Tuitorial 2: Differential equations in Mathematica: Analytic solutions

Brian Washburn, Version 1.0, 01/08/06

```
Off[General::spell];
```

Differential equations solved analytically in Mathematica

Typically one uses the function DSolve

? DSolve

```
DSolve[eqn, y, x] solves a differential equation for the function y, with independent variable
    x. DSolve[{eqn1, eqn2, ... }, {y1, y2, ... }, x] solves a list of differential
    equations. DSolve[eqn, y, {x1, x2, ... }] solves a partial differential equation. More...
```

Lets solve for a simple harmonic oscillator like a spring $x''[t] = -\omega^2 x[t]$. We want to find the position x as a function of time t, where ω is a constant.

```
DSolve[x''[t] = -\omega^2 x[t], x, t]
\{ \{x \rightarrow Function[\{t\}, C[1] Cos[t\omega] + C[2] Sin[t\omega]] \} \}
```

This is a very general solution in terms of sine and cosine. However, we can make the solution more specific by imposing boundary conditions. Let us impose that velocity at t=0 is zero and the position at t=0 is a. Notice that you need two boundary conditions since one will get two constants when solving a 2nd order DE.

DSolve[{x''[t] == $-\omega^2 x[t], x[0] == a, x'[0] == 0$ }, x, t] {{x \rightarrow Function[{t}, a Cos[t ω]}}

We cannot work with this function so well. Let's use some syntax to clean things up in order to define the solution to a function which we can plot, find its derivative, etc. Define the function xsol[t] which will be this analytic solution to the DE. The symbol := is a delayed assignment, we need to use it because we do not want to evaluate the function at first, but when you want to compute a value of xsol[t].

```
closeForm = DSolve[{x''[t] == -ω<sup>2</sup> x[t], x[0] == a, x'[0] == 0}, x, t]
{{x → Function[{t}, a Cos[tω]]}}
xsol[t_] := (x /. closeForm[[1, 1]])[t]
xsol[t]
a Cos[tω]
```

We get a cosine function with amplitude a and frequency ω . The function xsol[t] is an analytic function t with the correct boundary conditions. Let us check the boundary conditions. We should get x(0)=a and dx/dt(0)=0

xsol[0]
a

Find dx/dt by taking the derivative analytically

```
dxsol[t_] = \partial_t xsol[t]-a \omega Sin[t \omega]
```

or by

```
D[xsol[t], t]
-aωSin[tω]
dxsol[0]
0
```

Our analytic solution xsol[t] has the correct boundary conditions. Let's plot the function. To do this we need some values so set a=0.1 m and ω =2* π *10 Hz

$$a = 0.1;$$

$$\omega = 2\pi 10;$$

Plot[xsol[t], {t, -0.1\pi, 0.1\pi}];

$$\int_{-0.3}^{0.1} \int_{-0.2}^{0.1} \int_{-0.05}^{0.1} \int_{-0.2}^{0.1} \int_{-0.3}^{0.1} \int_{-0.2}^{0.1} \int_{-0.3}^{0.1} \int_{$$

In general, *Mathematica* kind of stinks for solving differential equations analytically. It might be best just to solve them by hand. However, the power of *Mathematica* comes in solving differential equations numerically, ones you cannot solve by hand!!!

Differential equations solved numerically in Mathematica

Let us solve the same differential equation numerically. To solve the DE numerically we cannot have any undefined constants. So define a and ω , and solve the DE x''[t]= $-\omega^2 x[t]$ with the boundary conditions, x[0]=a and x'[0]=0. We will used the command NDSolve[].

a = 0.1; $\omega = 2\pi 10;$

?NDSolve

```
NDSolve[eqns, y, {x, xmin, xmax}] finds a numerical solution to the ordinary
differential equations eqns for the function y with the independent variable x in
the range xmin to xmax. NDSolve[eqns, y, {x, xmin, xmax}, {t, tmin, tmax}] finds a
numerical solution to the partial differential equations eqns. NDSolve[eqns, {y1,
y2, ... }, {x, xmin, xmax}] finds numerical solutions for the functions yi. More...
```

```
solx = NDSolve[{x''[t] == -\omega^2 x[t], x[0] == a, x'[0] == 0.0}, x, {t, -0.1\pi, 0.1\pi}]
```

```
\{ \{ x \rightarrow \text{InterpolatingFunction} [ \{ \{ -0.314159, 0.314159 \} \}, <> ] \} \}
```

Notice that we need a range of time values $\{t, -0.1 \ \pi, 0.1 \ \pi\}$. This is because the output is not an analytic function! The output is really a list of x values for a given range of times (-0.1 π seconds to 0.1 π seconds). The Interpolation function is this "list". So, when you evaluate x[t] it looks up the value in the interpolation function for that value of t. Again, we have the function to something we can plot.

```
xsol[t_] := x[t] /. solx[[1]];
```

Let us check the numerical solution by testing the boundary conditions!

xsol[0]

Which is a! To find the velocity, we can take the derivative of xsol[t]. The result is a new interpolation function.

```
vxsol[t_] = ∂<sub>t</sub>xsol[t]
InterpolatingFunction[{{-0.314159, 0.314159}}, <>][t]
```

vxsol[0]

0.

```
Plot[xsol[t], \{t, -0.1\pi, 0.1\pi\}];
```


This plot is the same as the analytic result!

REMEMBER, WHEN DOING NUMERICAL SOLUTIONS ALWAYS FIND SOME WAY TO CHECK YOUR RESULTS