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Abstract
We investigate the control of the vibrational dynamics in the hydrogen molecular ion H+

2 using
strong femto-second infrared control-laser pulses. For our three-dimensional calculations, we
use infrared laser pulses of 800 nm wavelength, 6 fs pulse duration and a peak intensity
between 1012 and 1015 W cm−2. For laser electric fields aligned along the molecular axis, we
numerically solve the full vibronic Schrödinger equation and compare our results with a model
calculation that only includes the nuclear motion on the two lowest coupled adiabatic
Born–Oppenheimer potential curves. The initial vibrational wave packet is launched with the
ionization of the parent H2 molecule in the pump pulse. Precise timing between pump- and
control-laser pulses allows for the direct manipulation of the final bound vibrational-state
composition and dissociation dynamics of the ion. We show that significant enhancement of
the occupation of particular stationary vibrational-state contributions can be achieved for laser
intensities below the onset of strong ionization (≈1014 W cm−2). In addition, we find that this
vibrational selectivity strongly depends on the delay time but not on the intensity of the control
pulse. The relative stationary vibrational-state contributions and the shape of the vibrating
wave packet depend sensitively on the control-pulse delay time, and the overall amplitude of
the final vibrational wave packet depends on the intensity of the control pulse.

(Some figures may appear in colour only in the online journal)

1. Introduction

The ab initio description of the hydrogen molecular
ion in strong laser fields is complex and involves two
distinct timescales for the electronic and nuclear dynamics.
Nevertheless, the molecular hydrogen ion and its heavier
isotopes have been studied extensively, both experimentally
and theoretically, due to their benchmarking character as the
simplest molecule [1, 2]. Albeit being the smallest molecular
system consisting of just three charged particles, nearly exact
solutions of the time-dependent Schrödinger equation (TDSE)
including all electronic and nuclear degrees of freedom have
only become accessible within the last decade [3, 4]. Such full-
dimensionality (3D) calculations are of particular importance
if the laser-driven molecular dynamics includes dissociation

which is sensitive to the coupled electronic and the nuclear
motion.

A computationally less demanding method is the adiabatic
close-coupling approach in which the nuclear dynamics is
limited to the lowest few adiabatic molecular states. This
method was used, e.g., to investigate the effect of strong
IR laser pulses on the dissociation dynamics and final
vibrational-state distribution in H+

2 [5] and to describe the
ionization of H+

2 by ultraviolet light pulses [6]. However,
for large laser intensities, close-coupling methods so far
have been impractical, since their convergence requires a
large number of adiabatic molecular states, making such
calculations prohibitively expensive. In this case, truncation
of the close-coupling expansion can lead to inaccurate
results. This has been demonstrated, e.g., in [7], where
the observed dissociation probability differs quantitatively
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Figure 1. Simplified pump–control–probe scheme corresponding to a two-state Born–Oppenheimer (BO) model for the nuclear motion in
H+

2 . The pump-laser pulse ionizes the neutral H2 molecule, launching a nuclear vibrational wave packet in the H+
2 ion. A subsequent control

pulse modifies the vibrational-state distribution of the ion by inducing Raman transitions between the 1sσg and 2pσu electronic states at a
given delay time. Finally, the vibrational state is probed destructively by dissociation or Coulomb explosion in the probe-laser pulse.
The ‘3D calculations’ discussed in this work accurately include excited electronic and vibrational levels (not shown) beyond the BO
approximation.

from that obtained in earlier close-coupling calculations
[5]. In addition, the adiabatic approximation (with which
we mean the exclusion of all non-laser-induced couplings
between adiabatic molecular electronic states) breaks down
near avoided crossings and conical intersections of potential
energy curves (surfaces) [8, 9].

Modern computational resources have allowed theoretical
descriptions of the coupled nuclear–electronic dynamics,
including non-adiabatic effects [3, 4, 10–13], for a series of
interesting applications. One such example is the proposed [11]
and recently observed control over the left–right asymmetry in
the electron localization of dissociating H+

2 [14] and D+
2 [15]

ions with few-cycle carrier-envelope-phase-stabilized laser
pulses. In this paper, we present an implementation of a 3D
method to solve the TDSE by using cylindrical coordinates.
We apply it to the study of the nuclear motion in the hydrogen
molecular ion H+

2 that is generated by a pump-laser pulse from
the H2 parent molecule. After a certain delay time, a short,
intense control-laser pulse induces transitions between the
1sσg and 2pσu molecular ion states, changing the vibrational-
state composition of the bound nuclear wave packet in the 1sσg

adiabatic potential well of the molecular ion. This allows for
the coherent control of the quantum system, e.g., the quenching
of the vibrational-state distribution or stopping of the nuclear
wave packet [16, 17]. Through a third, intense probe pulse, the
resulting vibrational wave packet can then be analysed using
Coulomb-explosion imaging [18–20]. The schematics of this
pump–probe–control scheme is shown in figure 1.

For a similar pump–control–probe-pulse scheme, an
alternating population of odd and even final vibrational states
has been predicted theoretically [21] by applying the control
pulse near a fractional revival time [22] of the nuclear wave
packet in D+

2 . A semi-classical model, in which the nuclear
wave packet is approximated by a classical ensemble of
particles moving on the Stark-shifted 1sσg potential energy

surface, has been applied to describe the final vibrational-
state population [23, 24]. So far, the proposed vibrational
control schemes have been confirmed experimentally only
with regard to the dissociation yield [25, 26] and electron
localization during dissociation [26, 27]. Thus, at this stage, it
is timely to investigate control within a pump–control–probe-
pulse scheme of the nuclear motion in H+

2 in accurate quantum
mechanical calculations. For this purpose, we have developed
a new computational code and performed a sequence of
calculations for the interaction of H2 with ultrashort intense
pump, control and probe pulses. We will refer to these
computations as ‘3D calculation’ throughout this work and
compare our 3D results with theoretical predictions obtained
previously within a simplified two-state model (TSM) [16].

If not specified otherwise, atomic units will be used
throughout this work (e = � = me = 1).

2. Theory

2.1. Full-dimensional calculations

The full non-relativistic field-free Hamiltonian for the
hydrogen molecular ion H+

2 in the body-fixed reference frame,
representing the two nuclei with relative position vector R and
the single electron at position r relative to the centre of mass
of the two nuclei, is given by

Ĥ0 = − 1

2M

d2

dR2
− 1

2μe

d2

dr2
+ 1

R
− 1∣∣r + R

2

∣∣ − 1∣∣r − R
2

∣∣ .
(1)

M = 918.076 is the reduced mass of the two nuclei [28], and
μe = 2M/(2M + 1) the reduced mass of the electron. We
can restrict our calculations to molecules that are aligned with
respect to the laser-electric-field vector and therefore neglect
molecular rotation [3, 4, 29]. Aligned molecular ions can
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be selected a posteriori in coincidence experiments [30, 31].
Thus, including all electronic degrees of freedom and taking
advantage of the cylindrical symmetry of the potential, two
degrees of freedom remain for the electronic motion along
the internuclear axis z and the radial distance ρ from the
molecular axis. Including the internuclear separation R, the
time-independent Hamiltonian (1) becomes

Ĥ0 = − 1

2M

∂2

∂R2
− 1

2μe

(
∂2

∂ρ2
+ ∂

∂ρ

1

ρ
+ ∂2

∂z2

)
+ V0, (2)

where the field-free molecular potential V0 = V0(R, ρ, z) is
given by

V0 = 1

R
− 1√

ρ2 + (z − R/2)2
− 1√

ρ2 + (z + R/2)2
. (3)

The external laser electric field is aligned with the
internuclear axis and is characterized by the envelope function

f (t) =
⎧⎨
⎩E0 cos2

(
π(t − t0)

βτ

)
|t − t0| � βτ

2
0 otherwise,

(4)

where τ is the pulse width. The factor β =
π/(2 arccos 2−1/4) = 2.747 is introduced so that τ represents
the FWHM (full-width at half-maximum) of the pulse
intensity. It converts the FWHM pulse width in the intensity to
the electric field. The oscillating field of the laser pulse with
the central frequency ω and the peak intensity I0 = E2

0 can be
written as

E(t) = f (t) cos ω(t − t0). (5)

The resulting time-dependent external potential in the dipole-
length gauge is

VL(z, t) = zE(t). (6)

For the setup described above, the 3D TDSE for the interaction
of the molecular ion with the external laser field can be written
as (

Ĥ0 + VL(z, t) − i
∂

∂t

)
	(R, ρ, z, t) = 0. (7)

We represent the wavefunction and operators on a
numerical lattice. The Coulomb singularity at either nucleus in
(3) is avoided by locating the first lattice point in ρ-direction
at 1/2 of the grid spacing, thereby eliminating the need of
a softening parameter. Utilizing a non-equidistant (cubic)
grid with smaller grid spacings near the nuclei, we further
reduce the numerical effort without sacrificing accuracy in
representing bound electronic states. For a one-dimensional
scenario, the kinetic energy operator T̂ = p̂2/2m in coordinate
space for an arbitrary numerical grid can be represented by a
tridiagonal matrix [32], while the potentials (3) and (6) result
in a diagonal matrix.

Let ψn(R, ρ, z) be the nth bound vibronic eigenstate of
H+

2 . The probability for finding the system in this state is
obtained by projecting 	(R, ρ, z, t) onto the former state,

P3D
n (t) = |〈ψn(R, ρ, z)|	(R, ρ, z, t)〉|2. (8)

The vibronic wavefunctions ψn(R, ρ, z) are obtained by the
diagonalization of the full field-free Hamiltonian (2). For
this diagonalization we take advantage of the sparsity of the

Hamiltonian matrix. In our three-point discretization of the
kinetic energy operators the Hamiltonian matrix is composed
of a diagonal band containing seven lines. The main diagonal
contains the potential contribution. The off-diagonal lines arise
from coupling through the kinetic energy operator to its nearest
neighbours in all three coordinate directions, i.e. one off-
diagonal line on each side of the diagonal per coordinate.
We solve this time-independent eigenvalue problem using
the PETSc [33] and SLEPc [34] routines that are optimized
for parallel processing. For the lowest 15 vibrational bound
states of the hydrogen molecular ion, we obtained converged
results with a ground-state energy of E0 = −0.604, which is
slightly below the accepted Born–Oppenheimer (BO) value of
−0.597 [35].

For the time propagation, we solve the TDSE (7) using
the Crank–Nicolson scheme [36, 37] with an operator-
splitting scheme that minimizes the numerical expense
by symmetrically dividing the numerically less demanding
potential operation,

	(R, ρ, z, t + �t) = e−iV�t/2 e−iT̂R�t e−iT̂ρ�t

× e−iT̂z�t e−iV�t/2	(R, ρ, z, t) + O(�t3). (9)

Our three-dimensional grid spans a total of 30 au in R-direction
and 80 au×40 au in the z × ρ plane with a minimum grid
spacing of �R = 0.05 and �ρ = �z = 0.1. These grid
spacings gradually increase towards the outer grid boundaries.
The time step for the electronic propagation is �telec = 0.015
and for the nuclear propagation, which we only perform
every ten electronic time steps, �tnucl = 0.15. This results
in the stability parameters [36] μelec = �t/(2μe(�ρ)2) =
�t/(2μe(�z)2) � 0.75 and μnucl = �t/(2M(�R)2) �
0.033. Both parameters are smaller than 1 and guarantee the
numerical accuracy of the propagation scheme.

Wavefunction absorbers are used at the outer grid
boundaries to suppress reflections and are implemented in
terms of quadratic masking functions. For example, the
absorption in the X-direction (with X being R, ρ or z) beyond
the point X0 until the end of the grid Xmax invokes the masking
function a(X ) = exp[−sX ((X − X0)/(Xmax − X0))

2] which is
applied every time step with the absorption strength parameter
sX (with sρ = sz = 1 for the electronic and sR = 0.1 for the
nuclear absorber). For our calculations we use 10 au for the
length of the nuclear and 20 au for the electronic absorbers
in the ρ- and z-directions and adjusted both, the nuclear and
electronic strength parameter, to obtain converged results with
the parameters given above. We have verified the convergence
of the propagated wavefunction by using absorbers of twice
the width and by modifying values of the absorption strength
parameters sX .

2.2. Adiabatic TSM

We expand the solution of the TDSE (7) in terms of a BO basis
set

	(R, ρ, z, t) =
∑∫

i,n
ain(t)χin(R)ϕi(R; ρ, z) e−iEint, (10)

where ϕi(R; ρ, z) are the electronic states parametric in R,
χin(R) are the nuclear states, Ein are the corresponding energies
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and ain(t) are the time-dependent expansion coefficients. By
writing (10) as a summation and integration we allow for the
general case where the electronic-state label i and the vibronic
quantum number n can represent both, discrete bound and
continuum states.

We will compare the results from our 3D calculations
with solutions obtained by truncating the expansion (10).
For this purpose, we adopt the coupled adiabatic TSM from
our previous work [16], which only includes the lowest two
electronic states of the molecule,(

T̂ + V (R) + Ĥc(R) − i
∂

∂t

) ∣∣∣∣χg(R, t)
χu(R, t)

〉
= 0. (11)

In this model, a nuclear wave packet moves on the coupled
1sσg and 2pσu potential curves

V (R) =
(

Vg(R) 0
0 Vu(R)

)
. (12)

Both nuclear potential curves are obtained on the basis of
one-electron diatomic molecular orbitals, which give the exact
solutions of the single-electron two-centre Hamiltonian [38].
The set of bound vibrational eigenfunctions χg,n(R) on the
Vg(R) potential curve is obtained by the diagonalization of the
field-free Hamiltonian T̂ + Vg(R) in the grid representation.
The time-dependent nth vibrational-bound-state occupation is

PTSM
n (t) = |〈χg,n(R)|χg(R, t)〉|2. (13)

The interaction with the laser field is given in
terms of the dipole-coupling matrix elements dgu(R) =
〈ϕu(R; ρ, z)|z|ϕg(R; ρ, z)〉 between the two adiabatic
electronic states of gerade and ungerade symmetries, 1sσg and
2pσu [39]. The Hamiltonian governing the control–laser pulse
interaction can be written in the form

Ĥc(R) =
(−i�g(R, E(t))/2 dgu(R)E(t)

dug(R)E(t) −i�u(R, E(t))/2

)
, (14)

with isotropic R-dependent molecular ADK rates � [40] on
the diagonal to account for ionization from both adiabatic
electronic states [16, 41].

We obtain the initial coherent vibrational wave packet
of the H+

2 molecular ion at time t = 0 by the ionization
of the parent H2 molecule in its vibrational ground state.
For simplicity, we assume a Franck–Condon transition and
neglect the intensity profile of the pump-laser pulse [42]. The
initial vibrational-state distribution PTSM

n (0) (13) for the singly
ionized molecule is shown in the inset of figure 2. We use
the same initial-state distribution for both, the 3D and TSM
calculations for consistency in this comparison.

2.3. Field-free propagation

As long as there is no interaction with an external field, the
3D calculation (7) and the TSM (11) can be propagated in
time analytically. From the knowledge of the complete set
of bound eigenfunctions ψn(R, ρ, z) and χg,n(R), and the
corresponding energies E3D

n and ETSM
n , which we obtain by

diagonalization of (2) and the field-free Hamiltonian T̂+Vg(R)

in (12), respectively, the time evolution is simply given by the
phase factor in

	(R, ρ, z, t) =
N∑

n=1

a0,nψn(R, ρ, z) e−iE3D
n t, (15)

for the 3D calculation, and
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Figure 2. Time evolution of the lowest five vibrational eigenstates
of an initial H+

2 molecular wave packet exposed to a control-laser
pulse with a pulse length of 6 fs (FWHM in the intensity), peak
intensity of 1014 W cm−2, and a central wavelength of 800 nm that is
applied at a delay time of 34 fs. Solid lines correspond to 3D
calculations, the thin dashed lines to the TSM, and the dotted lines
(nearly indistinguishable from the 3D results) show the latter data at
a 2% larger control-pulse time delay (see text). The initial
vibrational Franck–Condon distribution is shown in the inset. Also
shown is the electric field amplitude of the control-laser pulse.

χg(R, t) =
N∑

n=1

a0,nχg,n(R) e−iETSM
n t, (16)

for the TSM.
The initial probabilities for finding the molecular ion in the
nth vibrational eigenstate after the pump pulse are given by
the coefficients |a0,n|2.

3. Results

Figure 1 shows TSM results for the change of the vibrational-
state amplitudes due to the action of the control pulse.
For weak laser intensities the vibrational-state distribution
in the electronic ground state would change due to virtual
electronic excitations, followed by Stokes and anti-Stokes de-
excitations. However, in the present case the laser intensities
are sufficiently high for the 2pσu state to become accessible by
multi-photon absorption such that the intermediate state in the
Raman transition remains populated. The nuclear wave packet
can then move on this repulsive potential curve before de-
excitation to the 1sσg curve in the control pulse. In general, this
leads to the coherent population of a different set of vibrational
states on the 1sσg curve. The final vibrational-state distribution
of the molecule is thus affected by the motion of the wave
packet on the repulsive potential curve during the laser pulse.
The bandwidth of the 6 fs control-laser pulse in (4) is

�ω = 2π

βτ
= 0.0217, (17)

or 0.591 eV. Since the pulse’s bandwidth is larger than the
typical vibrational level spacing in the hydrogen molecular
ion of 0.1–0.3 eV, it allows for Raman transitions to the next
nearest vibration states.

3.1. Final vibrational-state distributions in the TSM and full
3D calculations

For a 6 fs control pulse of 1014 W cm−2 peak intensity that
is applied at a delay time of 34 fs, a significant increase of
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Figure 3. Final vibrational-state probability for the lowest five vibrational eigenstates as a function of the control-pulse delay time. Solid
lines correspond to 3D results, while the dashed lines show the TSM. The overall temporal shift between the 3D calculation and the TSM
accounts for about 2% of the control-pulse delay for all displayed vibrational states.

Table 1. Final vibrational-state distribution for the lowest six bound
vibrational eigenstates for the control-pulse parameters in figure 2
(see text).

n P3D
n (τ ) PTSM

n (τ ) PTSM
n (τ + 2%)

0 0.2857 0.2525 0.2726
1 0.0995 0.1524 0.0935
2 0.5869 0.6164 0.5855
3 0.1361 0.0463 0.1366
4 0.0346 0.0227 0.0350
5 0.000 552 0.001 33 0.001 999

the population of a specific vibrational level can be observed.
In the example shown in figure 2, the time evolution of the
lowest five vibrational eigenstates displays a strong deviation
from the initial vibrational-state distribution. The chosen delay
maximizes the final contribution of the second vibrational
eigenstate. During the interaction with the control-laser pulse,
a substantial portion of the population in adjacent vibrational
states is transferred into the second vibrational state, thereby
more than doubling its initial-state occupancy. The final-state
distribution for the given control-pulse parameters is shown in
table 1.

The final-state vibrational distribution for the 3D
calculations (solid curves) and the TSM (dashes curve) differ
slightly in figure 2. This is due to the slightly lower energies
E3D

n of the bound vibrational states in the 3D results (15)
compared with the TSM energies ETSM

n (16) and leads to a
slightly slower oscillating phase factor during the field-free
propagation of the wavefunction in the TSM. To correct for
this discrepancy, we adjust the initial phase factors for the
TSM in (16) to the 3D calculations (15) at the centre of the
control pulse. With this adjustment for the phase drift, which
corresponds to a shift of about 2% in the control-pulse delay
time, both calculations give nearly identical results. The dotted
lines in figure 2 show the adjusted TSM results but are nearly
invisible because they lie almost on top of the results (thick
curves) of the 3D calculation.

Table 2. Energies E3D
n and corresponding classical oscillation times

Tn (18) for the first ten bound vibrational states.

n E3D
n (eV) Tn (fs)

0 −0.597 40 14.78
1 −0.587 44 15.67
2 −0.578 08 16.65
3 −0.569 30 17.71
4 −0.561 06 18.88
5 −0.553 37 20.19
6 −0.546 19 21.65
7 −0.539 51 23.33
8 −0.533 34 25.27
9 −0.527 66 27.56

3.2. Dependence on the control-pulse delay

To further discuss the observed difference in the
two calculations, we compare the final vibrational-state
distributions P3D

n (t → ∞) and PTSM
n (t → ∞) as functions

of the control-pulse delay time in figure 3. For the lowest five
vibrational eigenstates, the TSM results (dashed curves) are
generally stretched in time by about 2% compared to the 3D
calculation (solid lines) as noted before. Not including the
phase rotations caused by these slightly shifted energies of the
eigenstates, the final probabilities in figure 3 almost perfectly
overlap for the two calculations.

The periodicity observed in the final-state population
for the nth vibrational eigenstate resembles the classical
periods [16],

Tn = 2
∫ Rmax

Rmin

dR

√
M

2(En − Vg(R))
(18)

of a classical particle of energy En moving between the two
classical turning points Rmin and Rmax on the 1sσ+

g potential
curve of the TSM. The corresponding classical vibrational
periods Tn for the first few bound vibrational states with
energies E3D

n are given in table 2. As can be seen in the
table, these values are consistent with the periodicity of
the vibrational-state probabilities shown in figure 3 (and
figure 5 below). The relevance of the classical oscillation
time has also been addressed in the semi-classical treatment
reported in [23]. Small differences in Tn can be exploited
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Figure 4. Dissociation probability (red curve with left-pointing filled triangles), and the energetic shift of the remaining bound vibrational
wave packet (blue curve with right empty triangles) as a function of the control-pulse delay time. The full-dimensional results are shown by
the full curves, while the TSM calculation is indicated through dashed lines. The control-pulse delay has been corrected for the 2%
difference in the time evolution for the TSM (see text).

for selecting a desired final vibrational state with a large
probability [16, 17, 23], in particular, for the vibrational
cooling of the wave packet [25] by reducing its total bound
energy.

At a control-laser pulse intensity of 1014 W cm−2, we find
a nearly vanishing contribution to the second ionization of
the molecule: the normalization of the wavefunction inside
the absorber region of the 3D numerical grid practically
does not change during the propagation. This means that the
calculated ADK loss rates �g(R, E ) and �u(R, E ) in (14) for
the TSM remain insignificant at the given maximum electric-
field strength. We therefore calculate the dissociation fraction
after the control-laser pulse by excluding the probabilities for
the nuclei to remain in one of the N lowest vibrational states,

P3D/TSM
diss = 1 −

N∑
n=1

P3D/TSM
n (tfinal), (19)

for both, the 3D calculation (P3D
diss) and the TSM (PTSM

diss ), where
the time tfinal is taken as 10 fs after the control pulse has reached
its maximal intensity.

In order to directly compare the dissociation probabilities
in figure 4 for the 3D calculation and the TSM, we reduced
the control-pulse time delay for the TSM by 2% to account
for the slightly lower eigenenergies E3D

n in the 3D calculation.
With this adjustment, we generally obtain good agreement
for the two simulations. The oscillating vibrational wave
packet dissociates more likely when the control pulse occurs
at its outer turning point Rmax [26], where the energy gap
between the 1sσg and 2pσu adiabatic electronic states is
smaller. This enhancement of the dissociation yield at the outer
classical turning point is also seen in the figure. However, the
magnitude of the dissociation yield differs slightly in the two
calculations when the wave packet reaches Rmax at 28, 46
and 64 fs. On the other hand, the dissociation probability
is almost completely suppressed at a delay time of 20 fs,
when the nuclear wave packet returns to the inner turning
point Rmin. This dissociation suppression is also observed for
a few more delay times corresponding to multiples of the
vibrational period until the wave packet has dephased. The
agreement between the two calculations is nearly perfect for
small internuclear separations.

3.3. Heating and cooling of vibrational wave packets

To focus on the comparison of the 3D calculation and TSM
near the classical turning points, we next discuss the energetic
shift of the remaining bound wave packet of the molecule after
its interaction with the control pulse,

�E =
N∑

n=1

EnPn(t → ∞) − Einitial, (20)

using E3D
n and ETSM

n for the energies En and P3D
n and PTSM

n
for the final-state probabilities Pn. The initial energy Einitial

characterizes the total energy of the initial bound vibrational
wave packet in the H+

2 potential curve immediately following
the ionization in the pump pulse from the parent H2 molecule.
As seen in figure 4, the moving nuclear wave packet can be
heated by increasing the average energy of the superposition
of states close to the outer turning point by promoting the
vibrational eigenstates to higher-lying states which extend
farther out. However, the maximum of the energy transfer
to the molecule occurs before the wave packet reaches the
outer turning point, i.e., before the dissociation probability
reaches a local maximum. This is caused by competing
‘evaporative cooling’ due to dissociation from the highest
occupied vibrational states. This preferential depletion of
high-lying vibrational states reduces the total energy of
the remaining bound molecule. No second maximum in
the vibrational heating can be observed shortly after the
dissociation maximum. This suggests that efficient conversion
to higher bound vibrational states occurs only for the outwards
traveling wave packet. As the wave packet approaches the inner
turning point Rmin vibrational down conversion decreases its
energy. This is seen near control-pulse delay times of 16 and
32 fs. At this particular delay, the remaining bound wave
packet is dominated by the second vibrational eigenstate, after
depletion of n > 2 vibrational levels, while the n = 0 and
n = 1 eigenstates remain nearly at their initial population
(see figure 3), thereby lowering the total energy of the bound
wave packet. Due to dephasing of the nuclear wave packet no
further vibrational cooling is observed at moderately larger
control-pulse delays, but occurs again near the vibrational
revival times at much longer delays. The agreement between
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Figure 5. Final H+
2 vibrational-state distribution after the control pulse as a function of the control-pulse delay time. Top row: results from

3D calculations for control-pulse peak intensities of 1014 W cm−2 (left), 2 × 1014 W cm−2 (centre) and 3 × 1014 W cm−2 (right). Bottom
row: TSM calculations for the same control-pulse intensities as in corresponding graphs in the top row.

our 3D calculation and the TSM for the shift in energy of the
bound wave packet is in general quite good. However, small
differences can be observed in particular at the outer classical
turning point of the wave packet. Therefore, the TSM works
well for the considered parameters and notably differs from the
3D calculation results only for higher-lying vibrational states
and in the detailed progression of the dissociation process.

3.4. Dependence of the final vibrational distribution on the
control-pulse intensity

We compare our 3D calculation with the TSM in panels (a)
and (d) of figure 5, where we display the state-selective final
vibrational-state probabilities Pn(t → ∞) from (8) and (13) as
a function of the control-pulse delay time for a control-pulse
peak intensity of I0 = 1014 W cm−2. For this intensity, the
difference between the two vibrational distributions is very
small and hardly notable for the entire considered delay range.
The small difference is due to the approximately 2% slower
propagation in the TSM model that originates, as mentioned
above, in the slightly larger vibrational eigenenergies we
calculated in the TSM. Otherwise, the TSM describes the
final vibrational-state distribution remarkably well and non-
adiabatic corrections beyond the 1sσg–2pσu coupling in the
control pulse are irrelevant at the given control-pulse intensity.

While at I0 = 1014 W cm−2 both calculations result
in an almost identical outcome, increasing the control-pulse
intensity reveals differences between the 3D and TSM results.
To demonstrate this change, we have increased the control-
pulse intensity to 2 × 1014 and 3 × 1014 W cm−2 in panels
((b) and (e)) and ((c) and (f)), respectively, of figure 5. By
doubling the control-pulse intensity (panels (b) and (e)), clear
differences emerge, which become even more pronounced
at 3 × 1014 W cm−2 (panels (c) and (f)). In particular, the
higher-lying vibrational states are faster depleted in the TSM
as compared to the 3D calculation. This agrees with the larger
dissociation probability already notable in figure 4 for the TSM
at the lower intensity. Whereas for the intermediate intensity
and for the lower vibrational states the TSM still agrees
well with the 3D calculation, the results differ significantly
for the highest intensity shown. Even the lowest vibrational
levels become depopulated at 3 × 1014 W cm−2, although
the dependence on the control-pulse delay time remains

qualitatively unchanged for the two calculations. Moreover,
the increasing control-pulse intensity shows a progressive
cooling of the vibrational wave packets into the first excited
state (panels (b) and (e)) and the vibrational ground state
(panels (c) and (f)) at appropriate control-pulse delays. In
the TSM, however, the population of the lowest vibrational
levels is underestimated at the highest laser intensity due to
the overemphasized ionization probability.

Figure 5 also shows that the increase of the vibrational-
state occupation probability in a certain vibrational level only
depends on the control-pulse delay time, since the maxima in
all six panels appear for the same vibrational level at the same
delay time. While the amplitude of the probability-transferring
Raman transitions depends, of course, on the control-pulse
intensity, the control-pulse delay is decisive for the population
transfer into a certain vibration eigenstate. This suggests a
unique vibrational quenching scheme, which does not depend
on the laser intensity and is robust with regard to the focal
volume average in experiments.

Since the final vibrational-state distributions differ
increasingly between the TSM calculation and the 3D results
for increasing control-pulse intensity, we distinguish the
different contributions to dissociation and ionization by fixing
the control-pulse delay time at 34 fs and compare the intensity-
dependent final distributions (figure 6). For the TSM, the time
delay was corrected for the energetic shift by using the same
vibrational energies

{
En = E3D

n

}
for the free propagation in

(16) as in the 3D calculation (15). The resulting control-pulse
intensity dependence of the final vibrational-state distribution
is shown for the lowest five vibrational states in figure 6(a).
Good agreement at this particular delay time is seen up to
an intensity of about 2 × 1014 W cm−2, with the ground–
vibrational-state population being correctly described in the
TSM up to about 3 × 1014 W cm−2. Also evident is that
the second vibrational state remains the preferred quenched
state over a large range of laser intensities. The laser intensity
where the vibrational quenching starts to become significant
is near 6 × 1013 W cm−2, and this vibrational-state selectivity
disappears above 2 × 1014 W cm−2. For a control-pulse peak
intensity of 1.3 × 1014 W cm−2 the second vibrationally
excited-state admixture of the nuclear vibrational wave packet
reaches a maximum of 65%. Since the TSM reproduces very
well the resulting vibrational-state distribution in this intensity
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Figure 6. Laser-intensity dependence for the final vibrational-state
distribution (a) using a control-pulse delay of 34 fs. Results for 3D
calculations (solid lines) and TSM calculations (dashed lines) for
the lowest five vibrational eigenstates of H+

2 whose vibrational
quantum numbers are printed to the left of the curves. Total
dissociation (b) and ionization (c) probabilities as a function of the
control-pulse intensity. In (b) and (c), 3D results are shown as solid
lines and TSM results as dashed lines. The Keldysh parameter γ is
given on the upper horizontal axis in (b).

range, it can be utilized to find laser parameters that maximize
the population in a desired low-lying vibrational eigenstate at
low numerical cost.

The total dissociation probability cannot be deduced
from the assumption (19) for control-pulse intensities above
1014 W cm−2, since ionization no longer remains negligible.
At higher intensities, we therefore obtain the ionization
probability in our 3D calculations according to

Pion = 1 −
∫

numerical grid
dR dρρ dz|	(R, ρ, z, tfinal)|2, (21)

with reference to the remaining probability within the
numerical grid at the end of the propagation (10 fs after

the control-pulse maximum). This assumes that the emitted
electronic current is absorbed (without numerical reflections)
at the grid boundaries, while the nuclear motion is sufficiently
slow such that a dissociating wave packet remains inside the
numerical box. We tested the convergence of the ionization
probability by examining the time dependence of the total
norm within the numerical grid after the control pulse. This
confirms that even low momentum components of the emitted
electron wave packets are absorbed without relevant reflection
at the grid boundaries. In this case, the dissociation probability
can be calculated according to

Pdiss = 1 − Pion −
N∑

n=1

Pn(tfinal), (22)

as the contribution which is neither bound nor leads to
ionization. Since this scheme crucially depends on the
correct implementation of the wavefunction absorbers at the
grid boundaries, we have tested and confirmed numerical
convergence by using a series of different absorber parameters.
In the TSM, we obtain the total ionization probability by
summation over the probabilities for finding the molecular
ion in the 1sσg and 2pσu electronic states, governed by the
ADK rates �g(R, E(t)) and �u(R, E(t)) in (14). The total
dissociation probability then follows from (22).

The difference between our two calculations is largely
caused by overestimating the ionization process at high
control-pulse intensities within the TSM. This is evident
in figures 6(b) and (c) that show the dependence of the
dissociation (b) and ionization probability (c) on the control-
pulse intensity for the fixed delay time of 34 fs. In particular,
using molecular ADK depletion rates in the TSM for laser
intensities within the tunneling regime above 1014 W cm−2

overestimates the ionization probability [41]. Depletion of
the bound states due to the dominating ionization process
then reduces the observed dissociation yield in the TSM
above 1.4 × 1014 W cm−2. Consequently, the TSM only
holds for the multi-photon region with Keldysh parameters
γ = √

Ip/2Up � 1, where Ip is the ionization potential and Up

the ponderomotive energy in the laser field, as indicated above
in figure 6(b), and therefore the TSM needs to be revised
for the tunneling region. Thus, the control-pulse intensity of
1.4 × 1014 W cm−2 marks the limit where ionization becomes
important, and the TSM starts to fail.

4. Conclusions

We have performed an extensive comparison between our
3D calculations, correctly taking into account non-adiabatic
couplings in control laser field, and an adiabatic (Born–
Oppenheimer) two-state model (TSM) in which the nuclear
motion in H+

2 is restricted to the 1sσg and 2pσu potential
curves. While the qualitative results of both calculations
agree remarkably well up to a control-pulse intensity of
1014 W cm−2, differences become observable when ionization
of the molecular ion starts to become relevant. When
ionization is no longer negligible, the explicit inclusion
of the electronic degrees of freedom is necessary. Thus,
by performing first-principles 3D calculations, we validated
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the previously suggested TSM [16] for probe-pulse peak
intensities below 1014 W cm−2. In particular, we confirm our
earlier prediction of selective vibrational quenching into a
given stationary vibrational state for a large range of intensities,
providing further evidence for vibrational quenching to be
robust against focal volume averaging. In contrast, for control-
pulse intensities above 1014 W cm−2, our 3D calculations
fail to reproduce the results of the previous TSM due to
the participation of higher excited molecular states. We
hope, that this work will stimulate a proof-of-principle
verification of the vibrational quenching scheme in a future
experiment.

The coherent control of the nuclear dynamics examined
in this work can be further refined by examining the effect of
standardized delayed control pulses on not just the amplitudes
|an|, but also the phases arg(an) in the representation of
nuclear wave packets as coherent superpositions of stationary
vibrational states (for details see [43]).
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