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Boundary Conditions for the Pauli Equation: Application to Photodetachment of Cs™
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We formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on
the analytic solution of the Dirac equation for a Coulomb potential. We then integrate the Pauli equation
using an effective potential that is adjusted to reproduce Dirac R-matrix scattering phase shifts, and find
the P resonance contribution to the photodetachment cross section of Cs~. Our photodetachment cross
sections agree with recent experiments by Scheer et al. [Phys. Rev. Lett. 80, 684 (1998)] after tuning
the resonance position by 2.4 meV. We also provide angle-differential photodetachment cross sections
and the corresponding asymmetry parameter 8 near the Cs(6s) threshold.
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Spin-orbit interaction effects in atomic physics are often
treated by adding the term

_ 1 1av
2m2c? r dr

to the nonrelativistic potential V and solving the Schro-
dinger equation with a modified potential for a two-
component wave function, which is also called the Pauli
equation. For a Coulomb potential energy W = Ve =
—Ze?/r, Eq. (1) leads to a nonphysical singularity 1/r3
near the origin. This singularity does not cause problems
if the spin-orbit interaction is treated perturbatively. In
this case, the expectation value of the interaction (1) is
not divergent for / > 0 because the radial wave function
behaves as r/ near the origin, and at / = 0 it can be shown
that the spin-orbit interaction term is identically equal to
zero. A more rigorous treatment [1,2], based on the Dirac
equation, suggests that the interaction (1) should be regu-
larized by using either the factor (1 — W/2mc?)~! [1] or
(1 — W/2mc?)~? [2,3]. This ambiguity is connected to
the ambiguity in defining a Hermitian energy-independent
Hamiltonian for the Pauli equation when going from two
first-order Dirac equations for the large and small compo-
nents of the relativistic wave function to one second-order
Schrodinger-Pauli equation. Such a regularization can be
done only in the approximation W << mc?. However, this
condition breaks down at distances r < e¢?Z/mc?. This
difficulty was addressed in several atomic structure calcu-
lations [4] where regular Pauli Hamiltonians were derived
and used in self-consistent many-body calculations of
bound states. This problem also should be addressed in
calculations of Pauli wave functions for continuum states.
In the theoretical treatment of photodetachment (PD), the
behavior of the final-state wave function at the origin
affects the phase and amplitude of the wave function in the
intermediate region, which is important for the calculation
of PD matrix elements. This becomes particularly critical
if we try to describe effects which are forbidden in the
LS-coupling approximation.
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A good example is PD of Cs™ through the *P reso-
nance observed recently by Scheer et al. [5]. This was the
first direct experimental confirmation of earlier theoreti-
cal predictions [6,7] of the Cs™ (6s6p>P{) resonance state
that lies a few meV above the Cs(6s) threshold. However,
theoretical calculations of PD cross sections have not been
performed thus far. In the present paper, we formulate
boundary conditions for the Pauli equation for the final-
state electron wave function, and apply them to the descrip-
tion of PD near the detachment threshold of the Cs™ ion.
Our results confirm the existence of a “bump,” indicative
of a 3 P{ resonance, on the Wigner p-wave scattering back-
ground in the total PD cross section.

Our method starts with separating the entire space into
two regions: In the inner region bound by a sphere of
radius rp, the only important nonrelativistic interaction is
the unscreened Coulomb interaction between the detaching
electron and the nucleus. In this region, relativistic interac-
tions (i.e., the spin-orbit interaction for electrons with low
angular momentum and the relativistic mass correction)
are important, and the total angular momentum quantum
number of the detaching electron, j, is conserved, making
the jj representation a natural choice. At r > rp, we will
neglect the Coulomb potential energy —Ze?/r compared
to the electron rest energy mc?. In this region, the effective
potential is not diagonal in the jj representation because
of the exchange effects, and the LS representation is more
appropriate, where L is the total orbital angular momen-
tum and S is the total spin of the atom + electron system.
The effective potential is not diagonal in the LS representa-
tion due to spin-orbit interaction effects; however, the off-
diagonal elements are small. We estimate the radius r¢ for
Cs (Z = 55) as 0.01 a.u.

In the inner region, for r < ry, we use the well-known
analytic solution of the Dirac equation for an electron in
the Coulomb potential. At » = ry, we transform the Dirac
wave function for r < ry into the Pauli wave function .
The standard transformation for this purpose [8,9] (here-
after we use atomic units)
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¢ = (1 + p*/8c*)a, 2)

where ¢4 is the large component of the Dirac wave func-
tion and p is the momentum operator, neglects V compared
to ¢2. The transformation (2) gives a Pauli wave function
¢ which is only approximately normalized [8]. If we do
not neglect V compared to ¢ (but disregard the nonrela-
tivistic part of the total electron energy), Eq. (2) becomes

p=[1+o pfrio-pla, ©)
where f(r) = [8c¢*(1 — V/2c?)?]"!. By using standard
properties of the Pauli matrices o, Eq. (3) can be rewrit-

ten as
_(y_4fd o Ldf )
v <1 dr dr Al r dr o Vs &)

Finally, after the separation of the spin and angular vari-
ables, we obtain the corresponding relation between the
p-wave Schrodinger radial function u(r) and the large
component of the Dirac radial function G(r),

AT IR R KRS

dr dr r dr? r2
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where « is the relativistic quantum number of the Dirac
theory. For PD from an S state, j = 1/2 or 3/2.

After calculating u;(r) in the jj representation, we
transform it into the LS representation and integrate
numerically the system of two coupled equations (for
S=0and S =1) at r > ry. Since we are interested
in near-threshold PD for energies much lower than the
6s-6p /> excitation energy of the neutral Cs, we have
chosen to describe the effective interaction of the electron
with the Cs atom by an LS dependent pseudopotential [3]
which is adjusted to reproduce the low-energy scattering
eigenphases for / = 2 and odd parity obtained from the
Dirac R-matrix calculations [7,10]. We describe the P
states of Cs™ by

Z
Vp(r) = — Te_’" — Ae 7"
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while the pseudopotential for the S state is

A —yr o —(r/r.)8
Vs(r) = =—e " = Sl — e T/ Vs (7)

The nuclear charge is Z = 55, « = 402.2 is the atomic
polarizability for the ground state of Cs, and A = 7.2443
is the nuclear screening parameter. Except for A, all other
fit parameters in Eqgs. (6) and (7) depend on L and S and
are given in Table I. Since the spin-orbit interaction term
vanishes for the !S¢ state, the first term in Eq. (6) has a
weak influence. In contrast, for the 3P° state, we found
that position and width of the Cs™ (*P$) resonances are
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TABLE 1. The fit parameters A, y, and r. for the pseudopo-
tentials Vs(r) in Eq. (7) and Vp(r) in Eq. (6) used to reproduce
the scattering phase shifts provided by Dirac R-matrix calcula-
tions [10].

State A Y e
Lge 4.5396 1.3304 1.6848
Lpo —3.6681 1.3195 1.8031
3po 4.1271 2.2329 2.1271

very sensitive to the near-nuclear region where the inter-
action (1) is important. As a test case of the nonrelativistic
pseudopotentials, we have performed similar calculations
for PD of Na™ and found very good agreement with re-
cent many-body R-matrix eigenchannel calculations [11]
for energies up to 0.7 eV above the detachment threshold.

For L = 1, the matrix elements of the s - 1 operator in
LS representation,

Alg = (LSIMyls - 1IL'S"IM;), ®)

are Ay = 0, Al; = —1/2, A}; = 1/+/2. These values are
sufficient for solving the PD problem, but, in order to fit
all potential parameters, we also need to calculate eigen-
phases for J/ = 0 and J = 2, where (for L = 1) A?l = —1,
A%l = 1/2. The different values of A{l are responsible
for the splitting of the lowest 3P? resonance into three J
components.

To calculate the PD cross section, we introduce the ra-
dial function u(r) describing the initial 'S¢ bound state,
and the final-state radial wave function u_Jg/ s with the fol-
lowing asymptotic behavior:

ulys(r) ~ sin(kr — L7 /2)8g1s
+ exp[—i(kr — L7/2)](fs)", (9)

where ff/s is the matrix of scattering amplitudes. Intro-
ducing the PD matrix element,

Mg = [[u(l)s(r)]*rub(r) dr, (10)

we obtain the differential PD cross section into a final state
with the total spin S,

dos 87w o

70 - 3er |MS|2M§4L |15, 50, Yine, ()P, (11)
where  is the photon frequency, and & is the unit vec-
tor in the direction of the photodetached electron relative
to the unit polarization vector of an incident linearly po-
larized photon. Note that we use the length form for the
perturbation operator, which is appropriate for calculations
involving pseudopotentials [12].

From Eq. (11), we can see the advantage of using the
Pauli wave function instead of the Dirac wave function for
the study of near-threshold PD processes: The contribu-
tion of different S terms can be identified easily in the
PD cross section. PD just above the ground state of the
Cs atom is dominated by a p-wave contribution to the fi-
nal state. By using Eq. (11), the contribution of the *P°
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FIG. 1. Angle-integrated PD cross sections of Cs™ near the

detachment threshold. Dotted curve: § = O contribution only;
dashed curve: total cross section for the fit parameters in Table I;
solid curve: after adjusting the parameter r. in the final 3P°
state to 2.1294. Circles show the experimental data from Fig. 2
of Ref. [5]. The inset shows our calculated S = 1 contribution
to the detachment cross section (thick solid curve) compared to
the background-subtracted measurement (dots) from Fig. 3 of
Ref. [5]. The sizes of the circles and dots indicate the experi-
mental error [5].

resonance can be isolated from that of the ' P which gives
the background in the PD cross section.

Figure 1 gives the total PD cross section, ¢ = o9 + o7,
for energies of the photoelectron just above the detachment

threshold of Cs™. Our calculations based on the R-matrix
Dirac results for eigenphases [10] exhibit a local peak
whose position, 5.6 meV above the threshold, is somewhat
lower than the observed peak at 8 meV [5], and the theo-
retical width of 2.7 meV is smaller than the experimental
value of 5 meV. Therefore, we have tuned the position of
the J = 1 resonance by changing the parameter r. in
Eq. (6) for the >P° symmetry from 2.1271 to 2.1294. This
modification has shifted the position of the J = 1 reso-
nance to 8§ meV. The resulting curve, also shown in Fig. 1,
agrees with the experimental data from Fig. 2 of Ref. [5],
with respect to both the resonance position and the width.
The inset shows that part of the background under the reso-
nance peak originates in an increasing S = 1 contribution
for higher energies. By using modified pseudopotentials
with r, = 2.1294, the J = 0 and J = 2 terms of the > P
resonance are shifted from 1.7 and 12.7 meV, as found in
Dirac R-matrix calculations for electron scattering [10], to
4 and 16 meV, respectively. This gives a Landé constant
for the 3P? state of 4 meV instead of 3.7 meV in [10].

It should be emphasized that the use of the correct
boundary conditions at the origin is important for obtain-
ing the correct S = 1 contribution to the *P{ resonance
(the S = O contribution gives the PD background, which
follows the Wigner threshold law, E3/2, for p-wave scat-
tering, cf. Fig. 1). For example, using the (1 — V/2¢?)72
regularization [2,3], while integrating the Pauli equation
from the origin, reduces the S = 1 contribution by a factor
of 1.5, and the (1 — V /2¢?)™! regularization [1] by 14%.
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FIG. 2. Asymmetry parameter for the two models corresponding to two cross sections in Fig. 1. The inset shows the corresponding

angle-differential photodetachment cross section [cf. Eq. (12)].

123003-3

123003-3



VOLUME 87, NUMBER 12

PHYSICAL REVIEW LETTERS

17 SEPTEMBER 2001

In the angular distribution of photoelectrons [Eq. (11)],
the S = 1 contribution adds a sin’# term to the pure cos>6
dependence of the S = O contribution. Therefore, the
asymmetry parameter 8 [ is a measure of the deviation
of the photoelectrons distribution from isotropy (8 = 0),
and completely characterizes the shape of the emission pat-
tern.] [13] in

do o[l + BPs(cosh)]
aQ 47 (12)

differs from its maximum value 2. In Eq. (12), both the
angle-integrated, o, and the angle-differential, do/d(},
PD cross sections include the summation over the final
spin S = 0 and 1 states. P,(cos#) is the Legendre polyno-
mial for / = 2, and @ is the polar angle of the unit vector k
in Eq. (11). Figure 2 shows the energy dependence of
for the two calculations described above and (as inset) the
corresponding angle-differential cross section. This theo-
retical prediction may be useful for future experimental
attempts to detect the 3P resonance in Cs™.

In conclusion, we have formulated boundary conditions
for solving the Pauli equation, which are important for
the description of the spin-orbit interaction effects in elec-
tron scattering and PD processes. The application of this
method to the near-threshold PD of Cs™ allows us to cal-
culate the contribution of the *P{ resonance in very good
agreement with the experimental results in [5].
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