Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$. atto, femto, pico, nano, micro, milli, centi, kilo, mega, giga, tera, peta.

Physical Constants

$$
\begin{aligned}
& g=9.80 \mathrm{~m} / \mathrm{s}^{2} \text { (gravitational acceleration) } \\
& M_{E}=5.98 \times 10^{24} \mathrm{~kg}(\text { mass of Earth }) \\
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } \\
& c=299792458 \mathrm{~m} / \mathrm{s} \text { (exact speed of light) }
\end{aligned}
$$

Units and Conversions

$$
\begin{aligned}
& 1 \text { inch }=1 \mathrm{in}=2.54 \mathrm{~cm}(\text { exact }) \\
& 1 \mathrm{mile}=5280 \mathrm{ft}(\text { exact }) \\
& 1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \text { hour }(\text { exact }) \\
& 1 \text { acre }=43560 \mathrm{ft}^{2}=(1 \text { mile })^{2} / 640 \text { (exact) }
\end{aligned}
$$

$$
\begin{aligned}
& G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \text { (Gravitational constant) } \\
& R_{E}=6380 \mathrm{~km} \text { (mean radius of Earth) } \\
& m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { foot }=1 \mathrm{ft}=12 \mathrm{in}=30.48 \mathrm{~cm} \text { (exact) } \\
& 1 \mathrm{mile}=1609.344 \mathrm{~m}=1.609344 \mathrm{~km} \text { (exact) } \\
& 1 \mathrm{ft} / \mathrm{s}=0.6818 \mathrm{mile} / \text { hour } \\
& 1 \text { hectare }=10^{4} \mathrm{~m}^{2} \text { (exact) }
\end{aligned}
$$

Trig summary

$$
\begin{array}{lll}
\sin \theta=(\mathrm{opp}) /(\mathrm{hyp}), & \cos \theta=(\mathrm{adj}) /(\mathrm{hyp}), & \tan \theta=(\mathrm{opp}) /(\mathrm{adj}),
\end{array} \quad(\mathrm{opp})^{2}+(\mathrm{adj})^{2}=(\mathrm{hyp})^{2} .
$$

OpenStax Ch. 2: 1D Kinematics

$$
\begin{array}{lll}
\bar{v}=\Delta x / \Delta t, & \Delta x=x-x_{0}, \quad \text { slope of } x(t) \text { curve }=v(t) . & \text { Quadratic eqn.: } a x^{2}+b x+c=0 \\
\bar{a}=\Delta v / \Delta t, & \Delta v=v-v_{0}, \quad \text { slope of } v(t) \text { curve }=a(t) . & \text { Solution: } x=\left[-b \pm \sqrt{b^{2}-4 a c}\right] /(2 a)
\end{array}
$$

For constant acceleration in one-dimension:

$$
\bar{v}=\frac{1}{2}\left(v_{0}+v\right), \quad v=v_{0}+a t, \quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}, \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) .
$$

OpenStax Ch. 3: 2D \& 3D Motion
Vectors written \vec{V} or \mathbf{V}, described by magnitude $=V$, direction $=\theta$ or by components $\left(V_{x}, V_{y}\right)$.
$V_{x}=V \cos \theta, \quad V_{y}=V \sin \theta$, $V=\sqrt{V_{x}^{2}+V_{y}^{2}}, \quad \tan \theta=V_{y} / V_{x} . \quad \theta$ is the angle from \vec{V} to x-axis.
Addition: $\mathbf{A}+\mathbf{B}$, head to tail. Subtraction: $\mathbf{A}-\mathbf{B}$ is $\mathbf{A}+(-\mathbf{B}), \quad-\mathbf{B}$ is \mathbf{B} reversed.
OpenStax Chs. 4 \& 5: Newton's Laws \& Friction
Newton's Second Law:
$\vec{F}_{\text {net }}=m \vec{a}, \quad$ means $\Sigma F_{x}=m a_{x}$ and $\Sigma F_{y}=m a_{y} . \quad \vec{F}_{\text {net }}=\sum \vec{F}_{i}$, sum over all forces on a mass.
Gravitational force ($F_{g}=m g$) components on inclines:
$F_{g \|}=m g \sin \theta, F_{g \perp}=m g \cos \theta$, for incline at angle θ to horizontal.
Friction magnitude (opposes the relative motion of two surfaces): $f_{s} \leq \mu_{s} N \quad$ (static friction). $\quad f_{k}=\mu_{k} N \quad$ (kinetic or sliding friction).

OpenStax Ch. 6: Circular Motion
Centripetal Acceleration:
$a_{c}=v^{2} / r=\omega^{2} r$, towards the center of the circle. Use ω in $\mathrm{rad} / \mathrm{sec}$!
Circular motion:
speed $v=2 \pi r / T=2 \pi r f$, frequency $f=1 / T$, where T is the period of one revolution.
speed $v=\omega r$, angular speed $\omega=2 \pi f=2 \pi / T, \omega$ is in $\mathrm{rad} / \mathrm{sec}$.

OpenStax Ch. 7: Work \& Energy
Work \& Kinetic \& Potential Energies: $\quad F_{\text {gravity }, y}=-m g, \quad F_{\text {spring }}=-k x$.

$$
W=F d \cos \theta, \quad \mathrm{KE}=\frac{1}{2} m v^{2}, \quad \mathrm{PE}_{\text {gravity }}=m g y, \quad \mathrm{PE}_{\text {spring }}=\frac{1}{2} k x^{2} . \quad \theta=\text { angle btwn } \vec{F} \text { and } \vec{d}
$$

Conservation or Transformation of Energy:

Work-KE theorem:
$\Delta \mathrm{KE}=W_{\text {net }}=$ work of all forces.

General energy-transformation law:

$\Delta \mathrm{KE}+\Delta \mathrm{PE}=W_{\mathrm{NC}}=$ work of non-conservative forces.

Power:

$$
P_{\text {ave }}=W / t, \quad \text { or use } P_{\text {ave }}=\text { energy } / \text { time. }
$$

OpenStax Ch. 8: Momentum
Momentum \& Impulse:
momentum $\vec{p}=m \vec{v}, \quad$ impulse $\Delta \vec{p}=m \Delta \vec{v}=\vec{F}_{\text {ave }} \Delta t$.
Conservation of Momentum:
(2-body collision): $\quad m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}=m_{A} \vec{v}_{A}^{\prime}+m_{B} \vec{v}_{B}^{\prime}$.
1D elastic collision-conservation of energy:
$\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A} v_{A}^{\prime 2}+\frac{1}{2} m_{B} v_{B}^{\prime 2}, \quad$ or $\quad v_{A}-v_{B}=-\left(v_{A}^{\prime}-v_{B}^{\prime}\right)$.
OpenStax Ch. 9: Rotational Motion
Rotational coordinates:
$1 \mathrm{rev}=2 \pi$ radians $=360^{\circ}, \quad \omega=2 \pi f, \quad f=\frac{1}{T}, \quad \bar{\omega}=\frac{\Delta \theta}{\Delta t}, \quad \bar{\alpha}=\frac{\Delta \omega}{\Delta t}, \quad \Delta \theta=\bar{\omega} \Delta t$.
Linear coordinates vs. rotation coordinates and radius:

$$
l=\theta r, \quad v=\omega r, \quad a_{\tan }=\alpha r, \quad a_{c}=\omega^{2} r, \quad \text { (must use radians in these). }
$$

Constant angular acceleration:

$$
\omega=\omega_{0}+\alpha t, \quad \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}, \quad \bar{\omega}=\frac{1}{2}\left(\omega_{0}+\omega\right), \quad \omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta
$$

Torque \& Dynamics:

$$
\tau=r F \sin \theta, \quad I=\Sigma m r^{2}, \quad \tau_{\text {net }}=I \alpha, \quad L=I \omega, \quad \Delta L=\tau_{\text {net }} \Delta t, \quad \mathrm{KE}_{\text {rotation }}=\frac{1}{2} I \omega^{2}
$$

Rotational Inertias about centers:
$I=M R^{2}, \quad I=\frac{1}{2} M R^{2}, \quad I=\frac{2}{5} M R^{2}, \quad I=\frac{1}{12} M L^{2}$.
hoop solid cylinder sphere thin rod

OpenStax Ch. 10: Static Equilibrium
$\Sigma F_{x}=\Sigma F_{y}=\Sigma F_{z}=0, \quad \Sigma \tau=0, \quad \tau=r F \sin \theta=r_{\perp} F=r F_{\perp}, \quad \tau=$ torque around a chosen axis.

OpenStax Ch. 11: Static Fluids
Density:

$$
\rho=m / V, \quad \mathrm{SG}=\rho / \rho_{\mathrm{H}_{2} \mathrm{O}}, \quad \rho_{\mathrm{H}_{2} \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1.00 \mathrm{~g} / \mathrm{cm}^{3}\left(\text { at } 4^{\circ} \mathrm{C}\right)
$$

Static Fluids:

$$
P=F / A, \quad P_{2}=P_{1}+\rho g h, \quad \Delta P=\rho g h, \quad P=P_{\text {atm. }}+P_{G}, \quad B=\rho g V \text { or } F_{B}=\rho g V .
$$

Pressure Units:

$$
\begin{aligned}
& 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}, \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}=100 \mathrm{kPa}, \quad 1 \mathrm{~mm}-\mathrm{Hg}=133.3 \mathrm{~Pa} . \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa}=1.013 \mathrm{bar}=760 \mathrm{torr}=760 \mathrm{~mm}-\mathrm{Hg}=14.7 \mathrm{lb} / \mathrm{in}^{2} .
\end{aligned}
$$

