Prefixes

$\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}, \mathrm{c}=10^{-2}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}, \mathrm{P}=10^{15}$

Physical Constants

$$
\begin{array}{ll}
g=9.80 \mathrm{~m} / \mathrm{s}^{2}(\text { gravitational acceleration }) & G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \text { (Gravitational constant) } \\
M_{E}=5.98 \times 10^{24} \mathrm{~kg} \text { (mass of Earth) } & R_{E}=6380 \mathrm{~km} \text { (mean radius of Earth) } \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \text { (electron mass) } & m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \text { (proton mass) } \\
c=299792458 \mathrm{~m} / \mathrm{s} \text { (exact speed of light) } &
\end{array}
$$

Units and Conversions

$$
\begin{array}{ll}
1 \text { inch }=1 \mathrm{in}=2.54 \mathrm{~cm} \text { (exact) } & 1 \mathrm{foot}=1 \mathrm{ft}=12 \mathrm{in}=30.48 \mathrm{~cm} \text { (exact) } \\
1 \mathrm{mile}=5280 \mathrm{ft} \text { (exact) } & 1 \mathrm{mile}=1609.344 \mathrm{~m}=1.609344 \mathrm{~km} \text { (exact) } \\
1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \text { hour (exact) } & 1 \mathrm{ft} / \mathrm{s}=0.6818 \mathrm{mile} / \text { hour } \\
1 \mathrm{acre}=43560 \mathrm{ft}^{2}=(1 \text { mile })^{2} / 640 \text { (exact) } & 1 \text { hectare }=10^{4} \mathrm{~m}^{2} \text { (exact) }
\end{array}
$$

Trig summary

$$
\begin{array}{llll}
\sin \theta=(\mathrm{opp}) /(\mathrm{hyp}), & \cos \theta=(\mathrm{adj}) /(\mathrm{hyp}), & \tan \theta=(\mathrm{opp}) /(\mathrm{adj}), & (\mathrm{opp})^{2}+(\mathrm{adj})^{2}=(\mathrm{hyp})^{2} . \\
\sin \theta=\sin \left(180^{\circ}-\theta\right), & \cos \theta=\cos (-\theta), & \tan \theta=\tan \left(180^{\circ}+\theta\right), & \sin ^{2} \theta+\cos ^{2} \theta=1 .
\end{array}
$$

OpenStax Ch. 1 Equations

Percent uncertainty:

If a measurement $=$ value \pm uncertainty \quad percent uncertainty $=($ uncertainty $/$ value $) \times 100 \%$.

OpenStax Ch. 2 Equations

Motion:

```
\(\bar{v}=\Delta x / \Delta t, \quad \Delta x=x-x_{0}, \quad\) slope of \(x(t)\) curve \(=v(t)\).
\(\bar{a}=\Delta v / \Delta t, \quad \Delta v=v-v_{0}, \quad\) slope of \(v(t)\) curve \(=a(t)\).
```

For constant acceleration in one-dimension:

$$
\bar{v}=\frac{1}{2}\left(v_{0}+v\right), \quad v=v_{0}+a t, \quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}, \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) .
$$

For free fall on Earth, using an upward y-axis, with $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ downward:

$$
\bar{v}_{y}=\frac{1}{2}\left(v_{0 y}+v_{y}\right), \quad v_{y}=v_{0 y}-g t, \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}, \quad v_{y}^{2}=v_{0 y}^{2}-2 g \Delta y
$$

OpenStax Ch. 3 Equations

Vectors
Written \vec{V} or \mathbf{V}, described by magnitude $=V$, direction $=\theta$ or by components $\left(V_{x}, V_{y}\right)$.
$V_{x}=V \cos \theta, \quad V_{y}=V \sin \theta$,
$V=\sqrt{V_{x}^{2}+V_{y}^{2}}, \quad \tan \theta=V_{y} / V_{x} . \quad \theta$ is the angle from \vec{V} to x-axis.
Addition: $\mathbf{A}+\mathbf{B}$, head to tail. Subtraction: $\mathbf{A}-\mathbf{B}$ is $\mathbf{A}+(-\mathbf{B}),-\mathbf{B}$ is \mathbf{B} reversed.
Projectiles

$$
\begin{array}{lll}
a_{x}=0, \quad v_{x}=v_{0 x}, & x=x_{0}+v_{0 x} t . & \text { For a horizontal } x \text {-axis. } \\
a_{y}=-g, \quad v_{y}=v_{0 y}-g t, \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2} . & \text { For an upward } y \text {-axis. } \\
R=\left(v_{0}^{2} / g\right) \sin 2 \theta_{0}, \quad \text { (Range for level ground only.) } &
\end{array}
$$

Relative Motion

$$
\vec{V}_{\mathrm{BS}}=\vec{V}_{\mathrm{BW}}+\vec{V}_{\mathrm{WS}}, \quad \mathrm{~B}=\text { Boat, } \mathrm{S}=\text { Shore, } \mathrm{W}=\text { Water. } \quad \text { BS means "boat relative to shore", etc. }
$$

OpenStax Ch. 4 Equations
Newton's First Law:

$$
\vec{a}=0 \text { unless } \vec{F}_{\text {net }} \neq 0
$$

Newton's Second Law:
$\vec{F}_{\text {net }}=m \vec{a}, \quad$ means $\Sigma F_{x}=m a_{x}$ and $\Sigma F_{y}=m a_{y} . \quad \vec{F}_{\text {net }}=\sum \vec{F}_{i}$, sum over all forces on a mass.
Newton's Third Law:

$$
\vec{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\vec{F}_{\mathrm{B} \text { on } \mathrm{A}} .
$$

Gravitational force (weight) near Earth: $F_{g}=m g$, downward.

Gravitational force components on inclines:
$F_{g \|}=m g \sin \theta, F_{g \perp}=m g \cos \theta, \quad$ for incline at angle θ to horizontal.

