{~m} / \mathrm{s} \text { (exact speed of light) } \\
& u=1.6605 \times 10^{-27} \mathrm{~kg} \text { (atomic mass unit) } \\
& R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \text { (gas constant) }
\end{aligned}
$$

Units and Conversions

```
1 inch \(=1 \mathrm{in}=2.54 \mathrm{~cm}\) (exact)
\(1 \mathrm{mile}=5280 \mathrm{ft}\) (exact)
\(1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} /\) hour (exact)
1 acre \(=43560 \mathrm{ft}^{2}=(1 \mathrm{mile})^{2} / 640(\) exact \()\)
```

$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$ (Gravitational constant)
$R_{E}=6380 \mathrm{~km}$ (mean radius of Earth)
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$ (proton mass)
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$ (Stefan-Boltzmann constant)
$N_{A}=6.022 \times 10^{23} / \mathrm{mol}$ (Avogadro's number)
$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ (Boltzmann's constant)

1 foot $=1 \mathrm{ft}=12 \mathrm{in}=30.48 \mathrm{~cm}$ (exact)
$1 \mathrm{mile}=1609.344 \mathrm{~m}=1.609344 \mathrm{~km}$ (exact)
$1 \mathrm{ft} / \mathrm{s}=0.6818$ mile $/$ hour
1 hectare $=10^{4} \mathrm{~m}^{2}$ (exact)

symbol			element
H	atomic number mass number		
He	helium	1	1.00794
C	carbon	6	4.00260
N	nitrogen	7	12.0107
O	oxygen	8	14.0067
Ne	neon	10	15.9994
Ar	argon	18	20.180
Fe	iron	26	39.948
Ni	nickel	28	55.845
Cu	copper	29	58.693
Au	gold	79	63.546
U	uranium	92	196.97
		238.03	

$$
\begin{aligned}
& \leftarrow \text { Some Elemental Properties } \\
& \hline \text { Mass numbers are atomic masses in units of " } \mathrm{u} \text { " } \\
& \text { where } 1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg} \text {, or, molar masses for } \\
& \text { the element }\left(1 \mathrm{~mole}=6.02 \times 10^{23} \text { atoms }\right) \text {, measured } \\
& \text { in grams/mole. }\left(N_{A} \times 1 \mathrm{u}=1 \text { gram }\right)
\end{aligned}
$$

Trig summary

$$
\begin{array}{lll}
\sin \theta=(\mathrm{opp}) /(\mathrm{hyp}), & \cos \theta=(\mathrm{adj}) /(\mathrm{hyp}), & \tan \theta=(\mathrm{opp}) /(\mathrm{adj}),
\end{array} \quad(\mathrm{opp})^{2}+(\mathrm{adj})^{2}=(\mathrm{hyp})^{2} .
$$

Vectors:
written \vec{V} or \mathbf{V}, described by magnitude $=V$, direction $=\theta$ or by components $\left(V_{x}, V_{y}\right)$.
$V_{x}=V \cos \theta, \quad V_{y}=V \sin \theta$, $V=\sqrt{V_{x}^{2}+V_{y}^{2}}, \quad \tan \theta=V_{y} / V_{x} . \quad \theta$ is the angle from \vec{V} to x-axis.
Addition: $\mathbf{A}+\mathbf{B}$, head to tail. Subtraction: $\mathbf{A}-\mathbf{B}$ is $\mathbf{A}+(-\mathbf{B}), \quad-\mathbf{B}$ is \mathbf{B} reversed.
Forces, Work, Energy

$$
\begin{array}{lll}
F_{\text {gravity }, y}=-m g, & F_{\text {spring }}=-k x, & W=F d \cos \theta, \quad \theta=\text { angle btwn } \vec{F} \text { and } \vec{d} . \\
\mathrm{PE}_{\text {gravity }}=m g y, & \mathrm{PE}_{\text {spring }}=\frac{1}{2} k x^{2}, & \mathrm{KE}=\frac{1}{2} m v^{2} .
\end{array}
$$

Conservation or Transformation of Energy:

Work-KE theorem:

$\Delta \mathrm{KE}=W_{\text {net }}=$ work of all forces.

General energy-transformation law:

$\Delta \mathrm{KE}+\Delta \mathrm{PE}=W_{\mathrm{NC}}=$ work of non-conservative forces.

Power:
$P_{\text {ave }}=W / t, \quad$ or use $P_{\text {ave }}=$ energy $/$ time.

OpenStax Ch. 11: Static Fluids
Density:

$$
\rho=m / V, \quad \mathrm{SG}=\rho / \rho_{\mathrm{H}_{2} \mathrm{O}}, \quad \rho_{\mathrm{H}_{2} \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1.00 \mathrm{~g} / \mathrm{cm}^{3}\left(\text { at } 4^{\circ} \mathrm{C}\right)
$$

Static Pressure, Buoyancy:

$$
P=F / A, \quad P_{2}=P_{1}+\rho g h, \quad \Delta P=\rho g h, \quad P=P_{\text {atm. }}+P_{G}, \quad B=\rho g V \text { or } F_{B}=\rho g V .
$$

Pressure Units:
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}, \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}=100 \mathrm{kPa}, \quad 1 \mathrm{~mm}-\mathrm{Hg}=133.3 \mathrm{~Pa}$.
$1.00 \mathrm{~atm}=101.3 \mathrm{kPa}=1.013 \mathrm{bar}=760 \mathrm{torr}=760 \mathrm{~mm}-\mathrm{Hg}=14.7 \mathrm{lb} / \mathrm{in}^{2}$.

OpenStax Ch 12: Fluid Dynamics

Moving fluid:

$$
Q=A_{1} v_{1}=A_{2} v_{2}=\text { a constant }, \quad \text { Bernouli Eqn: } P+\frac{1}{2} \rho v^{2}+\rho g y=\text { a constant. }
$$

Viscosity:
Definition: $F=\eta A v / \ell, \quad$ Poiseuille Eqn: $Q=\pi r^{4}\left(P_{2}-P_{1}\right) /(8 \eta L)$.

OpenStax Ch 13: Ideal Gases \& Kinetic Theory

Atomic Theory \& Moles:

$$
n=\frac{N}{N_{A}}, \quad n=\frac{M}{M_{A}}, \quad M=\text { sample }, \quad N_{A}=6.022 \times 10^{23} / \mathrm{mol}, \quad 1 \mathrm{u}=\frac{1 \mathrm{gram}}{N_{A}}=1.6605 \times 10^{-27} \mathrm{~kg} .
$$

Temperature scales:

$$
\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\frac{5}{9}\left[\mathrm{~T}\left({ }^{\circ} \mathrm{F}\right)-32\right], \quad \mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=\frac{9}{5} \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32, \quad \mathrm{~T}(\mathrm{~K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15
$$

Thermal Expansion:

$$
\Delta L=\alpha L_{0} \Delta T, \quad \Delta V=\beta V_{0} \Delta T
$$

Ideal Gas Law:

$$
P V=n R T, \quad \text { or } \quad P V=N k_{\mathrm{B}} T, \quad R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}, \quad k_{\mathrm{B}}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

Kinetic Theory:

$$
\overline{\mathrm{KE}}=\frac{1}{2} m v_{\mathrm{rms}}^{2}=\frac{3}{2} k_{\mathrm{B}} T, \quad v_{\mathrm{rms}}=\sqrt{3 k_{\mathrm{B}} T / m}=\sqrt{3 R T / M_{A}}, \quad m=M_{A} / N_{A}=\text { atom or molecule. }
$$

OpenStax Ch 16: Oscillations and Waves
Oscillators, frequency, period, etc.:

$$
F=-k x=m a, \quad f=1 / T, \quad \omega=2 \pi f=2 \pi / T, \quad \omega=\sqrt{k / m}, \quad \omega=\sqrt{g / L}
$$

Oscillator energy, speed, etc.:

$$
E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}=\frac{1}{2} m v_{\max }^{2}, \quad v_{\max }=\omega A
$$

Waves:

$$
\lambda=v T, \quad v=f \lambda, \quad v=\sqrt{F_{T} /(m / L)}, \quad I=P / A, \quad I=P / 4 \pi r^{2}
$$

Standing waves:
node to node distance $=\lambda / 2, \quad$ sketch displacement of string or molecules.
nodes at both ends of strings. nodes (antinodes) at closed (open) ends of pipes.

$\underline{\text { OpenStax Ch 17: Sound }}$

Sound in air:

$$
v \approx(331 \mathrm{~m} / \mathrm{s}) \sqrt{T(\mathrm{~K}) / 273 \mathrm{~K}}, \quad T \text { in kelvin, } \quad v=343 \mathrm{~m} / \mathrm{s} \text { at } 20^{\circ} \mathrm{C}, \quad d=v t
$$

Sound intensity, Sound level:

$$
I=P / A, \quad I=P / 4 \pi r^{2}, \quad \beta=(10 \mathrm{~dB}) \log \left(I / I_{0}\right), \quad I=I_{0} 10^{\beta /(10 \mathrm{~dB})}, \quad I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}
$$

