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Hydrogen-anion formation near a (2×1)-reconstructed Si(100) surface:
Substrate-electronic-structure and trajectory dependence
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We calculated the yield of outgoing hydrogen negative ions after the reflection of 1-keV neutral hydrogen
atoms from a (2 × 1)-reconstructed Si(100) surface. We find that the charge-transfer dynamics at the reconstructed
surface is dependent on both the surface-electronic structure and orientation of the projectile trajectory relative to
the crystal azimuthal directions. Our results are in good quantitative agreement with the measured H− fractions
of Maazouz and Esaulov [Surf. Sci. 398, 49 (1998)] for scattering trajectories that are aligned perpendicularly to
rows of silicon dimers.
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I. INTRODUCTION

Ion-surface scattering experiments [1] show that the for-
mation of H− near silicon and free-electron metal surfaces
such as aluminum [2] is about equally likely and strongly
dependent on the collision velocity of the incident projectile.
For free-electron surfaces the details of the substrate-atomic
structure are of little importance and may justify the modeling
of charge transfer in the jellium approximation, which accounts
for the surface-electronic structure solely in terms of the
motion of a single active electron in the electric field of
the uniformly smeared out positive charge of the substrate’s
ionic cores [3–5]. The final charge state of the projectiles
after reflection from the surface is determined by electron
capture into the affinity level (AL) of the hydrogen anion and
electron loss to vacant substrate levels from the AL. Since
electron affinities of negative ions are small compared to
the work function of metals and typical semiconductors, the
undistorted projectile AL is usually energetically in resonance
with vacant levels above the Fermi level of the substrate, such
that, in the absence of strong level shifts, the neutralization
probability of a weakly interacting anion would be determined
exclusively by electron loss. However, even at relatively large
projectile-surface distances, i.e., for weak particle-surface
interactions, exceptions to this unidirectional electron transfer
occur if weakly bound image and surface states supported by
the band structure of the substrate become degenerate with the
weakly distorted projectile AL [6,7]. As the incident projectile
moves closer to the surface, the projectile AL and weakly
bound substrate levels experience more significant level shifts
[3,8,9]. In this regime of strong coupling to the substrate,
electronic levels of the adsorbate-substrate system may cross,
adiabatically avoid crossing [9,10], and become subject to
Pauli blocking as the occupied AL shifts into resonance with
occupied substrate levels [6]. Furthermore, if the incident
projectile speed is comparable to or larger than the Fermi
velocity of the substrate, the modeling of electron-capture and
-loss processes needs to account for kinematic level shifts
[11,12]. For fast incident atoms, the inclusion of kinematic
level shifts was found to be prerequisite for the quantitative
agreement between calculated and measured negative-ion
fractions on Al surfaces [2,5].

Even though measured negative-ion fractions on Si surfaces
have the same magnitude as on Al surfaces, the jellium

model is a poor approximation to the electronic structure
of Si surfaces since the Si density of states is structured by
narrow surface-state bands [13,14]. Indeed, in order to interpret
their experimental results in Ref. [1], Maazouz et al. suggest
that electron capture near Si surfaces is a dynamic, velocity-
dependent, quasiresonant process that involves interactions of
the projectile AL with a narrow band of surface states. A
subsequent theoretical model for the formation of H− on (2 ×
1)-Si(100) and (7 × 7)-Si(111) reconstructed surfaces [15]
reproduces the general trends of the measured hydrogen anion
yield based on an appropriate parametrization of the Newns-
Anderson model [16–19]. This theoretical investigation [15]
found a strong dependence of the final projectile charge states
on the scattering trajectories considered and reproduced the
experimental data after averaging over trajectories.

A detailed study of the charge transfer between positive
neon ions interacting with a CdS surface revealed a strong
sensitivity of the ion-neutralization rates on the lateral corru-
gation of the target electronic density and on the chemical
composition (i.e., on the Cd versus S termination) of the
target [20,21]. Positive ions were less efficiently neutralized on
the sulfur-terminated substrate and electron capture was found
to be enhanced along closed-packed rows of Cd atoms on the
Cd-terminated CdS surface. The dependence of the neutraliza-
tion probability of Ne+ on the elemental composition of the
substrate was confirmed theoretically within a rate-equation
approach using static, laterally modulated electron-tunneling
rates [21].

The theoretical investigation of the ionization (neutral-
ization) of lithium atoms (ions) on reconstructed Si(100)
surfaces [22] predicts a structural dependence of the static
charge-transfer rates. Reconstruction was found to strongly
influence the characteristics of the Li(2s) resonance state
due to the lateral change of the target electron density. Charge
transfer at the silicon substrate was found to depend on
the electronic structure and morphology of the silicon substrate
since ionization (neutralization) of Li (Li+) is enhanced near
symmetric Si dimers, while charge transfer was predicted
as unlikely in the buckled-dimer model for surface recon-
struction. Similar structure-dependent and lateral-modulation
effects were observed in the ionization of Li atoms on
Al clusters [23]. Lateral changes of the AL width of H−
on free-electron vicinal surfaces were reported to cause
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an enhancement of the anion-neutralization rates at surface
steps [24]. These examples show that lateral modulation
of the projectile-surface interaction entails site-specific and
trajectory-dependent effects in the charge-transfer dynamics
that influence the final charge state of a projectile after
reflection on the surface.

In this work we follow up on these surface-structure
and trajectory-dependent effects during charge transfer and
discuss numerical results for the formation of H− on (2 × 1)-
reconstructed Si(100) surfaces. The paper is organized as
follows. In Sec. II we review the Newns-Anderson model
for one-electron charge transfer in ion-surface collisions.
In Sec. III A we discuss the most relevant features of the
static-electronic structure of the reconstructed Si(100) surface.
In Sec. III B we present numerical results in the fixed-ion
approximation (FIA), i.e., by analyzing charge transfer for
a projectile at a fixed distance in front of the surface. In
Sec. III C we consider hydrogen atoms with an incident
kinetic energy of 1 keV and study the time evolution of
their charge states during scattering along selected trajectories
directed parallel or perpendicular to a row of Si dimers. Unless
indicated otherwise, we use atomic units throughout this work
(e = h̄ = me = 1).

II. THEORY

We describe the motion of the projectile classically, in terms
of specific scattering trajectories R(t), and model the electronic
dynamics during the projectile-surface interaction within the
Newns-Anderson model [16–19] based on the Hamiltonian,

H (R(t))

= εa(R(t))
∑

σ

c†aσ caσ +
∑
n,σ

∫
SBZ

d2k||
(2π )2

εn(k||)c
†
n,k||σ cn,k||σ

+
∑
n,σ

∫
SBZ

d2k||
(2π )2

[Va,nk|| (R(t))c†aσ cn,k||σ + H.c.],

(1)

which owes its time dependence solely to the projectile
motion R(t). The label n distinguishes electronic valence and
conduction bands of the substrate, k|| is the parallel Bloch
quasimomentum that changes over the first surface Brillouin
zone (SBZ), and σ labels the component of the electronic
spin along the surface normal. The anticommuting fermion
operators caσ and cn,k||σ annihilate electrons in the H− affinity
and substrate electronic states with energies εa and εn(k||),
respectively, and Va,nk|| denotes the spin-independent matrix
elements for electron transfer between the substrate and the
projectile. Direct transitions Vn′k′

||,nk|| among band-structure
states are neglected, which is equivalent to orthogonalizing
the AL wave function to the substrate orbitals as shown in
Sec. II B.

The charge-transfer dynamics is given by Heisenberg’s
equations of motion

i
d

dt
cq(t) = [cq,H (t)] =

∑
q ′

Hqq ′ (t)cq ′(t) (2)

for q ∈ {aσ,{nk||σ }}. The expansion of the time-dependent
operators cq(t) over unperturbed modes c0

q = cq(t0),

cq(t) =
∑
q ′

Sqq ′ (t) c0
q ′ , (3)

leads to a system of coupled equations of motion

i
d

dt
Sqq ′ (t) =

∑
q ′′

Hqq ′′ (t)Sq ′′q ′ (t) (4)

for the transition amplitudes Sqq ′ (t). These are subject to
the initial conditions Sk′k(t0) = δk′k for εk � εF , Sak(t0) = 0,
Ska(t0) = 0, and Saa(t0) = 1, where εF is the Fermi level of
the substrate and t0 is a time long before the collision. The
occupation numbers of the one-electron states at times t > t0
are expressed in terms of the amplitudes as

nq(t) = 〈�(t0)|c†q(t)cq(t)|�(t0)〉 =
∑
q ′

n0
q ′ |Sqq ′ (t)|2, (5)

where

|�(t0)〉 =
( ∏

εk�εF

c
†
k(t0)

)
c†a(t0)|vac〉 (6)

is the initial state of the electronic system and |vac〉 =
|0,0, . . . ,0, . . .〉 is the vacuum state of noninteracting particles.
The Pauli exclusion principle implies that electrons occupy
different quantum states with occupation numbers 0 � nq �
1. In particular, the occupation of the anion state

na(t) = n0
a|Saa(t)|2 +

∑
k

n0
k|Sak(t)|2 (7)

is determined by the survival of the active electron in the initial
anion state (first term) and electron capture from substrate
bands (second term). Similarly, the substrate-level occupations

nk(t) = n0
a|Ska(t)|2 +

∑
k′

n0
k′ |Sk′k(t)|2 (8)

have contributions due to electron loss from the projectile
to the substrate (first term) and indirect continuum-continuum
transitions between substrate levels k ∈ {nk||σ } (second term).

The equations of motion [Eq, (4)] can be recast into a form
that displays the coupling between the affinity and substrate
levels,

i
d

dt
Sk′k(t) = εk′Sk′k(t) + Vk′a(t)Sak(t), (9)

i
d

dt
Sk′a(t) = εk′Sk′a(t) + Vk′a(t)Saa(t), (10)

i
d

dt
Sak(t) = εa(t)Sak(t) +

∑
k′

Vak′ (t)Sk′k(t), (11)

i
d

dt
Saa(t) = εa(t)Saa(t) +

∑
k

Vak(t)Ska(t). (12)

The elimination of the final substrate channels by time
integration results in

Sk′k = e−iεk′ (t−t0)δk′k +
∫ t

t0

dt ′e−iεk′ (t−t ′)Vk′a(t ′)Sak(t ′) (13)
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and

Sk′a(t) =
∫ t

t0

dt ′e−iεk (t−t ′)Vk′a(t ′)Saa(t ′). (14)

Substitution of Eqs. (13) and (14) into Eqs. (11) and (12),
respectively, leads to the set of uncoupled integrodifferential
Volterra equations

i
dS̃aq (t)

dt
=

∫ t

t0

dt ′�̃aa(t,t ′)S̃aq(t ′) + Ṽaq(t ′), (15)

with the definitions

S̃aq(t) = exp

(
i

∫ t

t0

dt ′εa(t ′)
)

Saq(t), (16)

the retarded self-energy kernel for the AL

�̃aa(t,t ′) = −i
∑

k

Ṽak(t)Ṽ ∗
ak(t ′), (17)

given in terms of the matrix elements for negative-ion
formation

Ṽaq(t) = (1 − δaq) exp

(
i

∫ t

t0

dt ′ωak(t ′)
)

Vak(t), (18)

and the transition frequencies between adsorbate and substrate
energy levels ωak(t) = εa(t) − εk .

A. Fixed-ion approximation

In FIA the time scales for the electronic dynamics and the
motion of the projectile are assumed to be so far apart that
the electronic distribution has time to fully equilibrate for any
fixed position R of the projectile along its scattering trajectory.
In this limit the analysis of the electronic dynamics simplifies
significantly since the couplings to the substrate become time
independent.

Setting t0 = 0 and using the Laplace transformation of the
transition amplitudes in Eqs. (9)–(12),

Gq ′q(z) =
∫ ∞

0
dt e−ztSq ′q(t) (19)

leads, in FIA, to equations of motion for the amplitudes Gq ′q ,

(iz − εk′)Gk′k(z) − Vk′aGak(z) = δk′k, (20)

(iz − εk)Gka(z) − VkaGaa(z) = 0, (21)

(iz − εa)Gaa(z) −
∑

k

VkaGak(z) = 1, (22)

(iz − εa)Gak(z) −
∑
k′

Vak′Gk′k(z) = 0, (23)

with solutions

Gk′k(z) = G0
k′(z)[δk′k + Vk′aGak(z)],

Gk′a(z) = G0
k′(z)Vk′aGaa(z),

(24)
Gak(z) = Gaa(z)VakG

0
k(z),

Gaa(z) = [iz − εa − �a(z)]−1.

These solutions are given in terms of the retarded AL self-
energy function

�a(z) =
∑

k

|Vak|2
iz − εk

, Re[z] > 0, (25)

the unperturbed propagators of target electrons G0
k(z) = (iz −

εk)−1, and the perturbed propagator Gaa(z) of the projectile
electron. The amplitudes Sqq ′ (t) are obtained by an inverse
Laplace transformation,

Sq ′q(t) = 1

2πi

∫
C

dz eztGq ′q(z), (26)

where C is a straight-line path in the complex z plane parallel
to the imaginary z axis with Re[z] = η, η is an infinitesimal
positive constant.

The complex poles zn = −iεn − 	n/2 of the Green’s
function, analytically continued onto the second Riemann
sheet of complex energy, correspond to the quasistationary or
resonance states of the adsorbate system. The resonance that
correlates asymptotically to the undistorted AL is called the
AL resonance. By taking the limit η → 0, the self-energy splits
into its real and imaginary parts according to �a(−iε + 0) =

a(ε) − i�a(ε), where

�a(ε) = π
∑

k

|Vak|2δ(ε − εk) (27)

is the chemisorption width function and


a(ε) = − 1

π
P

∫
dε′ �a(ε′)

ε′ − ε
(28)

the chemisorption shift function (P designates Cauchy princi-
pal value integral). The projected density of states (PDOS) of
the interacting system,

ρa(ε) = − 1

π
ImGaa = 1

π

�a(ε)

[ε − εa − 
a(ε)]2 + �2
a(ε)

, (29)

is the density of admixture of the anionic state into the
continuum of target states of energies ε. For a substrate with
a large bandwidth and weakly energy-dependent PDOS, the
shift function 
a is usually negligible. In this case the PDOS
distribution is an isolated Lorentzian with a half width at half
maximum 	a/2 = �a , which corresponds to the static AL
decay width due to electron tunneling into the substrate. In the
opposite limit, when the adsorbate is interacting with a narrow
band of substrate states, 
a(ε) may acquire a considerable
magnitude and energy dependence and the PDOS distribution
may split into a pair of peaks corresponding to the bonding
and antibonding adsorbate resonance levels. We determine
the resonance energies εn and decay widths 	n in the FIA
by χ2 fitting the PDOS distribution to a superposition of
Breit-Wigner resonance profiles

ρa(ε) ≈
∑

n

Zn

	n/2π

(ε − εn)2 + (	n/2)2
, (30)

where Zn are position-dependent amplitude factors.
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B. Implementation of the Newns-Anderson model
for moving ions

1. Orbitals and matrix elements

In order to specify all orbital energies and coupling matrix
elements in the Newns-Anderson Hamiltonian in Eq. (1),
we first compute the ground-state electron density nTF and
screened single-particle pseudopotential of the unperturbed Si
substrate

vs(r) = vcore(r) +
∫

d3r′ nTF(r′)
|r − r′| + δELDA

xc

δn(r)

∣∣∣∣
n=nTF

(31)

in Thomas-Fermi–von Weizsäcker approximation [24–26].
The first term in vs is the local unscreened pseudopotential
of the Si ionic cores and ELDA

xc is the exchange-correlation
energy of the electron gas in local-density approximation.
For our numerical calculations we employ an empirical core
potential [27] vcore, represent the exchange energy in Dirac
approximation [28], and use the Wigner parametrization for the
correlation energy [29]. Given the orbital-free Thomas-Fermi
electron density nTF, we numerically solve the single-particle
Schrödinger equation( − 1

2∇2
r + vs(r)

)
ϕk(r) = εkϕk(r) (32)

to obtain the substrate electronic wave functions ϕk with
energies εk [30]. The wave functions

ϕk(r) = eik||·r||un,k|| (r) (33)

are Bloch wave functions of definite parallel quasimomentum
k||, where the functions un,k|| exhibit the periodicity of the
crystal in the surface plane,

un,k|| (r) =
∑
G||

cn,G||+k|| (z)eiG||·r|| , (34)

{G||} are the surface reciprocal lattice wave vectors, and z is
the electronic coordinate normal to the surface.

Introducing the hydrogenic core potential vp(r), the full
Hamiltonian of the active electron can be cast into the form

hr(t) = − 1
2∇2

r + vs(r) + vp(r − R(t)). (35)

We approximate the projectile potential by a regularized zero-
range Fermi potential [31,32],

vp(r) = 2π

α
δ(3)(r)

∂

∂r
r, (36)

with α = √−2εa . This contact potential holds a single bound
state with energy ε0

a = −0.75 eV equal to the hydrogen
electron affinity and corresponding wave function

ϕa0 (r) =
√

α

2π

e−αr

r
. (37)

The orbital ϕa is not orthogonal to the substrate orbitals ϕk ,
but can be orthogonalized by the redefinition

|a〉 = |a0〉 −
∑

k

|k〉〈k|a0〉, (38)

leading to the transition matrix elements

Vak = 〈a0|vp|k〉 −
∑
k′

〈a0|k′〉〈k′|vp|k〉. (39)

In our case, since direct transitions among band-structure states
〈k′|vp|k〉 = 0 are neglected, the transition matrix elements
simplify to

Vak = 〈a0|vp|k〉. (40)

We approximate the projectile level shift

εa(R(t)) = 〈a|hr(t)|a〉 ≈ ε0
a − 1

4Z(t)

ε(0) − 1

ε(0) + 1
(41)

by including only the electrostatic attraction of the active
electron to its induced image charge on the substrate. We use
ε(0) = 11.9 for the static bulk dielectric constant of Si [33]
and neglect the lateral variation of the electric self-image
potential by retaining its dependence on the distance Z(t)
of the projectile nucleus from the first atomic layer of the
surface.

2. Frame transformation

The matrix elements Vak are evaluated in a substrate-fixed
Galilean frame of reference. Since the wave function of the
negative-ion AL is defined in the rest frame of the projectile,
we Galilei transform the projectile-centered wave function to
the surface-fixed frame by multiplying it with an electron-
translation factor (ETF) [34–36]

ϕ̃a0 (r,t) = ei(v·r−v2t/2)ϕa0 (r − R(t))e−iε0
a t , (42)

where v = v(t = +∞) is the asymptotic projectile velocity
after reflection at the surface. The ETF incorporates the correct
outgoing boundary condition in the negative-ion formation
channel. Our choice of the asymptotic outgoing projectile
velocity in the ETF is an approximation for the incident
part of the projectile trajectory that becomes accurate in the
limit of grazing incidence, v|| � vn, where v|| and vn are the
components of the projectile velocity in the surface plane and
in the direction perpendicular to the surface, respectively. This
choice is supported by the loss of memory of the projectile
charge state along the incident trajectory we find in our
numerical results (see Sec. III C below).

Subject to this transformation, the active electron acquires
a momentum v and the AL shifts kinematically according to
ε0
a → ε0

a + v2/2. The transition matrix element

Vak(t) = 〈ã0(t)|va|k〉 =
√

2παe−iv·R(t)ϕn,k|| (R(t)) (43)

factorizes into a product of a velocity-dependent phase factor
and an electronic-structure-dependent factor.

3. Projectile trajectory

The center-of-mass motion of the projectile is treated
classically, based on Newton’s equation of motion,

M
d2R
dt2

= −∇RU (R), (44)

where M = 1837me is the projectile mass and U (R) is
the scattering potential, which we model as a superposition
of repulsive Thomas-Fermi-Molière interatomic potentials
[37,38],

U (R) = ZtZp

∑
Rt

3∑
k=1

ak

e−bk |R−Rt |/aF

|R − Rt | , (45)
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and Rt are the position vectors of the substrate-atomic cores.
For the given nuclear charges of substrate and projectile cores,
Zt = 14 and Zp = 1, the Firsov screening length is aF =
0.8853(Z1/2

t + Z
1/2
p )−2/3 = 0.3137 and the remaining param-

eters are {ak} = {0.35,0.55,0.1} and {bk} = {0.3,1.2,6.0}.

4. Geometry and numerical representation of the
(2 × 1)-reconstructed Si(100) surface

We represent the effects of surface reconstruction within
the symmetric dimer model [39]. According to this model,
Si atoms in the first atomic layer of the unreconstructed
substrate move pairwise toward each other and form dimers.
The symmetric Si dimers are oriented, their bonds forming
rows in the surface plane. We model the substrate crystal in
a periodically replicated slab geometry. The slab represents
a finite piece of the substrate with sufficient thickness to
reproduce the bulk valence properties of the Si crystal. The unit
supercell shown in Fig. 1(a) consists of 13 layers of Si cores
plus a vacuum region equivalent to 6 layers of Si in thickness.
The height of the slab is 25a0/4, where a0 = 10.263 is the
bulk lattice constant for Si.

The irreducible quarter of the SBZ, together with the four
high-symmetry points, is shown in Fig. 1(b). We sample
one-half of the entire SBZ by including Nk|| = 40 wave vectors
in the irreducible part of the SBZ and calculate the wave
functions of 75 bands up to the vacuum energy level. We
thus include 40 × 75 = 3000 discrete, closely spaced energy
levels in this calculation. We employ a plane-wave basis set
of size (Nx,Ny,Nz) = (24,23,26) for the representation of the
orbital-free density nTF(r) and integrate numerically over the

FIG. 1. (a) Orientation of the first four atomic planes of the
(2 × 1)-reconstructed Si(100) surface, viewed from the vacuum side
in the direction normal to the surface. The unit cell is denoted by
straight dashed lines. The numbers label the layer where Si atomic
cores are located: 1 is the first surface layer, 2 is the second layer, etc.
Surface layers are separated by the distance a0/4, where a0 = 10.263
is the bulk lattice constant of the silicon crystal. Except for the first
surface layer, the nearest neighbors in a given plane are separated by
d = a0/

√
2. The (2 × 1) reconstruction affects the arrangement of

atoms in layer 1, i.e., silicon atoms move pairwise in the X direction
and form dimers of bond length d/2. The numbers enclosed in circles
represent impact locations of select scattering trajectories discussed
in this work. (b) Irreducible part of the surface Brillouin zone with
the four high-symmetry points corresponding to the planar unit cell.
The Cartesian coordinates of these points are 	 = (0.000,0.000),
J = (0.216,0.000), K = (0.216,0.433), and J ′ = (0.000,0.433).
(c) Scattering geometry: Incident neutral hydrogen atoms emerge as
hydrogen anions after reflection form the surface. v|| designates the
surface projection of the collision velocity. Our numerical examples
are restricted to projectiles directed (c) parallel or (d) perpendicular
to Si-dimer rows.

surface area ASBZ of the SBZ according to

1

ASBZ

∫
SBZ

d2k||
(2π )2

→ 1

Nk||

∑
k||

. (46)

Figures 1(c) and 1(d) show the scattering geometry and surface
projections of two trajectories that are aligned either parallel
or perpendicular to rows of dimer bonds on the reconstructed
surface.

III. NUMERICAL RESULTS AND DISCUSSION

A. Static-electronic structure of the substrate

The unreconstructed Si surface exhibits two broken bonds
per surface atom from which two surface-state bands arise:
the dangling-bond band and the dimerlike bridge band [30].
These two bands are only partially occupied in the ground
state of the surface. In the (2 × 1)-reconstructed surface, atoms
in the surface layer have moved pairwise to form rows of
aligned symmetric dimers. Thus half of the broken bonds of
the clean unreconstructed surface rebond after reconstruction.
In Fig. 2(a) we show the Thomas-Fermi charge density nTF(r)
of the (2 × 1)-reconstructed surface in Eq. (31). The density
is enhanced at the dimer bonds, which exhibit slightly larger
amplitudes than the bulk Si-Si bonds.

Figure 2(b) shows the screened single-particle pseudopo-
tential vs(r) derived from the Thomas-Fermi density according
to Eq. (31). The band structure supported by the screened
potential is displayed in Fig. 3. The distribution of energy
levels exhibits a band gap near the Fermi level. Two bands
of surface states (indicated by dashed lines in Fig. 3) are
found inside the gap with energies near the Fermi energy. They
change in a similar way as functions of the quasimomentum
k||. The lower-energy surface state is partially occupied
with a bandwidth of 1.15 eV. Our calculation based on the
Thomas-Fermi approach predicts a splitting between the two
bands of about 1 eV measured from the band bottoms, while
angle-integrated photoemission measurements [13] indicate
a splitting of only 0.5 eV. This discrepancy may be due to
the dimer-bond length we used as input for our calculation.
However, the dispersion relation we obtain for these states is in
good agreement with other theoretical results for the electronic

(a) (b)

FIG. 2. Contour map of (a) the ground-state charge density of the
(2 × 1)-reconstructed Si(100) surface and (b) the screened single-
particle pseudopotential vs(r). The graphs show the vacuum region
on top and extended six layers into the bulk. The contour line spacing
is (a) 0.008 a.u. and (b) 0.15 a.u. Only negative values of vs relative
to the vacuum energy level are shown in (b). The positions of the
Si-atomic cores in the first surface layer are indicated by dots.
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FIG. 3. (Color online) Surface band structure of the (2 × 1)-
reconstructed Si surface in the symmetric dimer model. The band
structure is shown along a close contour connecting (by straight
lines) the four high-symmetry end points in the irreducible part
of the surface Brillouin zone. In the gap region near the Fermi
level (εF = −0.152 a.u.), the surface-state bands of π bonding and
antibonding π∗ orbitals are given by the upper (blue) and lower (red)
dashed lines, respectively.

structure of reconstructed Si surfaces. The calculated splitting
is between 1.5 and 2 eV according to Refs. [40,41] and about
1 eV according to Ref. [42].

The charge densities of the two surface states are shown
in Fig. 4 at three points on a straight-line path between
the two high-symmetry end points J and K . The densities
exhibit molecular π -orbital character due to hybridization of
atomic spz dangling bonds of the unreconstructed surface. In
the zeroth-order approximation, linear combinations of the
spz states on the left and right Si atoms are degenerate and
have opposite reflection parities. During the reconstruction,

Si atoms move pairwise to each other, as their dangling-bond
wave functions mix, giving rise to the even π bonding and odd
π∗ antibonding dimer-dangling-bond bands shown in Fig. 4.

The amplitude of the bonding π states progressively
weakens near the surface as the quasimomentum ky → 0
[Figs. 4(a)–4(c)], while the electron in this state is transferred
into the bulk [Fig. 4(c)]. Near the J point, π orbitals are
promoted above the Fermi level by approximately 1 eV, which
is nearly equal to the width of the π band. In contrast, we find
that the π∗ band does not significantly change its antibonding
character as a function of the quasimomentum k|| along the
same path in the SBZ [Figs. 4(d)–4(f)].

B. Fixed-ion approximation

The PDOS ρa(ε) is shown in Figs. 5(a)–5(d) for fixed
projectile-surface distances Z relative to the position of the
first atomic layer. The lateral position of the adsorbate atom
is fixed on top of the Si-dimer atom as shown in the inset. At
large distances Z = 10 [Fig. 5(a)], where the interaction with
the surface-electronic structure is weak, the PDOS contains
a single sharp Lorentzian peak corresponding to the AL
resonance. The energy distribution of the AL resonance does
not extend below the Fermi level. As the distance to the
surface decreases to Z = 4 [Fig. 5(b)], a broad resonance
structure develops in the PDOS. At Z = 3 [Fig. 5(c)] the
PDOS splits into a pair of resonance peaks separated by a
gap. The lower-energy affinity-level resonance, which emerges
below the Fermi level, is energetically degenerate with bulk
valence bands. In view of this opposite bonding character and
to simplify the notation, we designate the energetically lower
resonance state by |AL〉. At small chemisorption distances
the two resonance states are relatively short lived, with level
widths of 0.5 eV. In close proximity to the first surface layer,

(a) (b) (c)

(d) (e) (f)

FIG. 4. Charge densities of (a)–(c) π bonding and (d)–(f) π∗ antibonding surface states on the (2 × 1)-reconstructed Si(100) surface. The
first 4.5 layers are shown. The parallel Bloch momentum k|| changes along a straight-line path connecting the high-symmetry end points K

and J in the surface Brillouin zone. The positions of the Si cores forming the surface dimer are represented by the dots.
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(a) (b)

(c) (d)

FIG. 5. Density of states projected onto the affinity-level orbital
of H− for fixed normal H-surface distances Z. The lateral position
of the projectile is on top of a Si-dimer atom. AL designates the
antibonding affinity-level resonance and AL denotes the lower-energy
bonding affinity-level resonance. (a) Z = 10, (b) Z = 4, (c) Z = 3,
and (d) Z = 1 a.u. The vertical dashed lines in (a)–(d) indicate the
position of the Fermi level at εF = −0.152 a.u.

at Z = 1 [Fig. 5(d)], the center of the higher-energy AL
resonance distribution has saturated at approximately 2 eV
above the Fermi level and its has become narrower. At the
same time, spectral weight in the PDOS is seen to transfer to
the lower-energy bonding |AL〉 resonance, which overlaps the
energetically broader bulk resonance structures.

Contour plots of the chemisorption width function �a(ε,Z)
and the PDOS ρa(ε,Z) are shown in Figs. 6(a) and 6(b),
respectively, for a fixed lateral position of the adsorbate atom
on top of a Si-dimer atom. At large distances to the surface, the
chemisorption width function in Fig. 6(a) is concentrated near
the conduction bands. As Z decreases, the distribution peaks
in the band-gap region, indicating strong hybridization with
the surface-state bands. Similarly, the PDOS distribution has
distinct contributions from conduction bands at large distances
to the surface [Fig. 6(b)]. The center of the distribution moves
toward lower energies as the distance Z decreases due to
the attractive image-charge interactions. The width of the
PDOS is narrow over this range of physisorption distances
and dominated by the long-lived antibonding |AL〉 resonance.
At smaller distances, the hybridization with the surface-state
bands causes a redistribution in the PDOS, which splits near
Z = 4. The center of the higher-energy part of the distribution
changes slowly with the decrease of distance Z and saturates
at the upper edge of the band gap since the hydrogen-anion
affinity cannot penetrate the forbidden gap region (see also
Fig. 3). At the same time, spectral weight shifts across the
Fermi level into the lower-energy part of the distribution. At
very small distances (Z < 2) the PDOS distribution peaks
near and below the lower edge of the occupied surface-state
band due to contributions of the lower-energy bonding |AL〉
resonance state.

(a) (b)

(c) (d)

FIG. 6. (Color online) Results in the fixed-ion approximation, i.e.,
for fixed but variable distances Z normal to the surface. The lateral
position of the hydrogen atom is fixed on top of a silicon-dimer atom,
as shown in the inset in (c). (a) Contour plot of the chemisorption
width �a(ε,Z) of the adsorbate system. (b) Density of states ρa(ε,Z)
projected onto the affinity-level orbital of H−. The upper (red) and
lower (blue) arrows point to the AL and ĀL resonance, respectively.
(c) Energy levels of the hydrogen affinity-level resonances states
near the (2 × 1)-reconstructed Si(100) surface. The higher-energy
resonance is the antibonding AL resonance (closed-circle line) and the
lower-energy resonance is the bonding AL resonance (closed-triangle
line). The projectile (open circle) interacts with a Si dimer (closed
circles). The solid line shows the image-potential shifted affinity level
εa(Z) of H−. The dashed line indicates the position of the Fermi level
of the Si surface. (d) Static level width of the hydrogen affinity-level
resonance states near the (2 × 1)-reconstructed Si(100) surface. The
same symbol notation is used as in (c): closed-circle line gives static
level width of the antibonding AL resonance and the closed-triangle
line gives the decay width of the bonding AL resonance.

The static energy positions and widths of the pair of AL
resonance states are shown in Figs. 6(c) and 6(d). At large
distances to the surface, the AL level shifts toward the Fermi
level due to image-charge interactions and is long lived, with
a lifetime of τAL = 	−1

AL � 100. The neutralization rate of
the negative ion is comparable to its neutralization rate near
free-electron surfaces, which, in the jellium approximation,
is given by 	

(jellium)
AL (Z = 6) ≈ 0.2 eV [7,10]. Near Z ≈ 5

the energy of the AL starts to deviate from the pure image
shift and eventually saturates for even smaller distances at
approximately 2 eV above the Fermi level. At the same
time, hybridization interactions to surface-state bands cause
the appearance of the lower-energy bonding affinity-level
resonance |AL〉, which is relatively short lived with a life-
time τAL � 50 a.u. At small chemisorption distances Z ≈ 3,
neutralization rates of negative ions at free-electron surfaces
are larger by a factor of 5 such that AL resonance states are
relatively long lived near the reconstructed Si surface. The
occupied bonding affinity-level resonance state |AL〉 shares
the anion character and becomes energetically accessible for
charge transfer at small distances to the surface. With regard to
the dynamic situation discussed in Sec. III C, we note that the
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(a) (b)

FIG. 7. (Color online) Change of the (a) energy and (b) width of the antibonding hydrogen affinity-level resonance near the (2 × 1)-
reconstructed Si(100) surface as a function of the lateral position X for different fixed H-surface distances Z, measured relative to the first
surface layer: Z = 5 (circles), Z = 4 (upper triangles), Z = 3 (lower triangles), and Z = 2 a.u. (diamonds).

repulsive interaction between the |AL〉 and |AL〉 resonance
states suggests two possible pathways for the negative-ion
formation that both contribute to the final population of the
affinity level: the active electron may either (i) remain in the
energetically higher |AL〉 resonance by adiabatically avoiding
crossing with the lower-energy |AL〉 resonance or (ii) populate
the AL from promoted valence-band states.

Surface reconstruction affects the characteristics of the
resonance states, which become sensitive to the nonuniformity
and lateral change of the target electron density. In Fig. 7(a)
the lateral corrugation of the energy level of the AL resonance
as a function of the reconstruction coordinate X is shown for
fixed positions Z normal to the surface. The X axis is oriented
along dimer rows and the X-Z plane intersects dimer atoms in
the top layer [labeled 1 in Fig. 1(a)]. At close distances to the
surface Z � 3 a.u., the lateral level shift is significant, ∼1 eV.
The energy level attains a local minimum at the middle of a
dimer bond, while interactions with individual dimer atoms
are repulsive, and the AL exhibits maxima at the positions of
Si atoms in the first surface layer. The lateral change of the
AL width is shown in Fig. 7(b). The effect of the corrugation
of the AL width is negligible; however, near Si dimers the
width develops tiny but rapid lateral oscillations. The AL width
follows, on average, the characteristics of the (2 × 1) surface
morphology. The wave function of resonance states can be
evaluated using the expansion over basis states (see Ref. [43])

ψn(r; R) =
√

Zn

(
ϕa(r; R) +

∑
k

Vak(R)

En(R) − εk

ϕk(r)

)
,

(47)
where En(R) = εn(R) − i	n(R)/2 are the complex resonance
energies, Zn are normalization factors

Zn(R) =
(

1 +
∑

k

|Vak(R)|2/[En(R) − εk]2

)−1

, (48)

and

|ϕa〉 = 1√
1 − ∑

k |〈k|a0〉|2

(
|a0〉 −

∑
k

|k〉〈k|a0〉
)

(49)

is the Gram-Schmidt orthogonalized state of the hydrogen-
negative-ion affinity.

The charge density of the AL resonance states are shown
in Figs. 8(a) and 8(b) for the chemisorption distance Z = 3.5
and for a projectile located on top of a Si-dimer atom. Charge
transfer in the direction normal to the surface is blocked and
the active electron tunnels into the bulk through the middle
of the Si dimer at a small angle relative to the inward surface
normal. Near the surface, wave functions of the surface-state
bands spread laterally. The electronic density of the bonding
AL resonance protrudes parallel to the surface and extends
over three times the size of a single Si dimer. Induced
weak interdimer correlations are noticeable. In contrast,
the more compact electronic distribution of the antibonding
AL resonance results from hybridization of the π∗ and
conduction-band states. The lateral corrugation and orientation
dependence of the projectile-surface interactions in the FIA
suggests that charge transfer at the reconstructed surface will
exhibit the directional character of the dimer formation and
depend on the alignment of the surface-projected trajectory
relative to the azimuthal axis of the crystal.

C. Charge-transfer dynamics

Allowing for the motion of the projectile in the calculation
of the charge-transfer dynamics, we numerically solve the
equations of motion [Eq. (15)]. Using the Nystrom method
[44], we discretize Eq. (15) on an equidistant time mesh,
with N points and spacings h = T/N , that extends over a
time interval T . Both N and T are chosen sufficiently large
to guarantee numerical convergence. We evaluate the time
integrals in Eqs. (15) and (18) by trapezoidal quadrature and
approximate the time derivative by two-point finite differences.
The initial conditions correspond to neutral hydrogen atoms
approaching the substrate at a collision energy of 1 keV. The
occupation number of the AL of H− prior to the collision is
na(t0) = 0. After the collision it can be written as an overlap
of two energy distributions [45]

na =
∫

dε n0(ε)S(ε), (50)
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(a) (b)

FIG. 8. Contour map of the charge density for the (a) |AL〉 and (b) |AL〉 affinity-level resonance states of H− near the (2 × 1)-reconstructed
Si(100) surface. The position of the projectile at the distance Z = 3.5 a.u. on top of Si-dimer atoms (solid circles) is indicated by the open circle.

where

S(ε) =
∑

k

|Sak|2δ(ε − εk) (51)

is the tunneling density of states (TDOS) projected onto the
affinity-level orbital and n0(ε) = θ (εF − ε) is the Fermi-Dirac
distribution function at zero surface temperature.

1. Negative-ion formation and memory effects

Figure 9(a) shows the modulus of the self-energy kernel
|�(t,t ′)| for two grazingly incident trajectories with incidence
angle �inc = 5◦. The trajectories are directed either parallel
(�inc = 0◦) or perpendicular (�inc = 90◦) to rows of Si dimers,
where �inc is the angle of alignment of the incident trajectories
relative to the [100] crystal direction. �̃(t,t ′) is the amplitude
for the active electron to tunnel into and out of the continuum

(a)

(c) (d)

(b)

FIG. 9. (Color online) (a) Amplitude of the electronic self-energy kernel near the (2 × 1)-reconstructed Si(100) surface as a function of
time t . The parameter τ characterizes the range over which the system holds a memory of its previous charge state. The kernel is evaluated for
grazingly incident projectiles with �inc = 5◦ directed parallel to rows of Si dimers. (b) Same as (a) for grazingly incident projectiles directed
perpendicularly to rows of dimer bonds. (c) Occupation of the affinity level of the hydrogen anion na(t) as a function of time for the trajectory
in (a). (d) na(t) for the trajectory in (b).
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of target states during the time interval τ = t − t ′. If τ is
shorter than the characteristic time for the parallel motion
T|| = d/2v|| ≈ 20 (given by the dimer-bond length d/2 and the
velocity component in the surface plane v||), the self-energy
amplitude develops a temporal modulation with the period
of the reconstructed surface lattice of ionic cores. This is
best understood in the limit τ → 0, where the self-energy
function can be expressed by the integrated static fixed-ion
chemisorption width [Eq. (27)],

�̃(t,t) = 1

πi

∫
dε �a(ε,R(t)), (52)

as an expression of the irreversible electron loss from the AL
into valence and conduction bands of the substrate.

For finite time intervals τ > 0, the system develops a
memory of its previous charge state. The amplitude of the
self-energy kernel is seen to decrease exponentially over time
on a scale of τ < 20, which approximately corresponds to the
inverse width of the Si-surface band gap [see also Fig. 6(a)].
For time intervals τ > 20, the superimposed oscillatory struc-
ture is due to interference of electron tunneling into and out
of different substrate states. However, since the strength of
these interactions is suppressed by more than a factor of 2,
as compared to the strength of short-time correlations, we
expect the electronic system to adjust quasiadiabatically to the
motion of the projectile at this collision energy. Similar effects
are found for incident projectiles that move perpendicularly
to dimer rows [Fig. 9(b)]. The major difference is caused
by surface reconstruction, which changes the distribution of
scattering centers experienced by the projectile.

The occupation number na(t) of the projectile level as
a function of time is shown in Figs. 9(c) and 9(d) for the
two trajectories discussed in Figs. 9(a) and 9(b), respectively.
Prior to reflection from the surface, electron capture from the
valence bands accumulates charge on the negative ion. Very
close to the surface, the projectile moves at a constant speed
v|| parallel to the surface, interacting with many Si atoms.
The negative-ion fractions stabilize near na ≈ 30% during
large time interval of 500 a.u. and charge states oscillate over
time following the lateral period of the (2 × 1) reconstruction.
After reflection, electron loss to conduction-band states of
the substrate prevails and negative-ion formation is unlikely
[Figs. 9(c) and 9(d)], with the occupation number na being
less than 1%. To investigate the dependence of charge transfer
on the collision velocity v, we further focus on the effect of
electron-translation phase factors used in our computation.

2. Kinematic level shifts

In Figs. 10(a)–10(d) we show the negative-ion occupation
numbers na(t) for different scattering trajectories of common
impact location aligned perpendicularly to a row of Si dimers
(�inc = 90◦) and for angles of incidence �inc ∈ [5◦,90◦]
relative to the surface normal. For normal incidence �inc =
90◦ [Fig. 10(a)], we find that the exclusion of the ETF affects
the negative-ion yields on the incident part of the trajectory;
however, final outgoing negative-ion yields are independent
of the translation phase factor. By decreasing the angle of
incidence to �inc = 45◦ [Fig. 10(b)], we do not find qualitative
changes in outgoing negative-ion yields. The negative-ion

(a) (b)

(c) (d)

FIG. 10. Occupation of the affinity level near the (2 × 1)-
reconstructed Si(100) surface. The dashed (solid) lines are theoretical
results with (without) the electron translation phase factor. The
collision energy is 1 keV. The angles of incidence �inc are (a) 90◦,
(b) 45◦, (c) 10◦, and (d) 5◦. The time of closest approach on the
trajectory of the projectile is indicated by the arrows.

yields are large for normal incidence (na ≈ 10%), indicating
that target electrons are efficiently promoted into the AL of
the projectile during the collision. As the projectiles become
grazingly incident, with �inc � 10◦ [Figs. 10(c) and 10(d)], the
anion fractions stabilize with na � 1% and are not changed by
the exclusion of the ETF.

Using Eq. (40), we can write the anion-formation matrix
element for grazing incidence as

Ṽak(t) ≈
√

2παexp

(
i

∫ t

0
dt ′εa(t ′)

)
un,k|| (R(t))e−i(εn,k|| −k||·v||)t ,

(53)
clearly exposing a lateral Doppler shift of the substrate energy
levels

εn,k|| → εn,k|| − k|| · v||. (54)

If the quasimomentum k|| is antiparallel to the projectile
velocity, k|| · v|| < 0, valence-band levels can shift upward
above the Fermi level. Since the quasimomentum is defined
up to a wave vector G|| of the surface reciprocal lattice,
substrate levels can experience even more significant shifts
(k|| + G||) · v|| and become resonant with the AL at intermedi-
ate and large distances to the surface, thereby enabling electron
capture [11] [Fig. 10(c)].

3. Dependence on the surface dimer orientation

We now focus on the dependence of charge transfer on the
orientation of the parallel velocity vector v|| relative to dimer
axis of the crystal. For grazing or nearly grazingly incident
projectiles (�inc � 20◦), which are moving perpendicularly
to Si-dimer bonds (�inc = 90◦), the characteristic shift of the
target levels near the J ′ point of the SBZ is δεk = v||k

(J ′)
|| ≈

0.4 × 0.2 = 0.08 [for G|| = (0,0)]. For projectiles moving
parallel to a row of dimer bonds (�inc = 0◦), the surface
reconstruction reduces the typical level shift by a factor of
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(a) (b)

(c) (d)

FIG. 11. Occupation of the affinity level of H− near the (2 × 1)-
reconstructed Si(100) surface. Dashed lines in (a) and (b) give
anion-survival probabilities |Saa|2. Solid lines are the probabilities for
electron capture. The collision energy is 1 keV. The point of closest
approach on the trajectory is indicated by the arrow. (a) Projectiles
directed parallel to rows of Si dimers at an angle of incidence
�inc = 18◦. The exit angle is �exit = 20◦. (b) Projectiles directed
perpendicularly to dimer rows at an incidence angle �inc = 14◦. The
exit angle is �exit = 30◦. (c) Tunneling density of states S(ε) along
the trajectory in (a) (see the text for further detail). (d) S(ε) for the
trajectory in (b).

2, δεk = v||k
(J )
|| ≈ 0.2 × 0.2 = 0.04. This structure-dependent

effect is also seen in Figs. 11(a) and 11(b), where negative-ion
occupation numbers are shown for two trajectories directed
parallel and perpendicular to a dimer row, respectively. The
projectiles have a dominant parallel velocity component v|| ≈
0.19. The angle of incidence is �inc = 18◦ for the trajectory in
Fig. 11(a) and 14◦ for the trajectory in Fig. 11(b). The exit angle
to the surface is �exit ≈ 20◦ for the trajectory in Fig. 11(a)
and �exit ≈ 30◦ for the second nonspecular trajectory in
Fig. 11(b).

The ion-survival factors |Saa|2 in Figs. 11(a) and 11(b)
show that the loss of memory of initial charge states occurs
prior to reflection from the surface, while final negative-ion
yields are determined by electron capture from the target.
Prior to reflection from the surface, valence electrons undergo
transitions into the AL of the negative ion, where electronic
charge accumulates and oscillates over a time interval of
more than 200 a.u. Near the point of closest approach to the
surface, the occupation number of the projectile level reaches
a maximum of na = 40% on both trajectories. After the
reflection from the surface, electron loss to conduction-band
states entails a reduction of the projectile charge over a
time interval of approximately 100 a.u. The decay of anion
fractions after the reflection is not purely exponential over time
and shows transient oscillations. The negative-ion fractions
saturate at larger physisorption distances to the surface (Z >

5). For projectiles that move perpendicularly to dimer rows, the
final negative-ion fraction is na ≈ 3% [Fig. 11(b)], while for
surface-projected trajectories that are parallel to dimer rows it
is na = 1.5% [Fig. 11(a)].

FIG. 12. (Color online) Negative-hydrogen-ion yields on the
(2 × 1)-reconstructed Si(100) surface as a function of the exit velocity
component normal to the surface vn. The collision energy is 1 keV.
Corresponding incidence angles are in the range �inc ∈ [3◦,25◦]. Up-
ward pointing triangles give final anion yields for projectiles moving
perpendicularly to Si-dimer rows. Inverted triangles correspond to
trajectories oriented parallel to dimer rows [cf. Fig. 1(d)]. Circles
show the measured [1] negative-ion yields on Si surfaces.

In Figs. 11(c) and 11(d) we show the TDOS distribution
S(ε) [Eq. (51)] for these two scattering trajectories. As both
figures demonstrate, the main contributions to the negative-ion
formation involve transitions from the narrow surface-state
band of π electrons, which undergo promotion across the band
gap into the AL of H− (cf. Fig. 5).

The final negative-ion yield as a function of the exit velocity
vn normal to the surface is shown in Fig. 12 for trajectories
reflecting on the first atomic layer, parallel or perpendicular to
rows of Si dimers [cf. Fig. 1(c)]. The angle of incidence �inc

is between 3◦ and 25◦ and the corresponding exit angles �exit

are between 3◦ and 45◦. The measured outgoing negative-ion
fraction on Si surfaces in Ref. [1] is also shown for a collision
energy of 1 keV. The negative-ion fractions are nonmonotonic
functions of the exit velocity vn and depend on the orientation
of the surface-projected trajectory relative to the azimuthal
axis of the crystal. For scattering parallel to the dimer row,
outgoing fractions oscillate with the exit velocity vn. For vn �
0.1, nonspecular reflection results in increased negative-ion
fractions. For scattering trajectories perpendicular to dimer
rows and reflecting quasispecularly from the surface with
vn < 0.1, we find that our calculated negative-ion fraction
quantitatively reproduces the experimental vn dependence in
Ref. [1].

Despite the very good quantitative agreement of the
experimental data with the prediction of the Newns-Anderson
model for scattering along low Miller-index orientations of the
crystal, we need to mention that the measurements of outgoing
negative-ion fractions in Ref. [1] were performed for varying
orientations of the crystal sample relative to the direction of
the incident projectile beam. The projectiles were directed
at incidence angles �in ∈ [2◦,36◦] and outgoing fractions

062902-11



BOYAN OBRESHKOV AND UWE THUMM PHYSICAL REVIEW A 83, 062902 (2011)

were sampled for exit angles �exit ∈ [3◦,40◦], leading to
measured negative-ion yields below 7%. We therefore assume
that the experiment includes mainly trajectories that reflect
(almost) specularly from the surface. We further note that for
nonspecular reflections and large exit angles �exit > 45◦, our
calculated negative-ion fractions do not exceed 12% for any
azimuthal orientation of the crystal, providing evidence for the
validity of our model.

IV. CONCLUSION

We calculated the fraction of negative hydrogen ions after
the reflection of 1-keV incident neutral hydrogen atoms
from the (2 × 1)-reconstructed Si (100) surface. We find

that charge-transfer rates depend sensitively on the projectile
trajectory, surface morphology, and characteristics of the
reconstruction. For grazingly incident projectiles directed
perpendicular to silicon dimer rows, our calculated hydrogen-
negative-ion fractions reproduce the measured fractions in
Ref. [1] for outgoing projectiles with normal exit velocities
vn ∈ [0.01,0.1].
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