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We calculate near-threshold photodetachment cross sections for Rb2, Cs2, and Fr2 using the Pauli equation
method with a model potential describing the effective electron-atom interaction. Parameters of the model
potential are fitted to reproduce ab initio scattering phase shifts obtained from Dirac R-matrix calculations.
Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli
equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We find a 3P1

o

resonance contribution to the photodetachment cross section of Rb2, Cs2, and Fr2 ions. Our calculated total
photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV.
For Rb2 and Fr2 the resonance contribution is much smaller than for Cs. We therefore also provide angle-
differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribu-
tion than total cross sections.
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I. INTRODUCTION

Recent renewed interest in the processes of photodetach-
ment ~PD! of alkali-metal anions @1–3# was caused by the
highly increased energy resolution in experimental studies
allowing the detection of narrow resonances, Wigner cusps,
and other threshold structures in photodetachment processes.
Alkali-metal ions are relatively simple systems which can be
described at low energies in terms of a two-electron model.
Therefore, they are excellent candidates for quantitative
comparisons between theory and measurements. Earlier the-
oretical @4–6# and experimental @7,8# studies were concen-
trating on the region near the first excitation threshold of
neutral atoms where pronounced Wigner cusps were de-
tected.

A recently developed experimental technique combining
infrared laser and storage ring experiments allowed observa-
tion @9# of the near-threshold behavior of the PD of Cs2.
This was direct experimental confirmation of earlier theoret-
ical predictions @10,11# of the Cs2(6s6p 3P1

o) resonance
state that lies a few meV above the Cs(6s) threshold. The
existence of this state was a controversial subject for some
time. Several theoretical calculations @6,12# predicted first
that the Cs2(6s6p 3PJ

o), J50,1,2, triplet is slightly bound
whereas semiempirical calculations @10,13# based on the
analysis of the collisional broadening of Rydberg states by
Cs indicated that this triplet should be a resonance state. This
controversy was resolved by two independent theoretical
works. First, Dirac R-matrix calculations of Thumm and
Norcross @11# showed that the dielectronic polarization in the
Cs2 system pushes the Cs2(6s6p 3PJ

o) states into the con-
tinuum. This result was confirmed by independent Breit-
Pauli R-matrix calculations by Bartschat @14#. Second, Boro-

din, Fabrikant, and Kazansky @15# found that this resonance
explains the experimentally observed oscillatory dependence
of the cross section for collisional broadening of Rydberg
states as a function of the principal quantum number.

This low-energy 3Po shape resonance exists in all alkali-
metal atoms @16# including Fr, as was shown in recent Dirac
R-matrix calculations @17,18#. However, its experimental ob-
servation is very difficult. Although the 3Po resonance state
of Rb2 was detected below 50 meV in an electron transmis-
sion experiment @19#, no direct experimental observations
were possible until the recent PD experiment by Scheer et al.
@9#. Due to the dipole selection rules, only the J51 compo-
nent of the 3Po state can be populated in PD experiments
with a single photon. Moreover, since the 1Se→3Po transi-
tion is forbidden in the LS coupling scheme, the process
indicative of the 3Po resonance becomes very sensitive to
the spin-orbit interaction, and the role of the theory for the
interpretation of experimental data becomes especially im-
portant.

Most of the previous calculations related to the low-lying
spectrum of heavy alkali-metal negative ions are based on
scattering models. A comprehensive review of scattering and
PD calculations on Rb2 and Cs2 ions was done by Buckman
and Clark @20#. Our recent papers @17,18# attempt to com-
plete this list: see Table II in Ref. @17# and Tables II and III
in Ref. @18#. A calculation of resonance states for the Fr2 ion
was recently done in Refs. @17,18#. To the best of our knowl-
edge, in addition to our recent PD results for Cs2 @21#, there
are no other theoretical PD results available for energies just
above the first detachment threshold for Rb2, Cs2, and Fr2

ions. This lack of information was recently pointed out by
Scheer et al. @9# in connection with their PD experiments on
Cs2. This situation is in part due to the difficulties in pro-
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viding an accurate treatment of relativistic interactions in
quantum calculations for heavy atoms. We are going to ad-
dress this issue in the present paper, and we will propose an
accurate model to treat the spin-orbit interaction in PD of
Rb2, Cs2, and Fr2 ions.

Even in a heavy atom, such as Fr, the spin-orbit interac-
tion for valence electrons is relatively weak compared to the
Coulomb interaction between them. Therefore the 3P1

o reso-
nance should appear in near-threshold PD cross sections as a
small ‘‘bump’’ on a smooth background. The background is
mainly due to the 1P contribution which, according to the
Wigner threshold law, behaves as E3/2, where E is the elec-
tron energy in the final state with respect to the PD threshold.
This suggests that the spin-orbit interaction can be included
in a physically transparent way by using the Pauli equation
for the electron in the final state, that is, by adding the term

Vso5

1

2c2

1

r

dV

dr
s•l ~1!

to the nonrelativistic Coulomb potential V, and solving the
Schrödinger equation with a modified potential for a two-
component wave function ~the Pauli equation!. In Eq. ~1! and
throughout the paper we use atomic units, unless specified
otherwise. However, for a Coulomb potential V52Z/r , Eq.
~1! leads to a nonphysical 1/r3 singularity near the origin.
This singularity does not cause problems if the spin-orbit
interaction is treated perturbatively. In this case, the expec-
tation value of the interaction ~1! is not divergent for l.0
because the radial wave function behaves as r l near the ori-
gin, and for l50 it can be shown that the spin-orbit interac-
tion term is identically equal to zero. A more rigorous treat-
ment @22,23#, based on the Dirac equation, suggests that the
interaction ~1! can be regularized by using either the factor
(12V/2c2)21 @4,22# or (12V/2c2)22 @6,23#. This ambigu-
ity is related to the ambiguity in defining a Hermitian energy-
independent Hamiltonian for the Pauli equation when going
from two first-order Dirac equations for the large and small
components of the relativistic wave function to one second-
order Schrödinger-Pauli equation. Such a regularization can
be done only in the approximation V!c2. However, this
condition breaks down at distances r,Z/c2. This difficulty
was addressed in several atomic structure calculations @24#
where regular Pauli Hamiltonians were derived and used in
self-consistent and many-body calculations of bound states.
This problem also should be addressed in calculations of
Pauli wave functions for continuum states. In our recent pa-
per @21# we proposed to solve this problem by starting with a
Dirac wave function for the detached electron near the origin
and introducing a generalization of a well-known transfor-
mation @25,26# from the Dirac to the Schrödinger wave func-
tion. This allowed us to calculate the 3P1

o contribution to PD
of Cs2, which is in good agreement with experimental data
@9#.

In the present paper we give more details about our
method and extend our calculations to two other heavy nega-
tive alkali-metal ions, Rb2 and Fr2. Our results show that
Cs2 is the anion most favorable for observation of the 3P1

o

resonance in PD. Although the spin-orbit interaction in Fr2

is stronger, the resonance there is broader. Our calculations
indicate that it would be difficult to detect experimentally the
3Po resonance in Rb2 and Fr2 by measuring total PD cross
sections. However, angle-differential cross sections and the
asymmetry parameter are much more sensitive to the spin-
orbit interaction and are calculated in this work in order to
provide guidance for future experiments.

This paper is organized as follows. In the next section we
explain our method of calculating PD cross sections from the
Pauli wave function. In Sec. III, we construct a model poten-
tial for the electronic interaction with the neutral atom based
on results of Dirac R-matrix scattering calculations. In Sec.
IV, we discuss details of our treatment of the spin-orbit term.
Numerical results and their discussion will follow in Sec. V,
and we conclude with a brief summary in Sec. VI.

II. CROSS SECTIONS AND BOUNDARY CONDITIONS

We will calculate PD cross sections by integration of the
Pauli equation for one effective electron. The spin-dependent
interaction of the active electron with the spin-1/2 alkali-
metal atom is represented by a spin-dependent effective po-
tential ~see Sec. III below!. Parameters in this potential will
be adjusted to reproduce the scattering phases provided by
previous two-electron Dirac R-matrix calculations @17,18#.

The angle-differential photodetachment cross section is
given by

ds

dV
5

4p2kv

c
u ê•Df iu

2, ~2!

where k is the electron momentum of the detached electron,
v the photon frequency, ê the photon polarization vector,
and Df i the matrix element of the dipole operator. We use the
length form of the dipole matrix element which is appropri-
ate for calculations involving model potentials @27#.

For linearly polarized light along the z axis we have

ê•Df i5E ck
(2)*zc idr, ~3!

where the complex conjugate of the ‘‘minus’’ solution ~inci-
dent plane wave fk plus ingoing wave! can be expressed
through the ‘‘plus’’ solution as

ck
(2)*5c

2k
(1) .

The plus solution consists of the incident plane wave fk and
an outgoing wave. We write the plus solution as a linear
combination of eigenstates of the total angular momentum
quantum numbers J and M J ,

ckSMS

(1)
5 (

LMLS8JM J

ALMLSMS

JM J ~k!YLS8JM J
~ r̂1 ,s1 ,s2!

3RLS8S
J

~r1!. ~4!
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The arguments s1 and s2 represent the spin variables for the
detached and atomic electrons, respectively, while r̂1 repre-
sents the angular variables for the detached electron. The
atomic electron is in an s state ~e.g., 6s for Cs! and its wave
function does not depend on angular variables. The coupling
of the total spin and orbital angular momentum is included in
the function

YLS8JM J
~ r̂1 ,s1 ,s2!5 (

MLMS

C
LMLS8MS

JM J Y LML
~ r̂1!xS8MS

~s1 ,s2!,

~5!

where xS8MS
(s1 ,s2) is the total spin function of the system,

and C
LMLS8MS

JM J is a Clebsch-Gordan coefficient. S in Eq. ~4! is

the final total spin. Generally, we should also consider tran-
sitions between states with different values of total orbital
angular momentum L, but in our case the spin-orbit interac-
tion mixes only 1P and 3P states since the atomic valence
electron is in an s state and the detached electron’s angular
momentum is l51.

The coefficients ALMLSMS

JM J (k) in Eq. ~4! are determined

from the boundary condition at r1→` . Let us look first at
the asymptotic behavior of the radial wave function

RLS8S
J

~r !;
1

r
sin~kr2Lp/2!dS8S1

1

r
exp@ i~kr2Lp/2!# f S8S

J ,

~6!

where f S8S
J is the scattering amplitude. Substituting this ex-

pression into Eq. ~4!, we obtain for the incident plane wave

fkSMS
; (

LMLJM J

ALMLSMS

JM J ~k!YLSJM J
~ r̂1 ,s1 ,s2!

1

r

3sin~kr2Lp/2!. ~7!

We want this equation to correspond to the partial-wave ex-
pansion of a plane wave normalized to the d function of
momentum k,

fkSMS
5~2p !23/2e ik•rxSMS

~s1 ,s2!. ~8!

Since L and S are uncoupled in Eq. ~8!, we write A in the
form

ALMLSMS

JM J ~k!5CLMLSMS

JM J BLML
~k!. ~9!

Using the explicit expression for YLS8JM J
, Eq. ~5!, and the

orthogonality property for the Clebsch-Gordan coefficients,
we obtain

fkSMS
; (

LML

BLML
Y LML

~ r̂1!xSMS
~s1 ,s2!

1

r1
sin~kr12Lp/2!.

~10!

Comparing this expression with the partial-wave expansion
of the plane wave, Eq. ~8!, we obtain

BLML
~k!5S 2

p
D 1/2 iL

k
Y LML

* ~ k̂ !. ~11!

Finally we have for the partial-wave expansion of c (1),

ckSMS

(1)
5S 2

p
D 1/2 1

k (
LML

iLY LML
* ~ k̂ ! (

S8JM J

CLMLSMS

JM J

3YLS8JM J
~ r̂1 ,s1 ,s2!RLS8S

J
~r1!. ~12!

c
2kSMS

(1) can be obtained from here by replacing iL by i2L.

To find the explicit expression for the PD matrix element,
we write the initial 1S state as

c i5
1

A4p

ub~r !

r
x00~s1 ,s2! ~13!

and the final-state radial function as

RLS8S
J

5

1

r
uLS8S

J . ~14!

Then for the matrix element, Eq. ~3!, we obtain

ê•Df i5
1

ik S 2

3p
D 1/2

(
ML

C1MLSMS

10 Y 1ML
* ~ k̂ !M S, ~15!

where M S is the radial matrix element

M S5E u10S
1 ~r !rub~r !dr . ~16!

For the differential PD cross section into the state with the
total spin S we have

dsS

dV
5

8pv

3ck
uM Su2 (

MSML

uC1MLSMS

10 Y 1ML
~ k̂ !u2. ~17!

Because of the relative weakness of the spin-orbit interac-
tion, the final channel S50 can be called dominant, and the
S51 channel can be called weak. As we can see from Eq.
~17!, the angular distribution in the dominant channel is
given by cos2u, where u is the angle between the photon
polarization vector and the momentum vector k, whereas the
angular distribution in the weak channel is given by sin2u.
Therefore a nonzero value of the differential cross section in
the region u5p/2 is a signature of the spin-orbit interaction.
Moreover, this effect should become more pronounced in the
vicinity of the 3P shape resonance.

For the total cross section we get after integration over k̂ ,

sS5

8pv

3ck
uM Su2, ~18!

and the observed cross section is obtained by summing over
S.

The matrix u of radial functions uS8S(r) ~for J51 and
L51) in Eq. ~14! is obtained by numerical integration of
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coupled equations. Using the asymptotic boundary condi-
tions Eq. ~6!, we can write down the matrix u in the follow-
ing form:

u5

i

2
@u(2)

2u(1)S# , ~19!

where S is the scattering matrix, and u6 has the following
asymptotic form:

uS8S
6

~r !;exp@6i~kr2p/2!#dS8S . ~20!

Together with the regular behavior at the origin, this gives us
the boundary conditions for u, and uniquely determines u as
a solution of coupled radial equations @cf. Eq. ~36! below#.

III. THE POTENTIAL MATRIX

Since we are interested in near-threshold PD for energies
much lower than the ns-np1/2 excitation energy of the neu-
tral atom @n55 ~Rb!, 6~Cs!, and 7~Fr!#, we have chosen to
describe the effective interaction of the electron with an
alkali-metal atom by an LS-dependent model potential @6#
which is adjusted to reproduce the low-energy scattering
eigenphases for J<2 and odd parity obtained from the Dirac
R-matrix calculations @17,18#.

According to Ref. @28# two methods for the description of
the effective interaction between an electron and a many-
electron atom can be distinguished. In the model-potential
approach the effective interaction is attractive, and leads to
atomic core states and scattering states. In this case, the scat-
tering wave function contains the correct number of nodes,
and the phase shifts satisfy the generalized Levinson theorem
@29#. In the alternative pseudopotential description, the
atomic core states are excluded by introducing a strong re-
pulsive core @30#. For a treatment which should incorporate
the spin-orbit interaction, the second method is not accept-
able, because the spin-orbit interaction effects are most im-
portant at short distances where the electron accelerates to
high velocity due to the large nuclear charge. Therefore in
the present paper we use the model-potential method.

To describe the effective electron-atom interaction we in-
troduce a separate local potential for each scattering state,
defined by the quantum numbers L and S,

V̂5(
LS

uLS&VLS^LSu. ~21!

For the P state of the alkali-metal negative ions, the interac-
tion potential is given by

VL51,S~r !52

Z

r
e2lr

2Ae2gr
2

a

2r4
@12e2(r/rc)6

#1Vso ,

~22!

while the potential for the S state is

VL50,S~r !52

ZS

r
e2gr

2

a

2r4
@12e2(r/rc)6

# , ~23!

since the spin-orbit interaction term vanishes. Furthermore, Z
is the nuclear charge, a the atomic polarizability for the
ground state of the neutral atom @319.2 ~Rb!, 402.2 ~Cs!, and
317.8 ~Fr!#, and l the nuclear screening parameter. ZS and A
are two more adjustable parameters. The first two terms in
Eq. ~22! describe the short-range Coulomb interaction: the
first term is a screened Coulomb potential, the second term is
an additional screening term due to the atomic electrons,
while the third term describes the long-range dipole interac-
tion multiplied by a cutoff function to eliminate the diver-
gence at the origin. The P state is less penetrating. Therefore,
near the nucleus, we use the unscreened Coulomb attractive
potential @the first term in Eq. ~22!#. For the S state, the
nuclear charge is screened more strongly by inner electrons,
and we include the adjustable screened charge ZS in Eq. ~23!.
Except for l , all other fit parameters in Eqs. ~22! and ~23!
depend on L and S, and are given in Table I. Since the spin-
orbit interaction term vanishes for the 1Se state, the first term
in Eq. ~23! has a weak influence on low-energy electron-
atom scattering. In contrast, for the 3Po state, the position
and width of the J fine-structure components are very sensi-
tive to the near-nuclear region @especially for the Cs2(3PJ

o)
resonance#, where the interaction ~1! is important.

The spin-orbit interaction operator is calculated according
to Eq. ~1! with the orbital angular momentum and spin op-
erators for the detached electron l5l15L and s5s1. We do
not include the spin-orbit term for the atomic electron since
its orbital angular momentum remains 0.

We calculate the matrix elements of the operator l1•s1 in
the basis LSJM J ,

DSS8

J
5^LSJM Jul1•s1uL8S8JM J&. ~24!

Using the Wigner-Eckart theorem in standard (J ,M J) repre-
sentation, we can write the matrix elements

DSS8

J
5~21 !J1S1L8H L8 S8 J

S L 1J ^Luul1uuL8&^Suus1uuS8&

~25!

TABLE I. The fit parameters ZS , l , A, g , and rc for the model
potentials VL50,S(r) in Eq. ~23! and VL51,S(r) in Eq. ~22! used to
reproduce the scattering phase shifts provided by Dirac R-matrix
calculations @17# together with the nuclear charge Z and the radius
r0 for the transition to a pure Coulomb potential Z/r at r,r0.

Atom
(Z)

r0 l State ZS A g rc

Rb~37! 0.01 7.4975 1Se 4.5642 1.3438 1.8883
1Po

24.2625 1.0055 1.8869
3Po

21.4523 4.8733 1.8160
Cs~55! 0.014 7.2443 1Se 4.5396 1.3304 1.6848

1Po
23.6681 1.3195 1.8031

3Po 4.1271 2.2329 2.1314
Fr~87! 0.025 7.1607 1Se 5.2003 6.6603 1.1508

1Po
25.2272 0.60953 1.4891

3Po 0.5904 1.9179 1.8919
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as products of reduced matrix elements and 6-j symbols. The
reduced matrix elements are

^Luul1uuL8&5dLL8
AL~L11 !~2L11 ! ~26!

and

^Suus1uuS8&

5~21 !S8A3~2S11 !~2S811 !

2 H S 1 S8

1/2 1/2 1/2J .

~27!

In the case of interest J5L51, and S and S8 have two
possible values, 0 and 1. Calculation of the reduced matrix
elements and 6-j symbols in this case gives D00

1
50, D11

1
5

21/2, and D01
1

51/A2.
There are two additional electron scattering channels,

which do not contribute directly to PD due to the dipole
selection rules, but which were nevertheless considered to fit
the parameters of our model potential to the scattering eigen-
phases provided by our separate Dirac R-matrix calculation.
These channels are characterized by the quantum numbers
L51, J50 and L51, J52. The corresponding values of
DSS8

J are D11
0

521 and D11
2

51/2. These different values of
D11

J are responsible for the splitting of the low-energy 3P
resonance, similar to the fine-structure splitting of the 3P
states of Ba. Therefore the fit potential parameters in the S
51 channel were taken the same in all scattering symmetries
and were fitted to reproduce the splitting between the J50
and J52 resonances.

IV. TREATMENT OF THE SPIN-ORBIT TERM

Equation ~1! contains an unphysical 1/r3 singularity near
the origin. It appears due to the approximate treatment of the
spin-orbit interaction. The second-order differential equation
for the large component of the Dirac wave function contains
the term

1

r

dV

dr

1

E2V1c2
, ~28!

where E5c2
1ENR includes the electron rest mass and the

nonrelativistic energy ENR . Since uENRu!c2 and, at r
@Z/c2, uVu!2c2, the denominator E2V1c2 becomes
equal to 2c2, and Eq. ~28! becomes identical with Eq. ~1!.
Thus, Eq. ~1! becomes invalid at short distances of the order
of Z/c2. Although this distance is small ~it is still large com-
pared to the size of the nucleus, however!, it is important to
remove the 1/r3 singularity because it affects the boundary
condition at the origin and, therefore, the overall behavior of
the wave function.

Our method starts with separating the entire space into
two regions: in the inner region, limited by a sphere of radius
r0, the only important nonrelativistic interaction is the un-
screened Coulomb interaction between the detached electron
and the nucleus @31#. In this region relativistic interactions
~i.e., the spin-orbit interaction for electrons with low angular

momentum and the relativistic mass correction! are impor-
tant, and the total angular momentum quantum number of
the detached electron, j, is conserved, making the j j repre-
sentation a natural choice. For r.r0, we neglect terms of
order Z/(c2r), i.e., the Coulomb potential energy 2Z/r
compared to the electron rest energy c2. In this region, the
effective potential is not diagonal in the j j representation
because of the exchange effects, and the LS representation is
more appropriate, where, as in the previous section, L is the
total orbital angular momentum and S is the total spin of the
atom 1 detached electron system. The effective potential is
not diagonal in the LS representation due to spin-orbit inter-
action effects; however, the off-diagonal elements are small.
The parameter r0 should satisfy simultaneously the follow-
ing requirements: r0@Z/c2, and r0!1/l , where l is the
screening parameter in Eq. ~22!. An order of magnitude es-
timate for the radius r0 is 0.01. However, this value does not
satisfy these requirements with high accuracy. Indeed, for Cs
at r50.01 the Coulomb Z/r term is still 29% of the rest
energy term c2 whereas the screening exponential exp
(2lr) is already 0.93, a noticeable deviation from the pure
Coulomb potential. To resolve this difficulty we use the fol-
lowing approach. We postulate that our model potential is
equal to the pure Coulomb potential Z/r at r,r0 and that
only at r.r0 does it take the form of Eq. ~22!. This creates
a slight discontinuity in VL51,S(r), but does not cause prob-
lems in fitting the potential parameters. If a continuous po-
tential is desirable, one can introduce an additional constant
factor exp(lr0) at r.r0. For r.r0, where the Coulomb term
is still not negligible compared to the rest energy term, we
use the Bethe and Salpeter regularization factor (1
2V/2c2)21 @22#. The PD cross section is quite insensitive to
the exact form of the regularization factor at r.r0. In par-
ticular, the 3P contribution to the PD of Cs2 decreases only
by 1% when we switch from the Bethe-Salpeter to the Con-
don and Shortly regularization factor (12V/2c2)22 @23# at
r.r0.

To start the integration of the coupled equations with the
model potentials ~22! and ~23!, we use first the well-known
solution of the Dirac equation for an electron in the Coulomb
potential @26#. The large component Gk(r) with a very good
accuracy is given by the solution for zero nonrelativistic
energy

Gk~r !5~k2s !J2s~y !1

y

2
J2s11~y !, ~29!

where s5(k2
2Z2/c2)1/2, y5(8Zr)1/2, Js(y) is the Bessel

function, and k is the relativistic quantum number of the
Dirac theory. For PD from an S state, j51/2 or 3/2. We
match the Dirac wave function for r,r0 at r5r0 to the
solution c of the Pauli equation

S 2

1

2
¹2

1V̂1

1

2c2

1

r

dV̂

dr
s•l2E D C50, ~30!

where V̂ is the operator ~21! whose diagonal matrix elements
are given by Eqs. ~22! and ~23!.
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The standard transformation for this purpose is @25,26#

c5~11p2/8c2!cA, ~31!

where cA is the large component of the Dirac wave function
and p is the momentum operator. This transformation ne-
glects V compared to c2. The transformation ~31! gives a
Pauli wave function c which is only approximately normal-
ized @25#. In contrast, if we do not neglect V/c2 ~but disre-
gard the nonrelativistic part ENR of the total electron energy!,
Eq. ~31! becomes

c5@11s•pf ~r !s•p#cA, ~32!

where f (r)5@8c2(12V/2c2)2#21. By using standard prop-
erties of the Pauli matrices s, Eq. ~32! can be rewritten as

c5S 12

d f

dr

d

dr
2 f ¹2

1

1

r

d f

dr
s•lDcA . ~33!

By separating spin and angular variables, we obtain the
corresponding relation between the p-wave Pauli radial func-
tion u(r) and the large component of the Dirac radial func-
tion G(r),

u j~r !5H 12r
d f

dr

d

dr

1

r
2 f F d2

dr2
2

2

r2G
1

1

r

d f

dr F j~ j11 !2

11

4 GJ Gk~r !. ~34!

After calculating u j(r) in the j j representation, we recouple
to the LS representation according to

uLSJ5~21 !11J2LA2S11 (
j5L21/2

L11/2

u jA2 j11H L J S

1

2

1

2
j J
~35!

and integrate the system

S d2

dr2
2

2

r2
1k2

22VL51,S~r !22DSS
1

v~r !D uS~r !

52D01
1

v~r !uS8
~r ! ~36!

of coupled radial Pauli equations numerically for r.r0. The
radial function uS(r) was defined in Eq. ~20!. The diagonal
and off-diagonal parts of the spin-orbit interaction appear on
the left- and right-hand sides, respectively, of Eq. ~36!. The
indices S and S8 take values of 0 and 1, respectively, for the
first equation, and 1 and 0, respectively, for the second equa-
tion. Furthermore, we write Vso as @v(r)s•l# by defining

v~r !5

1

2c2r

dVL51,S

dr
.

DSS8

1 is the coupling matrix @cf. Eq. ~24!#. The local poten-
tials VL51,S describe the electron-atom interaction in chan-

nels 1P (VL51,S50) and 3P (VL51,S51). To assure Hermi-
city of the spin-orbit interaction, we assume that
dVL51,S50 /dr5dVL51,S51 /dr near the origin, where the
spin-orbit interaction is important. Since the nuclear screen-
ing parameter l is the same for VL51,S50 and VL51,S51, this
requirement is satisfied with a high accuracy.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 1 gives the total PD cross section s5s01s1
@where s0 and s1 are given by Eq. ~18! for S50 and S
51, respectively#, for energies of the photoelectron just
above the detachment threshold of A2 (A stands for Rb, Cs,
and Fr!. Our calculations for Cs, based on the Dirac R-matrix
results for eigenphases @17,18#, exhibit a local peak whose
position, 5.6 meV above the threshold, is somewhat lower
than the observed peak at 8 meV @9#, and the theoretical
width of 2.7 meV is smaller than the experimental value of 5
meV. Therefore, we have tuned the position of the J51 reso-
nance by changing the parameter rc in Eq. ~22! for the 3Po

symmetry from 2.1294 to 2.1314. This modification has
shifted the position of the J51 resonance to 8 meV. The
resulting curve, shown in the inset of Fig. 1, agrees with the
experimental data from Fig. 2 of Ref. @9#, with respect to
both the resonance position and width. On the other hand,
the 3P resonance contribution to PD of Rb2 and Fr2 is
unnoticeable in Fig. 1, due to the dominating 1P back-
ground.

The 3P resonance appears due to a combination of the
centrifugal barrier and the polarization potential. Therefore
its position can be efficiently controlled by the cutoff param-
eter rc entering the polarization potential. A slight increase of

FIG. 1. Near-threshold PD cross section for Rb2 ~dotted line!,
Cs2 ~solid line!, and Fr2 ~dashed line!. The inset shows our calcu-
lations based on the Dirac R-matrix data from Ref. @17# ~dash-
dotted line!, and after fine-tuning the peak of the 3P1

o resonance to
8 meV @21# ~solid line!. In the inset, our results for Cs2 are com-
pared with the experimental data from Fig. 2 of Ref. @9# ~normal-
ized to our absolute PD cross section at 8 meV! for two slightly
different values of the cutoff radius rc .
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the parameter rc in Eq. ~22! produces a slightly less attrac-
tive electron-atom interaction and shifts the resonance posi-
tion toward larger energies. For the Cs2 ion, an increase of
the parameter rc from 2.1294 to 2.1314 ~by only 0.094%!
produces a shift of about 2.4 meV in the position of the 3P
resonance. The high sensitivity of the resonance position to
rc is due to the very low resonance energy close to the bound
part of the negative ion spectrum. Indeed, as follows from
Fig. 2, the resonance position and width are much more sen-
sitive to rc in the case of Cs2, where the resonance occurs at
a lower energy than for Rb2 and Fr2.

In Fig. 3 we plot the 3P contributions to the total PD
cross section for all three ions. The inset of Fig. 3 shows the
agreement between our cross sections near the 3P1

o reso-
nance of Cs2 and the experimental data from Fig. 3 of Ref.
@9#. For Rb, the 3P contribution is about 2.7 times lower
than that for Cs, which is not surprising because of the

weaker spin-orbit interaction. However, for Fr the 3P contri-
bution is lower than for Cs too, in spite of the higher nuclear
charge. For a qualitative discussion and tentative explanation
of this surprising effect, we note that the resonance contribu-
tion to the final-state wave function can be obtained by set-
ting S50, S851, and by integrating Eq. ~36!,

u0~r !5E G~r ,r8!
1

A2c2r8

dVL51,S51

dr8
u1~r8!dr8. ~37!

In Eq. ~37!, G(r ,r8) is the Green’s function of the radial
Hamiltonian on the left-hand side of Eq. ~36!. In lowest or-
der of perturbation theory, we drop the spin-orbit interaction
term in G(r ,r8). Since dVL51,S51 /dr8 in Eq. ~37! is propor-
tional to the nuclear charge Z, we expect the matrix element
~16! for the triplet scattering state to be approximately pro-
portional to Zū1, where ū1 is a typical value for the resonant
part of the radial wave function. In consequence, according
to Eq. ~17!, the detachment cross section is expected to be-
have as Z2ū1

2.

To estimate ū1, we use the following result for the reso-
nance part of the scattering wave function @32# c5af ,
where the function f is normalized to 1, and the absolute
value of a is given by ~we assume that c is normalized to the
d function of momentum!

uau2
5

kG

2p@~E2Eres!
2
1G2/4#

. ~38!

At the resonance, E5Eres and uau2
52(2Eres)

1/2

/@pG(Eres)# . For the P resonance G}E3/2 and therefore the
peak value of uau2 scales as 1/Eres . In Fig. 4, we present
numerically calculated radial wave functions for J50 at en-
ergies corresponding to resonance positions ~19.2, 4.0, and
13.2 meV for Rb, Cs, and Fr, respectively!. Since there is
only one open channel for J50, we discuss the J50 instead
of the J51 term. This will not affect our conclusions below.

FIG. 2. Energy dependence of the eigenphase sums for the Jp

512 symmetry ~where p is the parity! of Rb2, Cs2, and Fr2 ions,
for several values of rc ~indicated in the legend!. In each graph, the
solid line corresponds to the rc value that gives the best fit of our
Pauli eigenphase sums to the Dirac R-matrix results from Refs.
@17,18# for Rb2 ~1.8160!, Cs2 ~2.1294!, and Fr2 ~1.8919!.

FIG. 3. 3P1
o contribution to PD ~shown in Fig. 1! for Rb2 ~dot-

ted line!, Cs2 ~solid line!, and Fr2 ~dashed line! ions. The inset
shows the same comparison as Fig. 1, for the 3P1

o contribution.
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The wave functions in Fig. 4 have their maximum at dis-
tances of about 12 a.u., and then decay into the classically
forbidden region due to the potential barrier formed by the
centrifugal potential. As shown in Table II, the peak value
scales as Eres

21/2 in accordance with our result for uau. Conse-
quently, the triplet contribution to the cross section scales as
Z2/Eres within a factor of 2. For Fr, the larger value of Z is
offset by a larger value of Eres . Therefore scaling for the
peak value at J50 works better than scaling for the PD cross
section. In addition, the 1P background contribution for Fr is
larger at E5Eres because of the larger value of Eres . Strictly
speaking, this scaling works only for very narrow reso-
nances; therefore deviations from this simple law are sub-
stantial, especially for the cross section. However, it allows
us to understand our results qualitatively.

The accuracy of our present PD results is mainly indi-
cated by the precision of the Dirac eigenphases computed in
@17,18# and used in this model. The accuracy of the Dirac
scattering eigenphases was discussed in Ref. @17#, and, for
Fr, is limited by the electron affinities ~EAs! we have used in
our Dirac R-matrix calculations. For Rb and Cs atoms, accu-
rate experimental EAs are available. For Fr atoms, no experi-
mental EA is available, and we have estimated its value at
492 meV within a 2% error @17#. A detailed discussion re-
garding the consequences of this uncertainty for the charac-
teristics of the 3Po resonance was given in @17#, and the
results are shown in Fig. 3 of Ref. @17#. The uncertainty in
the position of the J51 component of the Fr2(3Po) reso-
nance ~at 24 meV! was estimated to be 23% ~about 6 meV!.

This uncertainty is not significantly changed by the fitting
procedure we use in order to get the Pauli eigenphases from
the Dirac eigenphases. It remains indicative for the accuracy
of our PD results for Fr.

We conclude that the 3P contributions to the total PD
cross sections for Rb and Fr are too small to be noticeable.
However, the differential cross sections and the asymmetry
parameter b @33# are more sensitive to the 3P contribution.
In the angular distribution of photoelectrons @Eq. ~17!#, the
S51 contribution adds a sin2u term to the pure cos2u depen-
dence of the S50 contribution. Therefore, the asymmetry
parameter in the angular distribution @34#,

ds

dV
5

s@11bP2~cos u !#

4p
, ~39!

differs from its maximum value 2. In Eq. ~39!, both the
angle-integrated, s , and the angle-differential, ds/dV , PD
cross sections include the summation over the final spin S
50 and 1 states. P2(cos u) is the Legendre polynomial for
l52, and u is the polar angle of the unit vector k̂ in Eq. ~17!.
Figure 5 shows the energy dependence of the b parameter
for Rb2, Cs2, and Fr2 ions, while Fig. 6 presents our angle-
differential cross section ~DCS! results for PD of Rb2. In
comparison with the similar result for Cs2 ~see Fig. 2 in Ref.
@21#!, the 3P contribution for Rb2 near u of 90° is much less
pronounced. This is mainly due to a much broader 3P reso-
nance for Rb2 than for Cs2. We also note that our DCS for
Rb2 at u590° ~of 0.0016 Å2/rad) is only 2% of the DCS at

FIG. 4. Numerically calculated radial wave functions for J50
at energies corresponding to resonance positions ~19.2, 4.0, and
13.2 meV for Rb, Cs, and Fr, respectively!.

TABLE II. Parameters derived from the numerical study of the wave function for J50 at the resonance
position Eres . To help the reader to understand Fig. 4, we also show the turning points r1 and r2 for the
classical motion of the electron in the superposition of the centrifugal and polarization potentials.

Atom Eres (meV) umax (a.u.) umaxAEres @104s(Å2)#Eres /Z2 r1 (a.u.) r2 (a.u.)

Rb 19.2 1.3930 6.10 1.55 13.54 35.13
Cs 4.0 2.9960 5.99 0.83 14.41 81.21
Fr 13.2 1.8839 6.84 0.61 13.17 43.45

FIG. 5. Asymmetry parameters as functions of the energy of the
photodetached electron for PD of Rb2 ~dotted line!, Cs2 ~solid
line!, and Fr2 ~dashed line!.
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u5180°. This percentage is very small compared with that
for Cs2 of about 24%. For Cs2, the DCS at 90° is
0.005 Å2/rad. For Fr2, the DCS results are similar to those
for Rb2. These results are not surprising, since the minimum
of the b parameter is 1.89 ~1.87! for Rb2 (Fr2), which is a
weak deviation from bmax52. For Cs2, the deviation is
more important, since bmin51.

The present results can be used as a guideline for future
experimental attempts to detect the 3Po resonance in heavy
alkali-metal anions. Measurements of the b parameter have

already been done by Frey et al. @8# in single-photon PD of
Rb2, in the region of the Rb(5p 2P1/2.3/2) thresholds. Frey
et al. carefully tested the accuracy of this technique in order
to identify resonances. We hope that our results will stimu-
late further experiments in the still unexplored spectral re-
gion near the Rb2 and Fr2 detachment thresholds.

VI. SUMMARY

In conclusion, we have formulated boundary conditions
for solving the Pauli equation, which are important for the
description of the spin-orbit interaction effects in electron
scattering and PD processes. The application of this method
to the near-threshold PD of Cs2 allows us to calculate the
contribution of the 3P1

o resonance in very good agreement
with the experimental results in @9#.

For Rb2 and Fr2 we predict this contribution to be very
small and therefore not easily observable in total PD cross
section measurements. However, the 3P1

o resonance contri-
bution leaves a clear signature in the b parameters, and
therefore will be better accessible in measurements of angle-
differential PD cross sections for Rb2 and Fr2.
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