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CHAPTER IV

NUMERICAL SOLUTIONS TO THE NONLINEAR
SCHRÖDINGER EQUATION

4.1 Introduction

In general, analytical solutions to the full Maxwell wave equation for a nonlinear

optical system do not exist. Even numerical solutions to the wave equation are extremely

difficult to implement due to the dimensionality of the problem. The vector form of the

wave equation is a four-dimensional (three spatial, one temporal), second-order partial

differential equation. Thus, approximations based on propagation conditions and

experimental results are needed in order to solve an approximate scalar form of the wave

equation, i.e. the nonlinear Schrödinger equation. However, the approximations listed in

the previous chapter do limit the generality and validity of the solutions. For example,

the condition extreme nonlinearity, as for the case in supercontinuum generation, is a

propagation regime where slowly varying envelope approximation may be violated.

The purpose of this chapter is to provide an introduction to a very powerful

method in numerically solving the NLSE, known as the split-step Fourier method

(SSFM) [15]. The chapter will begin with a list pointing the advantages of the SSFM
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compared to finite-difference methods. Then, the SSFM the symmetric SSFM will be

introduced. The chapter will then detail the inclusion of the Raman effect in the

numerical solution.

4.2 Why use the Split-Step Fourier Method?

The SSFM is the technique of choice for solving the NLSE due to its easy

implementation and speed compared to other methods, notably time-domain finite-

difference methods [73]. The finite difference method solves the Maxwell’s wave

equation explicitly in the time-domain under the assumption of the paraxial

approximation. The SSFM falls under the category of pseudospectral methods, which

typically are faster by an order of magnitude compared to finite difference methods [74].

The major difference between time-domain techniques and the SSFM is that the formal

deals with all electromagnetic components without eliminating the carrier frequency. As

shown in the previous chapter, the carrier frequency is dropped from the derivation of the

NLSE. Thus, finite difference methods can account for forward and backward

propagating waves, while the NLSE derived for the SSFM cannot. Since the carrier

frequency is not dropped in the form of the electric field, finite-difference methods can

accurately describe pulse propagation of nearly single-cycle pulses. While the finite

difference method may be more accurate than the SSFM, it is only at the cost of more

computation time.

In practice, the method chosen to solve the NLSE depends on the problem at

hand. For pulse propagation for telecommunication applications (~100 ps pulses through
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80 km of fiber with dispersion and SPM) the SSFM works extremely well and produces

results that are in excellent agreement with the experiments [75, 76]. However, the

SSFM would not work for modeling fiber Bragg gratings where there exists a forward

and backward propagating wave. This thesis demonstrates that the SSFM also works

efficiently and accurately for describing pulse propagation in microstructure fiber.

4.3 The Split-Step Fourier Method

The mathematical terms due dispersion and nonlinearity are separate and

decoupled in the NLSE. It is this fact that allows the use of the SSFM for solving the

NLSE. By looking at NLSE, the operators D̂ and N̂ can be written to correspond to the

dispersive (and absorptive) and nonlinear terms respectively (ignoring the Raman effect),

1

1
2

ˆ =
2 2

m m

mm m
m

i
D

t

−

−
=

α ∂− − β
∂� (4.1)

and

( )2 2

0

2ˆ ( , ) ( , ) ( , )
( , )

i
N i E z t E z t E z t

E z t t

� �∂= γ +� �ω ∂� �
(4.2)

where E(z,t) is the complex field envelope at step z and time t. The NLSE then can be

written in the operator form as
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where

( )ˆ ˆ( , ) exp (( 1) , ),E jh t h D N E j h t� 	= + −

 �

(4.4)

is a solution to the differential equation at step z=jh (j is an integer). Note that the N̂

operator multiplies the field solution and is a function of the solution E(z,t). The D̂

operator is a differential operator expressed in terms of time derivatives that operate on

E(z,t). To reduce the computational time, the operation of D̂ is performed in the

frequency domain; this transforms the derivatives in the time domain to a multiplication

in the frequency domain. After taking the Fourier transform of D̂ the multiplicative

operator in the frequency domain is obtained,
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The SSFM is an iterative process that determines the field solution for spatial steps of h.

This is performed step-by-step for the entire length of the fiber. The procedure during

one step is illustrated in Figure 4.1. A dielectric medium of length L is broken into

sL=L/h steps of length h. The field propagation solution E(jh,t) per spatial step h at the

step jh (j=1,2,…. sL) for the entire length of fiber using relation

( ) ( ){ }{ }1 ˆ ˆ( , ) exp ( ) exp (( 1) , ) ,E jh t hD i F hN E j h t−≈ ω −� (4.6)
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where E((j-1)h,t) is the field solution from the previous step. The approximation

ˆ ˆ ˆ ˆexp ( ) exp exph D N hD hN� 	 � 	 � 	+ ≈
 � 
 � 
 � (4.7)

is used in rewriting Eq. (4.4) to Eq. (4.6). The operation of N̂ occurs in the middle of

the step and is the first operator to act on E(jh,t). The effect of dispersion is determined

in the frequency domain. The field solution is Fourier transformed, operated on by D̂

and then back transformed to give the solution E(jh,t) at step jh.
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Figure 4.1 The SSFM for one iteration of step h starting at z=(j-1)h. The initial pulse
E(0,t) enters the medium of length L. The length is broken into sL=L/h steps of length h.
The field solution at z=jh is determined by:
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Note that the form of field solution E(z,t) is in general complex so it contains both

intensity and phase information. The computation speed of the SSFM is due to 1)

calculating the dispersion in the frequency domain thus avoiding any numerical

derivatives, and 2) using the fast Fourier transform to go between the frequency and time

domains.

4.4 Spectral/Temporal Sampling and Windowing

Great care must be taken in deciding the format, length, and temporal/spatial

resolution of the complex array that numerically represents the quantity E(z,t). Although

the use of the FFT provides a robust method for computing the Fourier transform, it does

impose restrictions on the sample array format. The sample array of E(z,t) for each value

of z must have N=2m points required by the FFT. Typically, the starting field E(z=0,t)

contains the intensity and phase of the input pulse. The initial array E(0,t) must sample

the initial pulse with adequate temporal resolution and be temporally wide enough to

prevent aliasing and wrapping errors. The “adequate” sampling rate is given by the
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Nyquist theorem, which states that the minimum sample frequency is twice the highest

frequency sinusoidal component of significant amplitude [77]. For example, a Gaussian

function E(t) that has a intensity FWHM of ∆t=100 fs (and a spectral width

∆ν=4.41 THz) an estimate of the highest significant frequency component would be at

4*∆ν or 17.7 THz. The function
2

( ) ( )I t E t∝ must be sampled at most by

1 (2 * 4* )tδ = ∆ν to meet the Nyquist Theorem. Typically, the sampling is performed

by four times the Nyquist rate (νN=8∆ν) or at δt=2.3 fs, which would have 15 points

across the FWHM. Here, the pulse intensity spectral and temporal widths are represented

in terms of the FWHM (∆t and ∆ν) since they are more related to measured quantities.

Specifically, the Nyquist theorem apply to the widths of E(t) and E(ν) since the FFT is

used to obtain E(ν) from E(t). However, by imposing the Nyquist theorem on I(t), a

stronger requirement on E(t) is imposed since the temporal width of E(t) is smaller than

I(t).

If the temporal resolution δt is chosen larger than that prescribed the Nyquist

theorem, aliasing may occur in the frequency domain [56]. Here, frequency components

beyond the Nyquist frequency are falsely translated (wrapped-around) into the spectral

window. The aliased frequency components sum with the true frequency components,

producing an incorrect spectrum. Aliasing is prevented by decreasing the size of δt, thus

increasing the sampling rate.

The width of the temporal window (N*δt) must wide enough to accommodate any

broadening due to dispersion for any z along the fiber length. Also, the spectral window
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( 1N tδν = δ ) must be wide enough to accommodate any spectral broadening for any z

along the fiber length due to the nonlinearity. If the solution E(z,t) extends the window,

errors will occur due to aliasing. Thus, beforehand there must be an estimate on what the

final temporal width will be in order to choose the size of the temporal window (i.e.

choosing N). The following table is a guide for choosing δt and N to accurately sample

E(t)for the SSFM.

Table 4.1 Determining the N sample points for the SSFM.
On choosing N for using the SSFM for solving single pulse propagation,
one must:
1) Determine the needed temporal resolution (δt) to accurately sample the initial

pulse E(0,t). A general rule for an accurate sample is to choose
1 (2 * 4* )tδ = ∆ν where ∆ν is the initial spectral FWHM. Or just use ~10

samples across the temporal FWHM.
2) Determine the total temporal window N*δt that will be at least twice the final

pulse temporal FWHM (∆t) at z=L.
3) Determine if the corresponding spectra resolution 1 N tδν = δ can accurately

sample E(0,ν). Again, ~10 samples are desired across the spectral FWHM.
4) Determine if the corresponding spectral window N*δν will be at least twice

the final spectral FWHM (∆ν) at z=L.
5) Determine if the choice of N will allow the solution to be performed in

reasonable time.

Satisfying all the above constrains may be difficult, especially when modeling

supercontinuum generation. In this case, a transform-limited pulse of 100 fs FWHM may

broadened to a pulse that is >10 ps in length with a spectral width of ~900 nm. Setting

the temporal and spectral windows for this case requires a very large N, since a proper δt

and δν is needed to sample the initial pulse. This also would require a very large temporal

and spectral window accommodate the large final ∆t and δν.
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4.5 Choosing the Spatial Step-Size

Unlike the restrictions on δt, there is no mathematical restriction on the step-size h

for the SSFM. Keeping h very small would produce a very accurate at the cost of much

computation time. Plus, choosing h smaller than the carrier wavelength λ0 is physically

meaningless, since the carrier frequency term in �(t) is dropped in the derivation of the

NLSE. However, by choosing h to be too large the SSFM does not conserve spectral

energy. The maximum choice of the step-size depends on the specific dispersive and

nonlinear properties of the method: the dispersion length LD and the nonlinear length LN.

As defined in the prior chapter, the dispersion (Eq. 3.32) and the nonlinear lengths

(Eq. 3.53) are characteristic length scales, which quantify the amount of dispersion and

nonlinearity associated with propagation in a given fiber. Physically, LD is the

propagation length at which a Gaussian pulse broadens by a factor of 2 due to group-

velocity dispersion. The term LNL corresponds to the propagation length at which the

SPM induced phase (ϕNL) is equal to 1 radian. In standard SMF (Corning SMF-128) at

1550 nm (P0=1 W, ∆t=1 ps, β2= -20 ps2/km), the corresponding values would be

LD=18 m and LNL=50 m. The dispersion length for standard SMF illustrates the reason

for using dispersion-shifted fiber (DSF), which has LD=120 m, in any dispersion-

managed OTDM link.

The dispersion and nonlinear lengths characterize the pulse propagation in a given

fiber. GVD dominates the pulse propagation for fiber where andNL DL L L L≥� . Thus,
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the operator N̂ in the NLSE could be ignored and the NLSE could be solved

analytically. Nonlinear effects (SPM) dominate the pulse propagation for fibers where

andD NLL L L L≥� . Here, D̂ the term could be ignored leading to an analytic solution

to the NLSE.

Knowing the nonlinear and dispersion lengths associated with a given system

allows for an educated choice on the step-size h to be made. The step-size should be

considerably smaller than both LD and LNL for the solution via the SSFM to be

meaningful. If the step-size is comparable to either LD or LNL, then the SSFM will not

conserve energy. It can be determined if a chosen step-size is sufficient by computing the

area under the finial and initial spectrum, hence computing the final and initial spectral

energy Table 4.2 below is a prescription for determining the step-size for the SSFM:

Table 4.2 Determining the step-size h for the SSFM:
1) Compute LD and LNL. Compare LD and LNL to the fiber length L.
2) If andNL DL L L L≥� or andD NLL L L L≥� , the NLSE can be solved

analytically.
3) Choose a value for h such that λ0<h< LD and λ0<h< LNL. If L is comparable to

either LD or LNL, you may wish to make h small. Also, make this choice
keeping computation time in mind.

4) Compute the solution via the SSFM. Compute the spectral energy before and
after propagation. If these values are not approximately equal, decrease the
size of h. If the finial and initial energies are nearly equal, enlarging h till a
desired amount of error is reached can decrease the computation time.

Some variation of the SSFM computes the spectra energy per step and adapts the value of

h to produce a desired energy error. Adapting the step-size is typically done for

propagation through very long lengths of fiber to reduce the computation time.
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Comparing the initial and final spectral energy is not a good metric for choosing

the step-size when modeling the Raman effect. Optical energy is not conserved in SRS

because photons are preferentially emitted at a lower frequency [66]. However, the

classical photon number is conserved during the process of SRS. The step-size can be

chosen here to conserve photon number.

4.6 Errors Associated with the Split Step Fourier Method

As seen above, the choice of the step-size and the temporal/spectral windows

depend on the Nyquist Theorem, specific pulse propagation conditions and the amount of

tolerable error. For a wrong choice of spectral/temporal windows, errors arise from

aliasing. Also, for a wrong choice of spatial step-size, energy is not conserved by the

SSFM. These errors can be avoided by the proper choice of step-size and

spectral/temporal window. However, the primary source of error for the SSFM is due to

the fact that the operators D̂ and N̂ do not commute ( ˆ ˆ. . , 0i e D N� 	 ≠
 � .). Physically, this

implies that the origin of dispersive and nonlinear effects is intrinsically coupled. If the

operators D̂ and N̂ do not commute, the approximation of Eq. (4.7) will provide an

accurate solution to second-order in the step-size h.

For two operators, the expansion of the exponential in Eq. (4.4) can be obtained

using the Baker-Hausdorff theorem [78],
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Ignoring terms in the above expansion will add errors to the solution. The inclusion of

more terms will be more difficult to implement and adds computation time. However, for

problems that involve large dispersion, high effective nonlinearity or for short pulse

widths (< 1 ps FWHM), the approximation given by Eq. (4.7) is not sufficient.

Another error encountered in the Eq. (4.7) is ignoring the change of γ as a

function of length. Typically, this is not a source of error for modeling SMF; however,

this could be a problem when trying to model dispersion decreasing fiber (DDF). This

fiber is manufactured by reducing the core diameter along its length, usually the diameter

changes with length exponentially [79]. The change in the core diameter alters the fiber’s

dispersion along its length. The N̂ operator will have a dependence on z since the

effective nonlinearity is inversely proportional to the mode effective. The error caused

by this for modeling DDF is small and typically is ignored [80].

Also as discussed above, other avoidable errors can occur due to not choosing the

correct temporal window and resolution. The origin of these errors is either due to

aliasing or poor spectral/temporal resolution. These errors can always be avoided, by

increasing the window size or data array size, but at the cost of more computation time

and memory.
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4.7 The Symmetrized SSFM

The error given by Eq. (4.7) can be further improved by the use of the

symmetrized SSFM, which includes two terms of the expansion Eq. (4.8). The error now

is due to the double commutator (third) term in the expression, which is of third order in

step-size h. The solution at step z=jh can be determined by

{ }1 1ˆ ˆ ˆ( , ) exp ( ) exp ( ) exp ( ) (( 1) , )
2 2

z jh

z

h h
E jh t D i N z dz D i E j h t

+
− −
� � � � � � � ��� � � �′ ′≈ ω ω −� �� � � ���� � � �� �� � � �� �� �� �� �� �� �

�� � � �

(4.9)

Note the significant differences between Eqs. (4.9) and (4.6). For the symmetrized

SSFM, first the effect of dispersion over the length h/2 is computed, the effect of the

nonlinearity occurs at the step midpoint, and finally the effect of dispersion is computed

over h/2. The integral of the nonlinearity operator accounts for the change in γ over the

step h, which in most cases can be treated as a constant. Note also that four FFTs are

computed in the symmetrized SSFM compared to the two in the SSFM. The action per

one step of the symmetrized SSFM is illustrated in Figure 4.1.
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Figure 4.2 Schematic for one step of the symmetrized SSFM. The field solution
E(jh,t) is calculated from the solution E((j-1)h,t) using the following steps:
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4.8 Inclusion of Stimulated Raman Scattering in the Split-Step Fourier Method

The inclusion of stimulated Raman scattering into the SSFM modifies the

nonlinearity operator significant. The nonlinear operator N̂ can be written in a more

general form as

2

0 0

ˆ 1 ( , ) ( ') ( , ') ' ,
( , )

i i
N E z t R t E z t t dt

E z t t

∞� �� �γ ∂= + −� �� �ω ∂� �� �
� (4.10)
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where ( )R t is the nonlinear time-response which includes electrical and vibrational

(Raman) contributions to the third order susceptibility. The electronic contribution,

responsible for the Kerr effect, will occur on a time scale much faster than the Raman

contributions, which allows the time-response function to be written as [66]

( ) (1 ) ( ) ( )R R RR t f t f h t= − δ + (4.11)

where δ(t) is the delta function, fR is the fractional contribution to the delayed Raman

response hR(t). The electronic contributions of R(t) comprise the SPM and self-

steepening terms in the NLSE. The function hR(t) was discussed in Chapter III and

plotted in Figure 3.8. It is obtained from the measured Raman gain spectrum gR(ω) using

Eq. 3.55. Note that the measured Raman gain is proportional to the imaginary portion of

the complex third-order (Raman) susceptibility { }(3) (3)( ) ( )Rh tχ ω = χ � . The response

hR(t) can be calculated by computing the real part of (3) ( )χ ω via the Kramers-Kronig

relationship [81] on measured Raman gain gR(ω). Then. hR(t) is computed using the

Fourier transform of the complex (3) ( )χ ω . Typically, hR(t) is determined directly from

the imaginary part of (the Raman gain curve) and using the fact that (3)Re ( )� 	χ ω
 � is

symmetric and (3)Im ( )� 	χ ω
 � is antisymmetric [82].

To include SRS properly in the SSFM, the Raman gain spectrum gR(ω) or

equivalently the Raman time response hR(t) the must be included into operator N̂ . This
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can be performed in many ways. The least accurate manner is using the first order term

is a Taylor expansion of
2

( , ')E z t t− in Eq. (4.10) and keeping the first order term

denoted TR,

0

' ( ') 'RT t R t dt
∞

= � (4.12)

where for fused-silica TR~3-5 fs [3]. The time constant physically represents the initial

slope of the Raman gain spectrum [3]. The nonlinear operator then takes the form

( )
2

2 2

0

2ˆ
( , ) R

Ei
N i E E E T

E z t t t

� �∂∂= γ � + − �
� �ω ∂ ∂� �

(4.13)

This is a very convenient form that just includes an extra numerical derivative with no

integration to be performed per step.

A second, more accurate method is to include the Raman time response hR(t),

which leads to a nonlinear operator of
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The derivative of the integrated Raman time response is sometimes ignored. The

function hR(t) is determined either from the measured Raman gain spectrum gR(ω) [82] or

by using the fitting function

2 2
1 2

1 22
1 2

( ) sin( )exp( )Rh t t t
τ + τ= τ − τ
τ τ

(4.15)

where τ1=12.2 fs and τ2=32 fs for fused-silica [66]. In regards to the SSFM, the inclusion

of the integral in Eq. (4.14) requires a numerical integration to be performed over all

values of t for each step z=jh. Inclusion of this integration dramatically increases the

computation time. It is important to note that the Raman time response hR(t) is not

measured directly, while the Raman gain gR(ω) is measured directly. Thus, there may be

many errors induced in the SSFM from the calculated hR(t).

The third method is to compute hR(t) from the measured Raman frequency

response and use this instead of Eq. (4.15). Although, this is the most accurate it requires

the Raman frequency response of a given fiber to be measured.
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4.9 Four-Wave Mixing in the Split-Step Fourier Method

As discussed in Chapter III, a general four-wave mixing interaction can only

happen when the phase matching criteria is met. The fiber net dispersion must be close

to zero for ∆β=0 and for efficient FWM to occur. Remember that SPM is a specific

FWM term for which the phase matching criteria is automatically met, independent of the

fiber dispersion and the pulse center wavelength. Excluding the effect of FWM is

problematic when for fiber propagation at a center wavelength that is near the zero

dispersion wavelength. FWM must be considered for supercontinuum generation in

microstructure fiber, which typically occurs for injected pulses centered at a wavelength

near the zero GVD wavelength.

The Kerr term in the NLSE does contain the effect of FWM although the phase

matching condition is not explicitly written in the NLSE. This is sufficient to include

FWM into the SSFM. However, it has been noted [83] that SSFM may not correctly

account for FWM since the action of the nonlinear and dispersion operator act

independently. Also, since efficient FWM occurs under proper phase matching, which is

a frequency domain equation, it may be better to treat FWM in the frequency domain.

This comment is discussed in Section 4.11.2 when the total field formulation of François

is introduced. As demonstrated later in the thesis, the modeling performed in this work

describe accurately the presence of FWM in supercontinuum generation without resorting

to a frequency domain representation of FWM.
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4.10 SSFM Code Implementation

The code to implement the SSFM was written using both the programs

Mathematica™ and Matlab™ (included in Appendix C at the end of the thesis). Initially,

the SSFM was written in Mathematica for the spectral compression experiments, then

rewritten in Matlab. This Mathematica program, which uses the symmetrized SSFM,

was optimized for accuracy and not for speed. Later, the code was rewritten in Matlab

for use with the supercontinuum generation experiments in microstructure fiber. These

simulations demanded large array size to accommodate the wide temporal/spectral

broadening due to propagation through the microstructure fiber. Plus, it was essential to

incorporate SRS in the simulations, using either the linear approximation TR or the

Raman temporal response hR(t). The incorporation of SRS with a large array size was too

time consuming to be implemented in Mathematica.

4.11 Other Methods for Solving the NLSE

This final section briefly discusses two other important methods for solving the

NLSE. The first method is a technique method known as the inverse scattering

method [73] and the second technique is a completely frequency domain technique

known as the total field formulation [83]. Although these techniques are more rigorous

and exact in solving the NLSE over the SSFM, both are very difficult to numerically

implement, and the total field formulation requires significant computing capability.
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4.11.1 The Inverse Scattering Method

The inverse scattering method was the first method to solve the NLSE for the

specific case of soliton propagation by Zakharov and Shabat [13]. The method uses the

initial field E(z=0,t) to obtain the initial scattering data, then the propagation along z is

found by solving the linear scattering problem. The final field E(L,t) is reconstructed

from the evolved scattering data. Typically, this method is used for soliton

propagation [3]. The mathematical description of the inverse scattering method is very

complex, the details can be found in Ref. [73]. However, for soliton propagation the

inverse scattering method numerically reduces to an eigenvalue problem and a system of

linear equations. The complexity of this method may force the SSFM to be desired,

however, the inverse scattering method does not suffer from errors from separating the

effects of fiber dispersion and nonlinearity. Plus, the inverse scattering method can be

used to solve more generalized forms of the NLSE, like the Korteweg-de Vries

equation [84, 85] or the Ginzberg-Landau equation.

The form of the NLSE for solitons to be solved by the inverse scattering method

is

2
2

2 2

1
sgn( )

2
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NL

LU U
i U U
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∂ ∂= β −
∂ξ ∂τ

(4.16)

where
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This is similar to the normalized NLSE derived in Chapter III. The above equation can

be written to eliminate the soliton number D NLL L by defining

( )( , ) ( , )D NLu L L Uξ τ = ξ τ . The equation Eq. (4.16) is integrable and can be expressed as

two linear equations by Lax theory [84] as

( ) ( , ) ( , )L u uξ ξ τ = ζ ξ τ (4.18)

and

( , )
( ) ( , ),

u
M u

∂ ξ τ = ξ ξ τ
∂ξ

(4.19)

where L(ξ) and M(ξ) are differential operators in τ. Equation (4.18) is an eigenvalue

problem with eigenvalue ζ and Eq. (4.19) determines the ξ evolution of the wavefunction

u(ξ,τ). The term L(ξ) corresponds to the dispersion operator D̂ since L(ξ) evolves such

that the spectrum remains constant. L(ξ) and M(ξ) are known as a Lax pair of the

integrable system given by [13]

*

( , )
( )

( , )

i u
L

u i

∂� 	ξ τ� �∂τξ = � �
∂� �− ξ τ −

� �∂τ
 �

(4.20)

and
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The field u(ξ=0,τ) provides the initial scattering information Σ(ξ=0) from the eigenvalue

solution of Eq. (4.18). The evolution of the scattering data Σ(ξ) is determined from the

Eq. (4.19). Finally, an inverse problem is solved to find the propagation solution u(ξ,τ)

from the scattering data. In general, this involves solving a set of linear integral

equations, which reduce to a set of algebraic equations for soliton propagation. The

inverse scattering method is summarized in the figure below:

u(τ,0) Σ(0)

u(τ,ξ) Σ(ξ)

Direct Problem

Inverse Problem

ξ
evolution

( ) ( , ) ( , )L u uξ ξ τ = ζ ξ τ

( , )
( ) ( , )

u
M u

∂ ξ τ = ξ ξ τ
∂ξ

Figure 4.3 Schematic of the inverse scattering method. In the inverse scattering
method, the scattering potential Σ serves as a conduit in order to solve for the direct field
propagation from u(t,0) to u(t,ξ). First, the initial condition u(t,0) is used with Eq. (4.18)
to determine the scattering potential Σ(0). Then, Eq. (4.19) is used to determine the ξ
propagation of the scattering potential. Finally, the solution u(t,ξ) is found by solving the
inverse problem involving the scattering potential Σ(ξ).
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4.11.2 The Total Field Formulation in the Frequency Domain

Different interactions that occur during the course of nonlinear pulse propagation

can generate multiple pulses at different frequencies. However, one electric field E(z,t)

should be used to describe these multiple pulse since they all have the same origin from

the initial pulse E(z=0,t). Dealing with these multiple pulses may be easier in the

frequency domain. Plus, it has been suggested that it is more rigorous to describe both

dispersion and nonlinearity in the frequency domain, thus writing the NLSE in terms of z

derivatives and multiplication of iω. The frequency domain representation of the

dispersion operator in the SSFM was made out of numerical convenience, making the

temporal differential operator in a spectral multiplicative operator. In the total field

formulation, both the effect of dispersion and nonlinearity are treated as frequency

domain quantities with multiple pulse contained in one field:
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(4.22)

where SR(ω) is the complex Raman susceptibility and GR is the Raman gain coefficient

factor.

The advantages of the total field formulation are:
1) The time derivatives t∂ ∂ are replaced by multiplication of iω.
2) Chromatic dispersion easier to handle in the frequency domain
3) The experimental Raman gain curve, hence the Raman susceptibility is determined by
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spectral measurements. Thus a frequency domain representation of SRS may be
more accurate.

4) The effect of dispersion and nonlinearity are not handled independently.

Although the total field formulation may be more accurate than the SSFM, a

vector computer processor is needed in order to solve Eq. (4.22). Consider the example

of soliton propagation through 80 km. The field was sampled by 512 points with

Eq. (4.22) solved by numerical integration using a fourth order Runga-Kutta-

Felhberg [86] routine per each iteration. A total of 16600 integration steps were

necessary for the solution using a vector processor.


