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Hybridization of ionic levels at metal surfaces

P. Kürpick* and U. Thumm
J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604

~Received 20 October 1997!

We investigated the hybridization of He1, Li21, and Be31 ionic levels and the creation of surface reso-
nances for nuclear chargesZ52, 3, and 4 near an Al surface. Starting from a two-center basis set expansion
with hydrogenic wave functions on the ion site and jellium wave functions in the metal half space, we calculate
the self-energy for ion-surface system in the fixed-ion approximation. We obtain convergence by using a rather
small set of bound ionic states. This ideally suits this method for the generation of adiabatic basis states that
can be used in time-dependent close-coupling calculations for slow ion-surface collisions. We compare our
resonance energies and widths with other theoretical approaches, discuss electronic density profiles, and ana-
lyze resonances in terms of Stark states.@S1050-2947~98!01109-3#

PACS number~s!: 34.50.Dy, 31.15.2p, 34.70.1e, 61.80.Jh
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I. INTRODUCTION

Detailed understanding of the dynamics of ion-metal s
face interactions has been a primordial experimental and
oretical topic in the last decade. Experimentally, the inter
tion of single ions with metal surfaces has been investiga
in various ways. Charge-state distributions of highly charg
ions scattered from a single-crystal surface@1# and accelera-
tions of an incoming ion due to the image charge@2,3# have
been observed. The existence of hollow-atom states for
by resonant electron capture has been confirmed thro
high-resolution Auger electron spectroscopy measurem
@4#. These experiments ask forab initio calculations investi-
gating the neutralization and ionization of ions approachin
metal surface.

From a theoretical point of view several studies focus
on one-electron effects, which are supposed to be domi
at ion-surface distancesD. 5 a.u., can be found in the lit
erature: Early perturbative calculations go back to Gad
@5# and Remy @6#. Scattering calculations in first- an
second-order impulse approximation have been perform
by Thumm and Briggs@7–10#. More recently systematic in
vestigations of closed-form expressions for the transfer
trix elements and universal scaling properties for transit
rates of Rydberg states were derived by Wille@11,12# and
Kürpick and Thumm@13#. Besides these perturbative a
proaches, solutions of the time-dependent and tim
independent Schro¨dinger equation have been attained at va
ous levels of approximation. Using a two-center expans
together with the self-energy concept, Burgdo¨rfer et al.
@14,15# studied the hybridization of the (n52) manifold for
hydrogen interacting with an Al surface. Ku¨rpick et al. per-
formed converged self-energy calculations up ton56 for
hydrogen interacting with an Al surface@16,17#. In the self-
energy formalism, the expansion coefficients of t
substrate-centered basis are formally eliminated such th
restricted set of close-coupling equations in the subspac
atomic basis functions is obtained in which the coupling

*Present address: SAP-AG, Neurottstrasse 16, 69190 Walld
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the substrate appears as a complex potential, the self-en
Borisov et al. @18–20# applied the coupled-angular mod
~CAM! method to the broadening of atomic levels near me
surfaces for ions up to O71. The CAM method essentially
views atomic resonances as scattering resonances c
sponding to elastic scattering of conduction-band electr
by the ionic potential. A different approach has been und
taken by Nordlanderet al. and Deutscheret al. by means of
the complex scaling method@21–25#, which involves a com-
plex non-Hermitian Hamiltonian. Deutscheret al. @23–25#
focused on (n51,2)-surface resonances in H-Al surface i
teractions while Nordlanderet al. @21,22# calculated shifts
and widths of Rydberg states up ton510 for various ions
and surfaces. Furthermore, level positions and widths fo
atoms in front of an Al surface have been obtained by Ma
and Politis@26# within a ‘‘stabilized’’ multicenter-Gaussian
expansion method.

In this paper we present a large-scale application of
two-center expansion method with hydrogenic states on
ion site and jellium states for the metal half space. We so
the close-coupling equations by eliminating the explicit d
pendence on the jellium states. This elimination leads t
complex non-Hermitian self-energy matrix. The subsequ
diagonalization of the self-energy matrix yields the shift
energies and widths of ion-surface resonances formed w
the ion velocity perpendicular to the surface is small co
pared to the electron velocity. This adiabatic picture show
strong hybridization of ionic levels similar to the well-know
Stark mixing of hydrogenic levels. We emphasize that
resonance widths are associated with either the resonan
ing of an ionic level~resonant capture! or with the resonant
loss of an ionic electron into the unoccupied part of the me
conduction band. Which of these two cases applies depe
on the initial occupation of ionic and surface electron
states. At zero temperature and for resonance energies b
the Fermi level of the surface, the resonance widths desc
resonant capture into states about a nucleus of chargeZ; for
resonance energies above the Fermi level they correspon
resonant loss rates.

We have organized this paper of follows. In Sec. II w
present a short summary of the close-coupling expans
with emphasis on the self-energies. The actual evaluatio

rf,
2174 © 1998 The American Physical Society



ia
rre
cr
a

th

IV
se

m
u-
ic
th

er

e

,

it

t
id

le
ro
its
-

e

s

the

ou-

in
a-

n
,
ly
g

sfor-
s

ted,
ic
nic
e
the

PRA 58 2175HYBRIDIZATION OF IONIC LEVELS AT METAL SURFACES
the self-energy is done by decomposing the full Hamilton
for the ion-surface system into channel Hamiltonians co
sponding to unperturbed conduction-band states and dis
hydrogenic states, respectively. Results for the case of v
ous ions interacting with an Al surface with emphasis on
dependence of surface resonances on the hydrogenicn- and
m-quantum number are discussed in Sec. III. Section
gives a summary of our paper in which atomic units are u
throughout.

II. THEORY

In this section, we briefly present a derivation of the co
plex non-Hermitian self-energy formalism using two mut
ally nonorthogonal basis sets within the independent part
model. Details of the formulation and a thorough test on
H-Al system have been published elsewhere@16#.

The self-energy method first applied to ion-surface int
actions by Burgdo¨rfer et al. @14,15# starts from the time-
dependent Schro¨dinger equation

i uĊ~ t !&5H~ t ! uC~ t !& , ~2.1!

in which the HamiltonianH(t) is time dependent due to th
motion of the ion along a prescribed classical trajectory~we
adopt a reference frame in which the metal is at rest!. The
total one-electron HamiltonianH(t) is taken in the form

H~ t !5T1VS1VC
.~ t !, ~2.2!

whereT is the kinetic energy. The surface potentialVS in-
cludes both the electronic self-image potentialVe

( i )(z) and

the nuclear image potentialVC
( i )(rW;D) acting on the electron

VS~z!5H 2V0 , z,z0

Ve
~ i !~z!1VC

~ i !~z;D !, z>z0 ,
~2.3!

wherez0.0 is determined from the condition

Ve
~ i !~z0!1VC

~ i !~z0 ;D !52V0 ~2.4!

and 2V0 is the energy of the lower conduction-band lim
with respect to the ionization threshold. The potentialVC

. is
the potential of the ion core, cut off at the surface in order
allow for the complete screening of the core potential ins
the metal. The potentials

Ve
~ i !~z!52

1

4z
Q~z! ~2.5!

and

VC
~ i !~rW;D !5

Z

urW1Dêzu
Q~z!'VC

~ i !~z;D !5
Z

uz1Du
Q~z!

~2.6!

are the classical image potentials induced by the active e
tron and by the ion core, respectively. As can be seen f
Eq. ~2.6! we approximate the nuclear image potential by
value on thez axis, therefore slightly overestimating its in
fluence. In a previous article@16# we have compared th
surface potential according to Eq.~2.3! with the commonly
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used Jennings potential@28# and found minor deviations, a
can be also seen in Sec. III below.

The functionuC(t)& is expanded as

uC~ t !&5(
j 51

N

aj~ t ! uc j~ t !&

1 E
k<kmax

dkW r~kW ! bkW~ t ! ufkW& , ~2.7!

where the basis functionsuc j (t)& are eigenfunctions of the
stationary Hamiltonian

H f5T1VC ~2.8!

and are centered at the ion site. The basis functionsufkW& are
eigenfunctions to the step potentialVstep with wave vectorkW

and energyekW . r(kW ) is the corresponding~free-electron!
density of states. We restrict the set of basis functions$ufkW&%
to functions localized in the metal half-space, so that
maximum wave number is given bykmax5A2V0. The func-
tion ufkW& are eigenfunctions of the Hamiltonian

Hi5T1Vstep . ~2.9!

We decompose the total Hamiltonian~2.2! into initial and
final channel Hamiltonians according to

H5Hi1Vi5H f1Vf . ~2.10!

Taking the potential step inVstepat z0, initial and final chan-
nel perturbation potentials follow as

Vi5H 0, z,z0

VC1Ve
~ i !1VC

~ i ! , z>z0
~2.11!

and

Vf5H 2V02VC , z,z0

Ve
~ i !1VC

~ i !, z>z0 .
~2.12!

In all applications shown subsequently we retain the C
lomb potential in the initial channel perturbation~2.11! and
neglect the image potentials inVi . With respect to the final
channel potentialVf , we do not includeVC in Eq. ~2.12!.

Inserting the expansion~2.7! into the Schro¨dinger equa-
tion ~2.1! and projecting onto the basis functions, we obta
a set of close-coupling equations. The fixed-ion approxim
tion @14–16# corresponds to the static limit in which the io
is at rest at a distanceD in front of the surface. Accordingly
the HamiltonianH is independent of time and depends on
parametrically onD. In this case, the set of close-couplin
equations can be converted, by means of a Laplace tran
mation in the variables, into a system of algebraic equation
for the transformed expansion coefficientsãj (s) and b̃kW(s).
If the direct couplings among the metal states are neglec
the coefficientsb̃kW(s) can be eliminated from the algebra
system. The resulting linear system of equation for the io
coefficientsã j (s), corresponding to initial conditions wher
the Fermi sea of metal electrons is completely filled and
ionic levels are unoccupied, reads
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(
j 8

@ isd j j 82Sj j 8~s!# ã j 8~s!5 i E
k<kF

dkW r~kW !
WjkW

is2ekW
,

~2.13!

wherekF is the Fermi momentum of the metal, andS(s) is
the complex~static! self-energy. The self-energy describ
the effective interaction that governs the dynamics in
ionic space in the presence of couplings to the metal sta
The initial occupations of conduction-band states that
filled up to the Fermi level appear on the right-hand side
the above equation, but are not included in the self-ene
i-

n
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Many-body effects, in particular the Pauli-exclusion pri
ciple, are not incorporated in the self-energy. As a con
quence, its imaginary part~the resonance width! can be seen
as related to either the resonant capture rate or the rat
resonant loss into empty conduction-band states. The p
tion of the resonance energy, i.e., the real part of the s
energy, relative to the Fermi level, determines which sta
are inaccessible due to ‘‘Pauli blocking’’ and thus dete
mines the possible direction of the transfer process. W
expressings in terms of the real energy variablev by s5
2 i v1h, the matrix elements ofS(v) are given by
Sj j 8~v!5e jd j j 81F j j 81PE
k<kmax

dkWr~kW !
@~ekW2v! NjkW1WjkW# @~ekW2v! Nj 8kW

* 1Wj 8kW
* #

v2ekW

2 ipE
k<kmax

dkW r~kW ! WjkW Wj 8kW
* d~v2ekW ! , ~2.14!
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where P denotes the principal part andh is a positive infini-
tesimal guaranteeing~Siegert! resonance boundary cond
tions. The initial-channel transfer matrix elementsWjkW ,
overlap matrix elementsNjkW , and the final-channel distortio
matrix elementsF j j 8 are defined as

WjkW5^c j uVi ufkW&, ~2.15!

NjkW5^c j ufkW&, ~2.16!

and

F j j 85^c j uVf uc j 8& . ~2.17!

For a detailed study of these matrix elements, we refe
Refs. @11–13#. The ~off-shell! principal-part term in Eq.
~2.14! describes indirect couplings between ionic states
to virtual transitions into the conduction band, while the~on-
shell! term proportional toip ~‘‘width term’’ ! describes rea
transitions into the conduction band and gives rise to
resonance broadening of the dressed ionic levels. By su
quently diagonalizing the self-energy matrix~2.14! we ob-
tain complex eigenvaluesṽm(D), and eigenvectors
ufm(D)&, wherem collectively denotes the quantum num
bers characterizing the states. The complex eigenva
ṽm(D) relate to the energetic shiftsEm(D) and widths
Gm(D) according to

Em~D !5Re ṽm~D !, ~2.18!

Gm~D !522 Im ṽm~D !. ~2.19!

The nonlinear eigenvalue problem~2.13! is approximately
solved by evaluating the matrix elementsSj j 8(v) at

v5
e j1e j 8

2
. ~2.20!
to

e

e
e-

es

We represent the resonance wave functions as hybrid w
functions that are given as linear combinations of ionic
bitals of a particular magnetic quantum numberm according
to

ufm~D !&5(
j 51

N

am, j~D !uc j&. ~2.21!

III. NUMERICAL RESULTS AND DISCUSSION

We have calculated level positions, level widths, and el
tronic charge densities of ion-surface states that form
nucleus of chargeZ52, 3, and 4 is placed at a given distan
in front of an Al surface. The Al surface is characterized
the potential depthV050.585 a.u. and the work function
W50.15 a.u. Resonance states with larger binding energ
between2V0 and2W, may be filled by resonant tunneling
At large ion-surface distances the asymptoticn52 and n
53 manifolds of He1, then53 to n55 manifolds of Li21,
and then54 to n57 manifolds of Be31 are in resonance
with the filled part of the Al conduction band. As can be se
from our Hamiltonian~2.2!, the ion-surface system exhibits
cylindrical symmetry with respect to thez axis perpendicular
to the surface. Therefore them quantum number is conserve
and differentm manifolds can be investigated separately. W
will mainly investigate them50 manifold but show thatm
Þ0 manifolds have a very similar behavior. In a previo
paper@16# the convergence of our method, with respect
the size of the ionic basis set was studied in detail and
nth manifold was found to be converged if then21 andn
11 manifolds are included in the basis set. This rule holds
long as the very strong interaction of ionic states with t
metal surface, which sets in at ion-surface distances be
the classical orbit radiuŝr &5n2/Z, leads to a strong promo
tion across all highern manifolds. The self-energy metho
therefore allows us to obtain accurate energies and width
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resonance states while using a small set of bound ionic
bitals.

A. Z52 1 Al

Figure 1 shows for the case of a nuclear chargeZ52 near
an Al surface converged resonance energies of allm50
states emanating from the asymptoticn52 to n55 mani-
folds of He1. The ionic basis set in the calculation was bu
up by then51 to n58 manifolds, therefore including 36
states. At large ion-surface distances all states exhib
monotonic upward shift due to the nuclear image potent
At close ion-surface distances the interaction of the io
states with the metal surface through the final-channel po
tial matrix elements@see Eq.~2.17!# leads to an energeti
downward shift of those resonance states that strongly o
lap with the surface as, for example, resonancea. The dashed
lines show results by Borisovet al. obtained using the CAM
method@20#. The agreement is good down to aboutD53
a.u. for the state whose probability distribution mainly poin
towards the vacuum while discrepancies occur belowD56
a.u. for the state that is primarily oriented towards the me
surface. These discrepancies are due to the different cho
of the nuclear image potential near the surface. Borisovet al.
keep the full nuclear image potential down toz50 while in
our calculations the nuclear image potential is turned
when the sum of the nuclear image potential and electro
self-image potential add up to the value of2V0. This hap-
pens forz.0 @see Eq.~34! in Ref. @16##, and weakens the
influence of the nuclear image potential on the atomic re
nances.

Figure 2 shows the widths of the asymptoticn53 andn
54 manifolds. The designationa–c refers to the energies o
the n53 manifold shown in Fig. 1 while the designatio
d–g marks the levels of the asymptoticn54 manifold. To
exhibit how convergence is achieved within a small set
ionic basis functions, we have also plotted in Fig. 2 the wi
of the resonance statee obtained while using a basis s
spanned by then51 to n56 states~21 basis functions! and
the n51 to n55 states~15 basis functions!. The conver-
gence is rapidly achieved and the accuracy far better than

FIG. 1. Energies of them50 resonances states of th
asymptotic (n52) to (n55) manifolds for a nuclear chargeZ52
near an Al surface. The labelsa–g refer to the widths shown in Fig
2. The dashed lines show results by Borisovet al. @20#.
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physical accuracy of the potentials used in the Hamilton
~2.2!. Within a givenn manifold resonance states have ve
distinct widths and states of the samen manifold generally
tend to have the same exponential slope at large ion-sur
distances. Exceptions to this rule are obvious for the re
nance state denoted withe. Due to adiabatic couplings, th
exponential slope of its width changes in the ion-surface d
tance range of 18 to 20 a.u. The dashed lines show result
Borisov et al. @20# for the n54;m50 manifold. Their
widths for most ion-surface distances tend to be a facto
2–4 larger than our results. This behavior is also obser
for the state with low width in theZ53 –Al system as dis-
cussed below. Although not as pronounced as in our ca
lations, the results by Borisovet al. also exhibit a shoulder
and change of slope for the width of the resonance s
denoted ase.

An appropriate way to analyze the behavior of resona
states is to express the resonance wave function as a l
combination of Stark states

ufm,m~D !&5(
n,k

cm,n,k,m~D !ujn,k,m&, ~3.1!

where the parabolic Stark states are given as linear comb
tions of spherical hydrogenic orbitals and the coefficients
the Clebsch-Gordan coefficients@29#

ujn,k,m&5 (
l 50

n21 S ~n21!/2 ~n21!/2

~m1k!/2 ~m2k!/2
U l

mD ucnlm&.

~3.2!

The comparison of nonperturbative widths obtained by
CAM method with first-order widths calculated for parabo
Stark states by Borisov and Wille@19# showed that, at large
ion-surface distances, Stark states are good approxima
to the resonance wave functions. Given our axis of quant
tion perpendicular to the surface, the largest positive elec
quantum numberk corresponds to a Stark state pointing t
wards the surface therefore exhibiting a large width, wher

FIG. 2. Widths of them50 resonances states of the asympto
(n53) and (n54) manifolds for a nuclear chargeZ52 near an Al
surface. The labelsa–g refer to the energies shown in Fig. 1. Th
dashed lines show results by Borisovet al. for the n54;m50
manifold @20#.
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2178 PRA 58P. KÜRPICK AND U. THUMM
the largest negative electric quantum numberk corresponds
to a Stark state pointing towards the vacuum and has a s
width. Figure 3 shows the six largest square amplitudes
cording to Eq.~3.1! for the resonance state denoted ase in
Figs. 1 and 2. The resonance statee tends for large ion-
surface distances towards then54, k51 parabolic state.
Comparing Figs. 2 and 3, one sees that the width change
slope at approximately 20 a.u. where the resonance stae
shows the strongest admixture of thelarge-width n54, k
53 parabolic state.

B. Z53 1 Al

Our results for a chargeZ53 near an Al surface can b
compared with nonperturbative calculations by Borisovet al.
@20# and perturbative calculations by Borisov and Wille@19#.
Figure 4 shows the converged energy shifts ofm50 reso-
nance states emerging out of the asymptoticn55 to n57
manifold while using an ionic basis set spanned by then
53 to n59 manifolds. The dashed lines in Fig. 5 sho
results by Borisovet al. @20# for the n55;m50 manifold
obtained using the CAM method. The discrepancies betw

FIG. 3. Square amplitudes of the parabolic Stark state contr
tions to the resonance state denoted ase in Figs. 1 and 2.

FIG. 4. Energies of them50 resonances states of th
asymptoticn55 to n57 manifolds for a nuclear chargeZ53 near
an Al surface. The dashed lines show results by Borisovet al. for
the n55;m50 manifold @20#. The labelsa–e refer to the widths
shown in Fig. 5.
all
c-

its

en

the CAM results and our self-energy calculations origin
from the approximation to the nuclear image potential in o
approach, which leads to an overestimation of its stren
and therefore to a somewhat stronger upward shift of
levels.

Figure 5 presents the converged widths of resona
states formed near an Al surface out of the asymptoticn
55 manifold of Li21 states. The symbols in Fig. 5 refer t
the non-perturbative CAM results obtained by Borisov a
Wille @19#. Although these authors use the more refined J
nings potential @28# to represent the metal surface, o
widths tend to agree very well with the CAM results for th
three states exhibiting the largest widths. The general tr
in the agreement between the CAM results and our res
can be understood by looking at the wave function of
resonance states. Those resonances having a rather
width strongly overlap with the surface potential barrier a
therefore average over large portions of space. In contr
those states having a small width exhibit a very weak over
with the surface and are therefore more sensitive to detail
the surface potential. Since Borisov and Wille@19# used the
Jennings potential in their CAM calculations, their width
tend to be larger because the surface potential is smeare
along thez axis perpendicular to the surface. This leads
metal states in which more probability densityleaksinto the
vacuum as compared to our jellium potential@see Eq. 2.3#.

In Fig. 5 we also plotted first-order widths obtained fro
parabolic~Stark! states@19#, which are denoted by the elec
tric quantum numberk524, . . . ,4.These first-order calcu
lations rely on the same surface potential as our nonper
bative calculations. The widths extracted from these fir
order results tend to be bigger than both nonperturba
approaches especially for resonance states with a s
width. One should keep in mind that states with small wid
do not contribute significantly to the neutralization process
any ion-surface encounter. Errors in their widths are the
fore of little relevance to the overall physical behavior. T
get a better understanding of the deviation of the first-or
Stark results from both nonperturbative results, we have p

u- FIG. 5. Widths of then55;m50 resonances states for
nuclear chargeZ53 near an Al surface. The symbols show resu
obtained by Borisov and Wille using the CAM method@19#. The
dash-dotted lines are first-order calculations in the parabolic~Stark!
basis denoted by their electric quantum number by Borisov
Wille @19#. The labelsa–e refer to the energies shown in Fig. 4.
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formed, as for the case ofZ52, an analysis of our resonanc
states in terms of Stark states. As an example Fig. 6 sh
the four largest square amplitudes of Stark states contri
ing to the resonance state denoted asc in Figs. 4 and 5. Its
width shows a deviation from the first-order Stark calcu
tion while both nonperturbative results agree very w
among each other~Fig. 5!. Although the resonance statec
tends for large ion-surface distances towards the parab
state with quantum numbersn55, k522 it has a contribu-
tion of then56, k523 parabolic state that grows to abo
53% at an ion-surface distance of 4 a.u. Then56, k523
parabolic state is expected to have a rather small wi
therefore reducing the overall width, of the resonance stac
as compared to the width of the pure Stark state with qu
tum numbersn55, k522. Additionally the resonance stat
c has contributions ranging from 0.1 to 8 % of the parabo
staten54, k521, which has the second smallest width o
of then54 Stark manifold. Contributions from the parabol
staten56, k521 are ranging from 0.5 to 3 %. Our Star
analysis shows that the resonance states, although ten
towards a specific parabolic state at large ion-surface
tances, have a significant admixture of other Stark state
small and intermediate ion-surface distances.

FIG. 6. Square amplitudes of the parabolic Stark state contr
tions to the resonance state denoted asc in Figs. 4 and 5.

FIG. 7. Energies of them50 resonances states of th
asymptoticn55 to n57 manifolds for a nuclear chargeZ54 near
an Al surface. The labelsa–e refer to the widths in Fig. 8.
s
t-

-
l

lic

h,

n-

c
t

ing
s-
at

C. Z54 1 Al

Figures 7 and 8 show the energies and widths ofm50
resonance states for the nuclear chargeZ54 near an Al sur-
face. The ionic basis set used was spanned by then53 to
n59 manifolds. The widths of resonance states denoted
a–e in Fig. 7 are shown in Fig. 8. The individual resonan
states have strikingly different widths. Comparing the ene
diagram forZ54 1 Al ~Fig. 7! with the diagram forZ53
shown in Fig. 4 reveals that for a givenn manifold around
Z54 the mixing with highern manifolds takes place a
smaller ion-surface distances. This is to be expected as
mean classical radiuŝr n&5n2/Z of Be31 states is reduced
by 3/4 as compared to Li21.

So far, we have shown results form50. In order to in-
vestigate them dependence of resonance parameters,
show in Fig. 9 them53 resonance energies of then55 to
n57 manifolds and in Fig. 10 the widths of then57,
m53 manifold for theZ54 –Al surface system. The behav
ior in the shifts is similar to the shifts of them50 states
being mainly driven by the repulsive nuclear image potent
The major difference is seen in the energetic downward s

u- FIG. 8. Widths of then55;m50 resonances states for
nuclear chargeZ54 near an Al surface. The labelsa–e refer to the
energies in Fig. 7.

FIG. 9. Energies of them53 resonances states of th
asymptoticn55 to n57 manifolds for a nuclear chargeZ54 near
an Al surface. The labelsa–d refer to the widths in Fig. 10 and to
the density plots shown in Figs. 11~a! to 11~d!.
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of resonance states, which tends to set in at smaller
surface distances as compared to them50 case. Since ou
quantization axis is perpendicular to the surface this beha
is to be expected as the probability density of high-m states

FIG. 10. Widths of then57;m53 resonances states for
nuclear chargeZ54 near an Al surface. The labelsa–d and the
vertical dashed line refer to the energies in Fig. 9 and density p
shown in Figs. 11~a!–11~d!.
n-

or

tends to be oriented parallel to the surface, whereas thm
50 states tend to have their density pointing along thez axis
perpendicular to the surface, therefore leading to a stron
interaction with the surface.

The hybridization of ionic orbitals according to Eq.~2.21!
is presented in Figs. 11~a!–11~d! in which contour plots of
the electronic probability density in a plane perpendicular
the surface including the ionic nucleus are shown. Displa
are the hybrid wave functions~2.21! for the asymptoticn
57, m53 manifold. The ion-surface distance is 15 a.u., a
we adopted a new reference frame with the ionic nucleu
the origin. The dashed line corresponds to the surface lo
tion. The labelsa–d refer to the shifts in Fig. 9 and width
presented in Fig. 10. While resonancea tends to point to-
wards the surface, resonanced exhibits a charge density ori
ented towards the vacuum resulting in a decrease of
width by almost five orders of magnitude. The wave fun
tions corresponding to the casesb and c are of moderate
width and are somewhat symmetric with respect to reflect
at an axis parallel to the surface and going through
nucleus.

In general, the shape of resonance wave functi
changes as a function of the ion-surface distance. As an
ample for such an evolution Figs. 12~a!–12~c! show the pre-
viously discussed wave functions of resonancea, exhibiting

ts
ontaining
e surface
FIG. 11. ~a!–~d! Contour plots of the charge density of the surface resonances in the plane perpendicular to the surface and c
the ionic nucleus of chargeZ54. The ion-surface distance is 15 a.u. and we used the ion-reference frame. The dashed line marks th
edge. The labels~a!–~d! refer to the energies in Fig. 9 and widths in Fig. 10.
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FIG. 12. ~a!–~d! Contour plots of the charge
density of the surface resonance exhibiting t
largest width out of the asymptoticn57, m53
manifold. The distance between the ionic nucle
of chargeZ54 ranges from 10.2 to 20 a.u. Th
dashed line marks the surface edge.
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the largest width in the asymptoticn57, m53 manifold, for
ion-surface distances ranging from 10.2 to 20 a.u. It can
seen that, while approaching the surface, the density tend
bend towards the surface, which leads to a slight increas
the exponential slope of the corresponding width in the i
surface distance range of 12.5 to 15 a.u.~cf. Fig. 10! and is
related to the onset of the downward level shift~cf. Fig. 9!.
This illustrates that the change in shape of the resona
wave functions as a function of ion-surface distances lead
the nonadiabatic coupling among the surface resonan
which has to be taken into account when solving the tim
dependent Schro¨dinger equation@27#.

IV. CONCLUSION

The self-energy method used in the present work allo
for the very efficient computation of surface resonances.
cept for small ion-surface distances, the comparatively sm
set of bound hydrogenic basis states that need to be t
into account in order to generate converged results for le
shifts and widths is roughly spanned by then manifold of
interest and neighboring manifolds. Similar to the molecu
orbital method in slow ion-atom collisions, the method
ideally suited for the generation of surface resonances
basis functions for the solution of the time-dependent Sch¨-
dinger equation@27#. We have calculated accurate surfa
ys

or
m

e
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-

ce
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es,
-

s
x-
ll
en
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r
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resonances formed during the slow encounter of an ion w
a metal surface. Our results include resonance states ar
nuclear chargesZ52, 3, and 4 near an Al surface. Whil
primarily investigating states withm50, we showed that
mÞ0 states exhibit a similar behavior. For the case of H1

and Li21 interacting with an Al surface a comparison wi
two very different theoretical approaches yields reasona
agreement, and an analysis of the resonance states in t
of parabolic states shows that strong deviations from a St
like behavior occur at ion-surface distances smaller than
classical radius. Furthermore, we have related struct
changes in the resonance density profile to character
changes in the resonance widths as a function of the
surface distance.
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