
Tuitorial 2: Differential equations in Mathematica: Analytic solutions
Brian Washburn, Version 1.0, 01/08/06

Off@General::spellD;

ü Differential equations solved analytically in Mathematica

Typically one uses the function DSolve

? DSolve

DSolve@eqn, y, xD solves a differential equation for the function y, with independent variable
x. DSolve@8eqn1, eqn2, ... <, 8y1, y2, ... <, xD solves a list of differential
equations. DSolve@eqn, y, 8x1, x2, ... <D solves a partial differential equation. More…

Lets solve for a simple harmonic oscillator like a spring x''[t]=−ω2 x[t]. We want to find the position x as a function of
time t, where w is a constant.

DSolve@x''@tD m −ω2 x@tD, x, tD

88x → Function@8t<, C@1D Cos@t ωD + C@2D Sin@t ωDD<<

This is a very general solution in terms of sine and cosine. However, we can make the solution more specific by imposing
boundary conditions. Let us impose that velocity at t=0 is zero and the position at t=0 is a. Notice that you need two
boundary conditions since one will get two constants when solving a 2nd order DE.

DSolve@8x''@tD m −ω2 x@tD, x@0D m a, x'@0D m 0<, x, tD

88x → Function@8t<, a Cos@t ωDD<<

We cannot work with this function so well. Let's use some syntax to clean things up in order to define the solution to a
function which we can plot, find its derivative, etc. Define the function xsol[t] which will be this analytic solution to the
DE. The symbol := is a delayed assignment, we need to use it because we do not want to evaluate the function at first, but
when you want to compute a value of xsol[t].

closeForm = DSolve@8x''@tD m −ω2 x@tD, x@0D m a, x'@0D m 0<, x, tD

88x → Function@8t<, a Cos@t ωDD<<

xsol@t_D := Hx ê. closeForm@@1, 1DDL@tD

xsol@tD

a Cos@t ωD

We get a cosine function with amplitude a and frequency w. The function xsol[t] is an analtyic function t with the correct
boundary conditions. Let us check the boundary conditions. We should get x(0)=a and dx/dt(0)=0

Tutorial2_DifferentialEquations_analytic.nb 1

xsol@0D

a

Find dx/dt by taking the derivative analytically

dxsol@t_D = ∂t xsol@tD

−a ω Sin@t ωD

or by

D@xsol@tD, tD

−a ω Sin@t ωD

dxsol@0D

0

Our analytic solution xsol[t] has the correct boundary conditions. Let's plot the function. To do this we need some values
so set a=0.1 m and w=2*p*10 Hz

a = 0.1;
ω = 2 π 10;

Plot@xsol@tD, 8t, −0.1 π, 0.1 π<D;

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.1

-0.05

0.05

0.1

In general, Mathematica kind of stinks for solving differential equations analytically. It might be best just to solve them by
hand. However, the power of Mathematica comes in solving differential equations numerically, ones you cannot solve by
hand!!!

ü Differential equations solved numerically in Mathematica

Let us solve the same differential equation numerically. To solve the DE numerically we cannot have any undefined
constants. So define a and w, and solve the DE x''[t]=−ω2 x[t] with the boundary conditions, x[0]=a and x'[0]=0. We will
used the command NDSolve[].

a = 0.1;
ω = 2 π 10;

Tutorial2_DifferentialEquations_analytic.nb 2

? NDSolve

NDSolve@eqns, y, 8x, xmin, xmax<D finds a numerical solution to the ordinary
differential equations eqns for the function y with the independent variable x in
the range xmin to xmax. NDSolve@eqns, y, 8x, xmin, xmax<, 8t, tmin, tmax<D finds a
numerical solution to the partial differential equations eqns. NDSolve@eqns, 8y1,
y2, ... <, 8x, xmin, xmax<D finds numerical solutions for the functions yi. More…

solx = NDSolve@8x''@tD m −ω2 x@tD, x@0D m a, x'@0D m 0.0<, x, 8t, −0.1 π, 0.1 π<D

88x → InterpolatingFunction@88−0.314159, 0.314159<<, <>D<<

Notice that we need a range of time values {t,-0.1 p,0.1 p}. This is because the output is not an analytic function! The
output is really a list of x values for a given range of times (-0.1 p seconds to 0.1 p seconds). The Interpolation function is
this "list". So, when you evaluate x[t] it looks up the value in the interpolation function for that value of t. Again, we have
the function to something we can plot.

xsol@t_D := x@tD ê. solx@@1DD;

Let us check the numerical solution by testing the boundary conditions!

xsol@0D

0.1

Which is a! To find the velocity, we can take the derivative of xsol[t]. The result is a new interpolation function.

vxsol@t_D = ∂t xsol@tD

InterpolatingFunction@88−0.314159, 0.314159<<, <>D@tD

vxsol@0D

0.

Plot@xsol@tD, 8t, −0.1 π, 0.1 π<D;

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.1

-0.05

0.05

0.1

This plot is the same as the analytic result!

REMEMBER, WHEN DOING NUMERICAL SOLUTIONS ALWAYS
FIND SOME WAY TO CHECK YOUR RESULTS

Tutorial2_DifferentialEquations_analytic.nb 3

